Рассматривая график плавления и отвердевания льда в прошлом уроке, мы выяснили, что во время процесса плавления температура льда не меняется. Температура продолжит расти только тогда, когда лед полностью перейдет в жидкость. То же самое мы наблюдали и при кристаллизации воды.
Но, когда лед плавится, он все равно получает энергию. Ведь во время плавления мы не выключаем горелку — лед получает какое-то количество теплоты от сгорающего в спиртовке (или другом нагревателе) топлива. Куда уходит эта энергия? Вы уже знаете закон сохранения энергии — энергия не может исчезнуть.
На данном уроке мы подробно рассмотрим, что происходит во время процесса плавления, как изменяется энергия и температура. Это позволит нам перейти к новому определению — удельной теплоте плавления.
Изменение внутренней энергии и температуры при плавлении
Так на что же уходит энергия, которую мы сообщаем телу, при плавлении?
Вы знаете, что в кристаллических твердых телах атомы (или молекулы) расположены в строгом порядке (рисунок 1). Они не двигаются так активно, как в газах или жидкостях. Тем не менее, они также находятся в тепловом движении — колеблются.
Взгляните еще раз на график плавления и отвердевания льда (рисунок 2).
Нагревание льда идет на участке AB. В это время увеличивается средняя скорость движения его молекул. Значит, возрастает и их средняя кинетическая энергия и температура. Размах колебаний атомов (или молекул) увеличивается.
Так происходит то того момента, пока нагреваемое тело не достигнет температуры плавления.
При температуре плавления нарушается порядок в расположении частиц в кристаллах.
Так вещество начинает переход из твердого состояния в жидкое.
Значит, энергия, которую получает тело после достижения температуры плавления, расходуется на разрушение кристаллической решетки. Поэтому температура тела не повышается — участок графика BC.
Изменение внутренней энергии и температуры при отвердевании
При отвердевании происходит обратное.
Средняя скорость движения молекул и их средняя кинетическая энергия в жидкости (расплавленном веществе) уменьшается при охлаждении. Этому соответствует участок графика DE на рисунке 2.
Теперь силы притяжения между молекулами могут удерживать их друг около друга. Расположение частиц становится упорядоченным — образуется кристалл (участок графика EF).
Куда расходуется энергия, которая выделяется при кристаллизации? Температура тела остается постоянной во время этого процесса. Значит, энергия расходуется на поддержание этой температуры, пока тело полностью не отвердеет.
Теперь мы можем сказать, что
При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.
Эта избыточная энергия выделяется при кристаллизации и поддерживает температуру тела на одном уровне во время всего процесса отвердевания.
Удельная теплота плавления
Опытным путем доказано, что для превращения твердых кристаллических тел одинаковой массы в жидкость необходимо разное количество теплоты. Тела при этом рассматриваются при их температурах плавления.
Удельная теплота плавления — это физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1 space кг$, чтобы при температуре плавления полностью перевести его в жидкое состояние.
- обозначается буквой $lambda$
- единица измерения — $1 frac{Дж}{кг}$
Удельная теплота плавления некоторых веществ
В таблице 1 представлены экспериментально полученные величины удельной теплоты плавления для некоторых веществ.
Вещество | $lambda, frac{Дж}{кг}$ | Вещество | $lambda, frac{Дж}{кг}$ |
Алюминий | $8.9 cdot 10^5$ | Сталь | $0.84 cdot 10^5$ |
Лёд | $3.4 cdot 10^5$ | Золото | $0.67 cdot 10^5$ |
Железо | $2.7 cdot 10^5$ | Водород | $0.59 cdot 10^5$ |
Медь | $2.1 cdot 10^5$ | Олово | $0.59 cdot 10^5$ |
Парафин | $1.5 cdot 10^5$ | Свинец | $0.25 cdot 10^5$ |
Спирт | $1.1 cdot 10^5$ | Кислород | $0.14 cdot 10^5$ |
Серебро | $0.87 cdot 10^5$ | Ртуть | $0.12 cdot 10^5$ |
Удельная теплота плавления золота составляет $0.67 cdot 10^5 frac{Дж}{кг}$. Что это означает?
