Как найти массу тела при свободном падении

Падение – процесс, растянутый во времени и пространстве, и конкретный этап падения в вопросе не указан, по этому ниже рассмотрим вес на разных этапах.

Для начала дадим определение термину “вес”: “Вес — сила, с которой тело действует на опору (или подвес, или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести” ©wiki

Вес человека до падения будет равен m*g (где m – масса человека, а g – ускорение свободного падения (обычно берут 9.8 м/c^2); g в общем случае зависит от высоты, но в данном случае разница в g на 10 этаже и на уровне земли будет пренебрежимо мала).

В полёте (в свободном падении), т.к. отсутствует опора/подвес (влияние сопротивления воздуха для упрощения учитывать не будем), вес человека будет равен 0.

Самое интересное начинается при приземлении.

Из определения: вес – это сила. Согласно 2 закону Ньютона: F = m*a. И если масса в данном случае неизменна, то задача сводится к расчету ускорения. Сразу оговорюсь, что расчеты будут приблизительные, т.к. тут существует огромное количество нюансов, которые в обобщённом виде учесть трудно.

“Типовая” высота одного этажа жилого дома – обычно 3м. Соответственно, 10 этаж – это h = 30м. Так же примем, что человек при ударе о землю сбросит набранную скорость до 0, допустим, за 0.5с.

Общее время падения: t = √(2 * h / g) ≈ 2.474c. За это время тело успеет разогнаться до скорости v = g*t ≈ 24.25 м/с. И если принять, что скорость эту оно сбросит за 0.5с, то ускорение a = v / t = 48.5 м/с^2; соответственно вес F = m * a = 48.5 * m, т.е. примерно в 5 раз больше, чем в спокойном состоянии (перегрузка 5g).

Понятно, что если человек приземляется плашмя, то время, за которое скорость сбрасывается до 0 стремится к 0, а, соответственно, перегрузки и вес стремятся к бесконечности; а если пытается смягчить удар, то растёт и время, а, соответственно, падает ускорение, и перегрузки будут стремиться к 1g.

Ну а после приземления вес всё так же будет равен m*g…

21,1 K

Как у вас получилось а=v/t т.е 24.25/2,47 =48.5??? Садись 2

Комментировать ответ…Комментировать…

Вес тела. Калькулятор онлайн.

Калькулятор вычисления веса тела, вычислит вес тела, массу, ускорение свободного падения и даст подробное решение.

Калькулятор содержит:
Калькулятор вычисления веса тела, если известны масса тела и ускорение свободного падения.
Калькулятор вычисления массы тела, если известны вес тела и ускорение свободного падения.
Калькулятор вычисления ускорения свободного падения, если известны вес тела и его масса.

В данной таблице приведены значения ускорения свободного падения для планет Солнечной системы и их спутников.

Калькулятор вычисления веса тела, если известны масса тела и ускорение свободного падения.

Вес тела формулаВес тела P, которое покоится в инерциальной системе отсчета равен произведению массы m этого тела и ускорения свободного падения g над поверхностью космического тела.
Ускорение свободного падения g на поверхности Земли равно 9.780327 м/с2
Единицей измерения силы – Ньютон (Н, N)

Масса m =
Ускорение свободного падения g =
Единица измерения веса P

Калькулятор вычисления массы тела, если известны вес тела и ускорение свободного падения.

Формула массы тела, если известны вес тела и ускорение свободного паденияМасса тела m равна отношению веса P к ускорению свободного падения g над поверхностью космического тела.
Ускорение свободного падения g на поверхности Земли равно 9.780327 м/с2
Единица массы – килограмм, но также можно использовать и другие единицы, например грамм, тонна, миллиграмм и т.д.

Вес P =
Ускорение свободного падения g =
Единица измерения массы m

Калькулятор вычисления ускорения свободного падения, если известны вес тела и его масса.

Формула вычисления ускорения свободного падения, если известны вес тела и его массаУскорение свободного падения g равно отношению веса тела P к его массе m.
Ускорение свободного падения g на поверхности Земли равно 9.780327 м/с2
Ускорение свободного падения — это ускорение, которое тело приобретает под действием гравитационной силы около поверхности небесных тел в космическом пространстве.
Единица ускорения – метр в секунду в квадрате.

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря – падение в пустоте. Конечно, отсутствие сопротивления воздуха – это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения – ускорение, с которым все тела падают на Землю. 

Ускорение свободного падения приблизительно равно 9,81 мс2 и обозначается буквой g. Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 мс2.