Для того чтобы расплавить кусок золота массой $1 space кг$, взятого при температуре $1064 degree C$ (температура плавления золота), до жидкого состояния, нам потребуется затратить $0.67 cdot 10^5 space Дж$ энергии.
Опытным путем доказано, что
при отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении.
То есть, при кристаллизации расплавленного золота массой $1 space кг$ выделится $0.67 cdot 10^5 space Дж$ энергии.
Расчет количества теплоты, необходимого для плавления или отвердевания вещества
Чтобы вычислить количество теплоты $Q$, необходимое для плавления кристаллического тела массой $m$, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоту плавления $lambda$ умножить на массу тела $m$:
$Q = lambda m$.
Мы можем выразить из этой формулы массу $m$ и удельную теплоту плавления $lambda$:
$m = frac{Q}{lambda}$,
$lambda = frac{Q}{m}$.
Количество теплоты, которое выделится при отвердевании, рассчитывается по этой же формуле. Но при этом необходимо помнить, что внутренняя энергия тела будет уменьшаться.
Упражнения
Упражнение №1
В кастрюлю положили лёд массой $2 space кг$. Его температура была равна $0 degree C$. Рассчитайте количество энергии, которое понадобилось, чтобы полностью растопить лёд и превратить его в кипяток с температурой $100 degree C$. Количество теплоты, затраченное на нагревание кастрюли не учитывать.
Рассчитайте количество энергии, которое понадобится для превращения в кипяток ледяной воде той же массы и температуры, что и лёд.
Для расчёта нам понадобится значение удельный теплоемкости воды $c$, которое можно посмотреть в таблице.
Дано:
$m = 2 space кг$
$t_1 = 0 degree C$
$t_2 = 100 degree C$
$lambda = 3.4 cdot 10^5 frac{Дж}{кг}$
$с = 4.2 cdot 10^3 frac{Дж}{кг cdot degree C}$
$Q_- ?$
$Q_2 -?$
Посмотреть решение и ответ
Скрыть
Решение:
Чтобы рассчитать количество теплоты, которое понадобиться, чтобы превратить лёд в кипящую воду, нам понадобиться сначала его расплавить. Количество теплоты $Q_1$, затраченное на плавление льда, рассчитаем по формуле $Q_1 = lambda m$.
$Q_1 = 3.4 cdot 10^5 frac{Дж}{кг} cdot 2 space кг = 6.8 cdot 10^5 space Дж$
Теперь у нас есть вода с температурой $0 degree C$. Для расчёта количества теплоты $Q_2$, необходимого для нагревания воды используем формулу $Q_2 = cm(t_2 — t_1)$.
$Q_2 = 4.2 cdot 10^3 frac{Дж}{кг cdot degree C} cdot 2 space кг cdot (100 degree C — 0 degree C) = 8.4 cdot 10^3 frac{Дж}{кг} cdot 100 degree C = 8.4 cdot 10^5 space Дж$.
Тогда, для превращения куска льда в кипяток нам потребуется количество теплоты:
$Q = Q_1 + Q_2 = 6.8 cdot 10^5 space Дж + 8.4 cdot 10^5 space Дж = 15.2 cdot 10^5 space Дж$.
Если теперь мы возьмем вместо льда воду при $0 degree C$, то для ее превращения в кипяток, нужно просто ее нагреть. Это количество теплоты мы уже рассчитали:
$Q_2 = 8.4 cdot 10^5 space Дж$.
Ответ: $Q = 15.2 cdot 10^5 space Дж$, $Q_2 = 8.4 cdot 10^5 space Дж$.
Упражнение №2
Сколько энергии потребуется для того, чтобы расплавить железо массой $10 space кг$ с начальной температурой $29 degree C$?
Удельная теплоемкость железа — $460 frac{Дж}{кг cdot degree C}$, температура плавления — $1539 degree C$.
Дано:
$m = 10 space кг$
$t_1 = 29 degree C$
$t_2 = 1539 degree C$
$c = 460 frac{Дж}{кг cdot degree C}$
$lambda = 2.7 cdot 10^5 frac{Дж}{кг}$
$Q — ?$
Посмотреть решение и ответ
Скрыть
Решение:
Чтобы рассчитать общее затраченное количество теплоты $Q = Q_1 + Q_2$, нужно рассчитать отдельно количество теплоты $Q_1$, затраченное на нагревание железа до температуры плавления, и количество теплоты $Q_2$, затраченное на его плавление.
$Q_1 = cm(t_2 — t_1)$.
$Q_1 = 460 frac{Дж}{кг cdot degree C} cdot 10 space кг cdot (1539 degree C — 19 degree C) = 4600 frac{Дж}{degree C} cdot 1510 degree C = 6 space 946 space 000 space Дж approx 69 cdot 10^5 space Дж$.
$Q_2 = lambda m$.
$Q_2 = 2.7 cdot 10^5 frac{Дж}{кг} cdot 10 space кг = 27 cdot 10^5 space Дж$.
$Q = Q_1 + Q_2 = 69 cdot 10^5 space Дж + 27 cdot 10^5 space Дж = 96 cdot 10^5 space Дж$.
Ответ: $Q = 96 cdot 10^5 space Дж$.
Упражнение №3
На заводе охлаждают стальную деталь от $800 degree C$ до $0 degree C$. При этом она растопила лёд массой $3 space кг$, взятый при $0 degree C$. Определите массу детали, если вся выделенная ей энергия пошла на растопку льда.
Удельная теплоемкость стали — $500 frac{Дж}{кг cdot degree C}$.
Дано:
$m_1 = 3 space кг$
$lambda_1 = 3.4 cdot 10^5 frac{Дж}{кг}$
$c_2 = 500 frac{Дж}{кг cdot degree C}$
$t_1 = 800 degree C$
$t_2 = 0 degree C$
$m_2 — ?$
Посмотреть решение и ответ
Скрыть
Решение:
При плавлении лёд поглотит количество теплоты $Q_1 = lambda_1 m_1$.
При охлаждении стальная деталь выделит количество теплоты $Q_2 = c_2m_2(t_2 — t_1)$.
По закону сохранения энергии эти энергии будут равны:
$Q_1 = Q_2$.
Т.е., $lambda_1 m_1 = c_2m_2(t_2 — t_1)$.
Выразим отсюда массу детали:
$m_2 = frac{lambda_1 m_1}{c_2(t_2 — t_1)}$.
$m_2 = frac{3.4 cdot 10^5 frac{Дж}{кг} cdot 3 space кг}{500 frac{Дж}{кг cdot degree C} cdot (800 degree C — 0 degree C)} = frac{10.2 cdot 10^5 Дж}{4 cdot 10^5 frac{Дж}{кг}} = 2.55 space кг$.
Ответ: $m_2 = 2.55 space кг$.
«Плавление и кристаллизация.
Удельная теплота плавления»
Плавление
Плавление — это процесс превращения вещества из твёрдого состояния в жидкое.
Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру –10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.
Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.
В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.
Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.
Кристаллизация
Кристаллизация — это процесс перехода вещества из жидкого состояния в твёрдое состояние. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.
Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.
На рисунке приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления, плавления, нагревания вещества в жидком состоянии, охлаждения жидкого вещества, кристаллизации и последующего охлаждения вещества в твёрдом состоянии.
Удельная теплота плавления
Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.
Удельная теплота плавления — это количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления. Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.
Удельная теплота плавления обозначается буквой λ. Единица удельной теплоты плавления — [λ] = 1 Дж/кг.
Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9*105 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9*105 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.
Чтобы вычислить количество теплоты Q, необходимое для плавления вещества массой m, взятого при температуре плавления, следует удельную теплоту плавления λ умножить на массу вещества: Q = λm.
Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.
Конспект урока «Плавление и кристаллизация. Удельная теплота плавления».
Следующая тема: «Тепловые машины. ДВС. Удельная теплота сгорания топлива».
Главная
Как найти массу расплавленного вещества?
-
- 0
-
?