Земля – не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения – на полюсах (≈9,83 мс2), а самое малое – на экваторе (≈9,78 мс2).

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его. 

Свободное падение – прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h=v0+gt22.

Так как начальна скорость равна нулю, перепишем:

h=gt22.

Отсюда находится выражение для времени падения тела с высоты h:

t=2hg.

Принимая во внимание, что v=gt, найдем скорость тела в момент падения, то есть максимальную скорость:

v=2hg·g=2hg.

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

v=v0-gt.

Подставив v=0, найдем время подъема тела на максимальную высоту:

t=v0g.

Время падения совпадает со временем подъема, и тело вернется на Землю через t=2v0g.

 Максимальная высота подъема тела, брошенного вертикально:

h=v022g.

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a=-g. Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10мс2.

Движение тела, брошенного вертикально вверх

Первый график – это падение тела с некоторой высоты без начальной скорости. Время падения tп=1с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h=5м.

Второй график – движение тела, брошенного вертикально вверх с начальной скоростью v0=10 мс. Максимальная высота подъема h=5м. Время подъема и время падения tп=1с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси OY тело движется равноускоренно с ускорением g, начальная скорость этого движения – v0y. Движение вдоль оси OX – равномерное и прямолинейное, с начальной скоростью v0x.

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси ОХ:

x0=0; v0x=v0cosα; ax=0.

Условия для движения вдоль оси OY:

y0=0; v0y=v0sinα; ay=-g.

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t=2v0sinαg.

Дальность полета тела:

L=v02sin2αg.

Максимальная дальность полета достигается при угле α=45°.

Lmax=v02g.

Максимальная высота подъема:

h=v02sin2α2g.

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука – баллистика.

Формулу можно написать, только есть проблема откуда брать необходимые величины.

Все знают 2-й закон Нью. F = a m

Но это частный случай его формулировки. Важно понять
1) Это для центра масс тела (ЦМ)
2) И полее общая формулировка
Сумма сил = скорости изменения импульса ЦМ
dP/dt = F1 +F2 …
где P – импульс, dP – изменение, dt – интервал времени за кот. произошло изменение

Вернемся к монете – есть 3 момента важные для верного ответа
1) Что такое вес. По определению – вес – это сила с которой тело действует на опору или растягивает нить подвеса.
Значит вес монеты при ударе о землю больше, чем вес покоящейся. Он равен силе реакции опоры – по 3-му закону, как мы на опору, так и опора на нас
2) Импульс p=mV. Но проблема со скоростью монеты. Как ее найти. Ясно, что падая с такой высоты 3 200 м, монета будет разгоняться только на начальном этапе, а затем сила сопротивления воздуха сравняется с силой тяжести и манета будет падать с постоянной скоростью.
С этой точки зрения без разницы с высоты 500 м 2 000 м или 10 000 м мы бросим монету – скорость у земли будет одинакова.
Информация к размышлению – парашутист в затязном прыжке, сгруппировавшись (калачиком) может развить 50 м/сек (180 км/час) .
3) Чтобы воспользоваться формулой надо знать время в течении которого “тормозиться” монета.

Ответив на эти вопросы запросто решаем задачу. Только надо не забыть – импульс гасит сумма сил
N – mg – т. е. надо не забыть силу тяжести.

Предлагаю рассмотреть другую задачу – какой вес будет у человека прыгнувшего с высоты 2,5 м в момент приземления. (2,5 м высота серьезная, но реальная – потолки у нас в квартирах чуть выше)

Данные для расчетов
Масса 70 кг
Центр тяжести у стоячего человека – 1,0 м от земли.
В момент приземления мы переходим в позу лягушки (главное подбородком не впилиться в коленку)
Я на себе прикинул – ЦМ будет на высоте 0,3-0,4 м.

Ясно, что такие данные достаточно точны. 10-20%.

Будем считать, что тормозимся мы с постоянным ускорением.
В момент приземления только тупица будет “стоять солбом”, мы на полусогнутых – т. е. в момент касания ботинок земли ЦМ берем поменьше – не 1,0 а 0,8 м.
Конечное положение считаем 0,3 м.

Найдем скорость к моменту приземления
Начальная высота = 2,5 + 1 =3,5 м (ботинки на 2,5 м, а ЦМ на метр выше)
Конечная 0,8 м
Из закона сохр. энергии
mg(H2-H1) = 1/2 mV^2

V = кор. кв. (2gH) = кор. кв. (20 1,7) =кор. кв. (34) – примерно 6 м/сек – завышена всего на 3% от точной при расчете

Найдем время торможения

Свободное падение яблока.