Амина Большункова
Вопрос задан 26 июля 2019 в
5 – 9 классы,
Физика.
-
Комментариев (0)
Добавить
Отмена
1 Ответ (-а, -ов)
- По голосам
- По дате
-
- 0
-
Дано: Q — количество тепла, затраченное на плавление; λ — удельная теплота плавления из таблицы; m — ?
Q=λ*m; m=Q/λ — это ответ.
Отмена
Иван Лошкин
Отвечено 26 июля 2019
-
Комментариев (0)
Добавить
Отмена
Ваш ответ
Удельная теплота плавления.
Мы
рассматривали график плавления и
отвердевания льда. Из графика видно,
что, пока лед плавится, температура его
не меняется. И лишь после того как весь
лед расплавится, температура образовавшейся
жидкости начинает повышаться. Но ведь
и во время процесса плавления лед
получает энергию от сгорающего в
нагревателе топлива. А из закона
сохранения энергии следует, что она не
может исчезнуть. На что же расходуется
энергия топлива во время плавления?
Мы знаем,
что в кристаллах молекулы (или атомы)
расположены в строгом порядке. Однако
и в кристаллах они находятся в тепловом
движении (колеблются). При нагревании
тела средняя скорость движения молекул
возрастает. Следовательно, возрастает
и их средняя кинетическая энергия и
температура. На графике это участок АВ
(см. рис. 16). Вследствие этого размах
колебаний молекул (или атомов)
увеличивается. Когда тело нагреется до
температуры плавления, то нарушится
порядок в расположении частиц в
кристаллах. Кристаллы теряют свою форму.
Вещество плавится, переходя из твердого
состояния в жидкое.
Следовательно,
вся энергия, которую получает
кристаллическое тело после того как
оно уже нагрето до температуры плавления,
расходуется на разрушение кристалла.
В связи с этим температура тела перестает
повышаться. На графике это участок BC.
Опыты
показывают, что для превращения различных
кристаллических веществ одной и той же
массы в жидкость при температуре
плавления требуется разное количество
теплоты.
Физическая
величина, показывающая, какое количество
теплоты необходимо сообщить кристаллическому
телу массой 1 кг, чтобы при температуре
плавления полностью перевести его в
жидкое состояние, называется удельной
теплотой плавления.
Удельную
теплоту плавления обозначают А (греч.
буква «лямбда» ). Ее единица – 1
.
Определяют удельную теплоту плавления
на опыте. Так, было установлено, что
удельная теплота плавления льда равна
3,4 • 10⁵
.
Это
означает, что для превращения куска
льда массой 1 кг, взятого при 0 ˚C, в воду
такой же температуры требуется затратить
3,4 • 10⁵ Дж энергии. А чтобы расплавить
брусок из свинца массой 1 кг, взятого
при его температуре плавления, потребуется
затратить 2,5 • 10⁴ Дж энергии.
Следовательно,
при температуре плавления внутренняя
энергия вещества в жидком состоянии
больше внутренней энергии такой же
массы вещества в твердом состоянии.
Чтобы
вычислить количество теплоты Q, необходимое
для плавления кристаллического тела
массой m, взятого при его
температуре плавления и нормальном
атмосферном давлении, нужно удельную
теплоту плавления λ умножить на массу
тела m: Q =λm.
Опыты
показывают, что при отвердевании
кристаллического вещества выделяется
точно такое же количество теплоты,
которое поглощается при его плавлении.
Так, при отвердевании воды массой 1 кг
при температуре 0 ˚C выделяется количество
теплоты, равное 3,4 • 10⁵ Дж. Точно такое
же количество теплоты требуется и для
плавления льда массой 1 кг при температуре
0 ˚C.
При
отвердевании вещества все происходит
в обратном порядке.
Средняя
кинетическая энергия и скорость молекул
в охлажденном расплавленном веществе
уменьшаются. Силы притяжения теперь
могут удерживать медленно движущиеся
молекулы друг около друга. Вследствие
этого расположение частиц становится
упорядоченным – образуется кристалл.
Выделяющаяся при кристаллизации энергия
расходуется на поддержание постоянной
температуры. На графике это участок EF.