Свобо́дное падéние — равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы. На поверхности Земли (на уровне моря) ускорение свободного падения меняется от 9,832 м/с² на полюсах, до 9,78 м/с² на экваторе.

В частности, парашютист в течение нескольких первых секунд прыжка находится практически в свободном падении.

Свободное падение возможно на поверхность любого тела, обладающего достаточной массой (планеты и их спутники, звёзды, и т. п.).

Во время свободного падения какого-либо объекта этот объект находится в состоянии невесомости (как если бы он находился на борту космического аппарата, движущегося по околоземной орбите). Данное обстоятельство используется, например, при тренировке космонавтов: самолёт с космонавтами набирает большую высоту и пикирует, находясь в течение нескольких десятков секунд в состоянии свободного падения; космонавты и экипаж самолёта при этом испытывают состояние невесомости[1].

Комментарий к определению[править | править код]

Поскольку сила тяжести понимается как сила, действующая вблизи планеты, определению «свободного падения» строго соответствуют движения тела около поверхности Земли или другого крупного астрономического объекта. Важным условием является малость сопротивления среды (или её отсутствие[2]). Примером служит полёт камня, брошенного с поверхности или с некоторой высоты под любым углом (при небольших скоростях сопротивлением воздуха можно пренебречь), причём движение вверх тоже является свободным падением, вопреки интуитивному восприятию. Траектория может иметь форму участка параболы или отрезка прямой.

Очень часто, однако, под «свободным падением» подразумевается только движение тела вертикально вниз и без начальной скорости, у земной поверхности[3]. При этом, в бытовых рассуждениях, сила сопротивления атмосферы иногда трактуется не как искажающий фактор, а как полноценный атрибут такого движения, на равных с силой тяжести.

Изредка «свободное падение» трактуется шире официального определения, а именно допускается движение тела на значительном удалении от планеты. Тогда в определение вписываются, скажем, вращение Луны вокруг Земли или падение тел из космоса. Объект, свободно падающий из бесконечности на планету, достигает её поверхности или верхних слоёв атмосферы со скоростью не ниже второй космической, а траектория представляет собой кусок гиперболы, параболы или прямой; ускорение непостоянно, так как изменения гравитационной силы в пределах изучаемой области существенны.

История[править | править код]

Первые попытки построить количественную теорию свободного падения тяжёлого тела были предприняты учёными Средневековья; в первую очередь следует назвать имена Альберта Саксонского и Николая Орема. Однако они ошибочно утверждали[4][5], что скорость падающего тяжёлого тела растёт пропорционально пройденному пути. Эту ошибку впервые исправил Д. Сото (1545), который сделал правильный вывод о том, что скорость тела растёт пропорционально времени, прошедшему с момента начала падения, и нашёл[6][7] закон зависимости пути от времени при свободном падении (хотя эта зависимость была дана им в завуалированном виде). Чёткая же формулировка закона квадратичной зависимости пути, пройденного падающим телом, от времени принадлежит[8] Г. Галилею (1590) и изложена им в книге «Беседы и математические доказательства двух новых наук»[9]. Сначала Лейбниц, а затем, в 1892—1893 гг. профессор МГУ Н. А. Любимов поставили опыты, демонстрирующие возникновение невесомости при свободном падении[10].

Демонстрация явления[править | править код]

Свободное падение. Вектор силы тяжести направлен вертикально вниз.

При демонстрации явления свободного падения откачивают воздух из длинной трубки, в которую помещают несколько предметов разной массы. Если перевернуть трубку, то тела, независимо от их массы, упадут на дно трубки одновременно.

Если же эти предметы поместить в какую-либо среду, то к действию силы тяжести добавится сила сопротивления, и тогда времена падения данных предметов уже не обязательно будут совпадать, а будут в каждом случае зависеть от формы тела и его плотности.

Количественный анализ[править | править код]

Введём систему координат Oxyz с началом на поверхности Земли и направленной вертикально вверх осью y и рассмотрим свободное падение тела массы m с высоты y0[11], пренебрегая вращением Земли и сопротивлением воздуха. Дифференциальное уравнение движения тела в проекции на ось y имеет[12] вид:

m{{ddot  y}};=;-,mg,,

где g — ускорение свободного падения, а точками над величиной обозначается её дифференцирование по времени.