Кристаллизация
облегчается, если в жидкости с самого
начала присутствуют какие-либо посторонние
частицы, например пылинки. Они становятся
центрами кристаллизации. В обычных
условиях в жидкости имеется множество
центров кристаллизации, около которых
и происходит образование кристалликов.
При кристаллизации происходит выделение
энергии и передача ее окружающим телам.
Количество теплоты, выделяющееся при
кристаллизации тела массой m,
определяется также по формуле :Q =λm.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Количество теплоты. Удельная теплоемкость вещества
Количеством теплоты называют количественную меру изменения внутренней энергии тела при теплообмене.
Количество теплоты — это энергия, которую тело отдает при теплообмене (без совершения работы). Количество теплоты, как и энергия, измеряется в джоулях (Дж).
Удельная теплоемкость вещества
Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на $1$ градус.
Теплоемкость тела обозначается заглавной латинской буквой С.
От чего зависит теплоемкость тела? Прежде всего, от его массы. Ясно, что для нагрева, например, $1$ килограмма воды потребуется больше тепла, чем для нагрева $200$ граммов.
А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой $400$ г, а в другой — растительное масло массой $400$ г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрее. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.
Таким образом, для нагревания одной и той же массы разных веществ до одинаковой температуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.
Так, например, чтобы увеличить на $1°$С температуру воды массой $1$ кг, требуется количество теплоты, равное $4200$ Дж, а для нагревания на $1°$С такой же массы подсолнечного масла необходимо количество теплоты, равное $1700$ Дж.
Физическая величина, показывающая, какое количество теплоты требуется для нагревания $1$ кг вещества на $1°$С, называется удельной теплоемкостью этого вещества.
У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой $с$ и измеряется в джоулях на килограмм-градус (Дж/(кг$·°$С)).
Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна $4200$ Дж/(кг$·°$С), а удельная теплоемкость льда $2100$ Дж/(кг$·°$С); алюминий в твердом состоянии имеет удельную теплоемкость, равную $920$ Дж/(кг$·°$С), а в жидком — $1080$ Дж/(кг$·°$С).
Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.
Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении
Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.
Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:
$Q=cm(t_2-t_1)$
где $Q$ — количество теплоты, $c$ — удельная теплоемкость, $m$ — масса тела, $t_1$ — начальная температура, $t_2$ — конечная температура.
При нагревании тела $t_2 > t_1$ и, следовательно, $Q > 0$. При охлаждении тела $t_2 < t_1$ и, следовательно, $Q < 0$.
В случае, если известна теплоемкость всего тела $С, Q$ определяется по формуле
$Q=C(t_2-t_1)$
Удельная теплота парообразования, плавления, сгорания
Теплота парообразования (теплота испарения) — количество теплоты, которое необходимо сообщить веществу (при постоянном давлении и постоянной температуре) для полного превращения жидкого вещества в пар.
Теплота парообразования равна количеству теплоты, выделяющемуся при конденсации пара в жидкость.
Превращение жидкости в пар при постоянной температуре не ведет к увеличению кинетической энергии молекул, но сопровождается увеличением их потенциальной энергии, т. к. расстояние между молекулами существенно увеличивается.
Удельная теплота парообразования и конденсации. Опытами установлено, что для полного обращения в пар $1$ кг воды (при температуре кипения) необходимо затратить $2.3$ МДж энергии. Для обращения в пар других жидкостей требуется иное количество теплоты. Например, для спирта оно составляет $0.9$ МДж.
Физическая величина, показывающая, какое количество теплоты необходимо, чтобы обратить жидкость массой $1$ кг в пар без изменения температуры, называется удельной теплотой парообразования.
Удельную теплоту парообразования обозначают буквой $r$ и измеряют в джоулях на килограмм (Дж/кг).
Количество теплоты, необходимое для парообразования (или выделяющееся при конденсации). Чтобы вычислить количество теплоты $Q$, необходимое для превращения в пар жидкости любой массы, взятой при температуре кипения, нужно удельную теплоту парообразования $r$ умножить на массу $m$:
$Q=rm$
При конденсации пара происходит выделение такого же количества теплоты:
$Q=-rm$
Удельная теплота плавления
Теплота плавления — это количество теплоты, которое необходимо сообщить веществу при постоянном давлении и постоянной температуре, равной температуре плавления, чтобы полностью перевести его из твердого кристаллического состояния в жидкое.
Теплота плавления равна тому количеству теплоты, которое выделяется при кристаллизации вещества из жидкого состояния.
При плавлении вся подводимая к веществу теплота идет на увеличение потенциальной энергии его молекул. Кинетическая энергия не меняется, поскольку плавление идет при постоянной температуре.
Изучая на опыте плавление различных веществ одной и той же массы, можно заметить, что для превращения их в жидкость требуется разное количество теплоты. Например, для того чтобы расплавить один килограмм льда, нужно затратить $332$ Дж энергии, а для того чтобы расплавить $1$ кг свинца — $25$ кДж.
Физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1$ кг, чтобы при температуре плавления полностью перевести его в жидкое состояние, называется удельной теплотой плавления.
Удельную теплоту плавления измеряют в джоулях на килограмм (Дж/кг) и обозначают греческой буквой $λ$ (лямбда).
Удельная теплота кристаллизации равна удельной теплоте плавления, поскольку при кристаллизации выделяется такое же количество теплоты, какое поглощается при плавлении. Так, например, при замерзании воды массой $1$ кг выделяются те же $332$ Дж энергии, которые нужны для превращения такой же массы льда в воду.
Чтобы найти количество теплоты, необходимое для плавления кристаллического тела произвольной массы, или теплоту плавления, надо удельную теплоту плавления этого тела умножить на его массу:
$Q=λm$
Количество теплоты, выделяемое телом, считается отрицательным. Поэтому при расчете количества теплоты, выделяющегося при кристаллизации вещества массой $m$, следует пользоваться той же формулой, но со знаком «минус»:
$-Q=λm$
Удельная теплота сгорания
Теплота сгорания (или теплотворная способность, калорийность) — это количество теплоты, выделяющейся при полном сгорании топлива.
Для нагревания тел часто используют энергию, выделяющуюся при сгорании топлива. Обычное топливо (уголь, нефть, бензин) содержит углерод. При горении атомы углерода соединяются с атомами кислорода, содержащегося в воздухе, в результате чего образуются молекулы углекислого газа. Кинетическая энергия этих молекул оказывается большей, чем у исходных частиц. Увеличение кинетической энергии молекул в процессе горения называют выделением энергии. Энергия, выделяющаяся при полном сгорании топлива, и есть теплота сгорания этого топлива.
Теплота сгорания топлива зависит от вида топлива и его массы. Чем больше масса топлива, тем больше количество теплоты, выделяющейся при его полном сгорании.
Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой $1$ кг, называется удельной теплотой сгорания топлива.
Удельную теплоту сгорания обозначают буквой $q$ и измеряют в джоулях на килограмм (Дж/кг).
Количество теплоты $Q$, выделяющееся при сгорании $m$ кг топлива, определяют по формуле:
$Q=qm$
Чтобы найти количество теплоты, выделяющееся при полном сгорании топлива произвольной массы, нужно удельную теплоту сгорания этого топлива умножить на его массу.
Уравнение теплового баланса
В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутренней энергии какого-либо тела системы $∆U_i$ не может приводить к изменению внутренней энергии всей системы. Следовательно,
$∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$
Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: $∆U_i=Q_i$. Учитывая ($∆U_1+∆U_2+∆U_3+…+∆U_n=∑↙{i}↖{n}∆U_i=0$), получим:
$Q_1+Q_2+Q_3+…+Q_n=∑↙{i}↖{n}Q_i=0$
Это уравнение называется уравнением теплового баланса. Здесь $Q_i$ — количество теплоты, полученное или отданное $i$-м телом. Любое из количеств теплоты $Q_i$ может означать теплоту, выделяемую или поглощаемую при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.
Уравнение теплового баланса является математическим выражением закона сохранения энергии при теплообмене.