Интегрируя данное дифференциальное уравнение при заданных начальных условиях y = y0 и v = v0 (здесь v — проекция скорости тела на вертикальную ось), находим[13] зависимость переменных y и v от времени t:

{displaystyle v;=;v_{_{0}},+,gt,,;}
y;=;y_{{_{0}}},+,v_{{_{0}}}t,-{frac  {gt^{2}}{2}},,.

В частном случае, когда начальная скорость равна нулю (то есть тело начинает падение, не испытав толчка вверх или вниз), из этих формул видно, что текущая скорость тела пропорциональна времени, прошедшему с момента начала свободного падения, а пройденный телом путь — квадрату времени.

Подчеркнём, что результаты не зависят от значения массы m.

Рекорды свободного падения[править | править код]

В бытовом смысле под свободным падением нередко подразумевают движение в атмосфере Земли, когда на тело не действуют никакие сдерживающие или ускоряющие факторы, кроме силы тяжести и сопротивления воздуха.

Согласно Книге рекордов Гиннесса, мировой рекорд расстояния, преодолённого при свободном падении, составляющий 24 500 м, принадлежит Евгению Андрееву. Последний установил данный рекорд во время парашютного прыжка с высоты 25 457 м, совершённого 1 ноября 1962 года в районе Саратова; тормозной парашют при этом не применялся[14].

16 августа 1960 г. Джозеф Киттингер совершил рекордный прыжок с высоты 31 км с использованием тормозного парашюта.

В 2005 году Луиджи Кани установил мировой рекорд скорости (прыжок в тропосфере), достигнутой в свободном падении — 553 км/ч.

В 2012 году Феликс Баумгартнер установил новый мировой рекорд скорости в свободном падении, развив скорость 1342 километра в час[15].

30 июля 2016 года американский скайдайвер Люк Айкинс установил уникальный рекорд, совершив прыжок без парашюта с высоты 7600 метров на сеть размером 30×30 м с использованием наземных средств для ориентации[16].

См. также[править | править код]

  • Перемещение

Примечания[править | править код]

  1. Бутенин, Лунц, Меркин, 1985, с. 132—136.
  2. Е. И. Бутиков, А. С. Кондратьев. Физика для углублённого изучения, разд. 1 «Механика», стр. 50. М.: Физматлит (2004). — «Свободным падением называют движение в вакууме, когда сопротивление воздуха отсутствует». Дата обращения: 13 февраля 2018. Архивировано 27 января 2018 года.
  3. Свободное падение. Справочный портал «Калькулятор». — «Падение тела, обусловленное притяжением Земли, при отсутствии начальной скорости и сопротивления воздуха считают свободным падением». Дата обращения: 13 февраля 2018. Архивировано 16 февраля 2018 года.
  4. Моисеев, 1961, с. 100–101.
  5. Тюлина, 1979, с. 51.
  6. Моисеев, 1961, с. 105.
  7. Тюлина, 1979, с. 53—54.
  8. Моисеев, 1961, с. 116.
  9. Галилео Галилей.  День четвёртый. // Математические доказательства, касающиеся двух новых отраслей науки, относящихся к механике и местному движению. — М.Л.: ГИТТЛ, 1934.
  10. Перельман Я. И. Межпланетные путешествия. Начальные основания звездоплавания. — 6-е изд. — Л.: Прибой. — С. 163. — 5000 экз.
  11. Считаем, что тело при своём движении не слишком удаляется от поверхности Земли, так что ускорение свободного падения можно считать постоянным.
  12. Бутенин, Лунц, Меркин, 1985, с. 22.
  13. Бутенин, Лунц, Меркин, 1985, с. 23, 32.
  14. Рекорд ФАИ № 1623 Архивировано 14 июля 2014 года. — на сайте Международной авиационной федерации (ФАИ).
  15. World Record Jump | Red Bull Stratos. Дата обращения: 12 сентября 2013. Архивировано 2 октября 2013 года.
  16. Бес страховки. Дата обращения: 2 августа 2016. Архивировано 20 августа 2016 года.

Литература[править | править код]

  • Бутенин Н. В., Лунц Я. Л., Меркин Д. Р. Курс теоретической механики: Учебник. Т. II. 3-е изд. — М.: Наука, 1985. — 496 с.
  • Моисеев Н. Д. Очерки истории развития механики. — М.: Изд-во Моск. ун-та, 1961. — 478 с.
  • Тюлина И. А. История и методология механики. — М.: Изд-во Моск. ун-та, 1979. — 282 с.

Добавить комментарий