Как найти массу зная скорость импульс

как найти массу зная импульс?

Stiv Work



Ученик

(139),
закрыт



14 лет назад

никто не поможет?

Дополнен 14 лет назад

и кинетическую инергию

Лучший ответ

Mistress Angel

Мастер

(1745)


14 лет назад

нужно разделить импульс на скорость тела

Остальные ответы

Полиграф Полиграфыч

Мыслитель

(5420)


14 лет назад

Импульс равен произведению скорости на массу. А Енергия масса умноженная на квадрат скорости и деленная на два. Отсюда и пляши.

Похожие вопросы

Как найти массу, зная скорость

Умение определять массу движущегося тела может пригодиться не только на школьных уроках физики, но и в обычной жизни. Предположим, требуется поднять экскаватором автомобиль, масса которого неизвестна, при этом известна скорость, с которой машина будет поднята.

Как найти массу, зная скорость

Инструкция

Воспользуйтесь формулой F=ma, где F – сила (измеряется в ньютонах), m – масса автомобиля, a – ускорение. Чтобы найти массу, примените правило нахождения неизвестного множителя: «Чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель». Получится: m=F/a.

Теперь замените ускорение известной величиной – скоростью (V). Воспользуйтесь формулой a=V/t, где t – время, за которое поднимется машина. Если время дано в секундах, а скорость в метрах в минуту, то уравняйте величины. Переведите либо время в минуты, либо скорость в метры с секунду.

В исходную формулу m=F/a подставьте полученное значение ускорения. Получится: m=F/V/t. Воспользуйтесь правилом деления на дробь: «При делении на обычную дробь ее знаменатель уходит наверх, а числитель – вниз». Отсюда: m=Ft/V.

Теперь, чтобы найти массу, подставьте в формулу m=Ft/V известные значения. Например: F=50 Н (ньютонов), t=10 с (секунд), V=1 м/c (метров в секунду). Получится: m=50 Н х 10 с / 1 м/с, m=500 килограммов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Импульс тела. Калькулятор онлайн.

Онлайн калькулятор импульса тела вычислит импульс, если известны масса и скорость, вычислит массу, если известны импульс и скорость,
вычислит скорость если известны импульс и масса, а также даст подробное решение.

Калькулятор содержит:
Калькулятор вычисления импульса тела через массу и скорость.
Калькулятор вычисления массы тела через импульс и скорость.
Калькулятор вычисления скорости тела через импульс и массу.

Калькулятор вычисления импульса тела через массу и скорость

ИмпульсИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Единица измерения импульса – килограмм-метр в секунду (кг × м/с)

Калькулятор вычисления массы тела через импульс и скорость

МассаИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Масса тела равна отношению импульса к скорости тела.

Единица измерения импульса – килограмм-метр в секунду (кг × м/с)

Импульс p (кг × м/с) =
Скорость v =
Единица измерения массы m

Калькулятор вычисления скорости тела через импульс и массу

СкоростьИмпульс тела равен произведению массы тела m на его скорость v, направление импульса совпадает с направлением вектора скорости.

Скорость тела равна отношению импульса и массе тела.

Единица измерения импульса – килограмм-метр в секунду (кг × м/с)

Импульс p (кг × м/с) =
Масса m =
Единица измерения скорости v

Вам могут также быть полезны следующие сервисы
Калькуляторы (физика)

Механика

Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор вычисления времени движения
Калькулятор времени
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения

Оптика

Калькулятор отражения и преломления света

Электричество и магнетизм

Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности E электрического поля
Калькулятор нахождения точечного электрического заряда Q
Калькулятор нахождения силы F действующей на заряд q
Калькулятор вычисления расстояния r от заряда q
Калькулятор вычисления потенциальной энергии W заряда q
Калькулятор вычисления потенциала φ электростатического поля
Калькулятор вычисления электроемкости C проводника и сферы

Конденсаторы

Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе
Калькулятор вычисления энергии W заряженного конденсатора
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов
Калькуляторы по астрономии
Вес тела на других планетах
Ускорение свободного падения на планетах Солнечной системы и их спутниках
Конвертеры величин
Конвертер единиц длины
Конвертер единиц скорости
Конвертер единиц ускорения
Цифры в текст
Калькуляторы (Теория чисел)
Калькулятор выражений
Калькулятор упрощения выражений
Калькулятор со скобками
Калькулятор уравнений
Калькулятор суммы
Калькулятор пределов функций
Калькулятор разложения числа на простые множители
Калькулятор НОД и НОК
Калькулятор НОД и НОК по алгоритму Евклида
Калькулятор НОД и НОК для любого количества чисел
Калькулятор делителей числа
Представление многозначных чисел в виде суммы разрядных слагаемых
Калькулятор деления числа в данном отношении
Калькулятор процентов
Калькулятор перевода числа с Е в десятичное
Калькулятор экспоненциальной записи чисел
Калькулятор нахождения факториала числа
Калькулятор нахождения логарифма числа
Калькулятор квадратных уравнений
Калькулятор остатка от деления
Калькулятор корней с решением
Калькулятор нахождения периода десятичной дроби
Калькулятор больших чисел
Калькулятор округления числа
Калькулятор свойств корней и степеней
Калькулятор комплексных чисел
Калькулятор среднего арифметического
Калькулятор арифметической прогрессии
Калькулятор геометрической прогрессии
Калькулятор модуля числа
Калькулятор абсолютной погрешности приближения
Калькулятор абсолютной погрешности
Калькулятор относительной погрешности
Дроби
Калькулятор интервальных повторений
Учим дроби наглядно
Калькулятор сокращения дробей
Калькулятор преобразования неправильной дроби в смешанную
Калькулятор преобразования смешанной дроби в неправильную
Калькулятор сложения, вычитания, умножения и деления дробей
Калькулятор возведения дроби в степень
Калькулятор перевода десятичной дроби в обыкновенную
Калькулятор перевода обыкновенной дроби в десятичную
Калькулятор сравнения дробей
Калькулятор приведения дробей к общему знаменателю
Калькуляторы (тригонометрия)
Калькулятор синуса угла
Калькулятор косинуса угла
Калькулятор тангенса угла
Калькулятор котангенса угла
Калькулятор секанса угла
Калькулятор косеканса угла
Калькулятор арксинуса угла
Калькулятор арккосинуса угла
Калькулятор арктангенса угла
Калькулятор арккотангенса угла
Калькулятор арксеканса угла
Калькулятор арккосеканса угла
Калькулятор нахождения наименьшего угла
Калькулятор определения вида угла
Калькулятор смежных углов
Калькуляторы систем счисления
Калькулятор перевода чисел из арабских в римские и из римских в арабские
Калькулятор перевода чисел в различные системы счисления
Калькулятор сложения, вычитания, умножения и деления двоичных чисел
Системы счисления теория
N2 | Двоичная система счисления
N3 | Троичная система счисления
N4 | Четырехичная система счисления
N5 | Пятеричная система счисления
N6 | Шестеричная система счисления
N7 | Семеричная система счисления
N8 | Восьмеричная система счисления
N9 | Девятеричная система счисления
N11 | Одиннадцатиричная система счисления
N12 | Двенадцатеричная система счисления
N13 | Тринадцатеричная система счисления
N14 | Четырнадцатеричная система счисления
N15 | Пятнадцатеричная система счисления
N16 | Шестнадцатеричная система счисления
N17 | Семнадцатеричная система счисления
N18 | Восемнадцатеричная система счисления
N19 | Девятнадцатеричная система счисления
N20 | Двадцатеричная система счисления
N21 | Двадцатиодноричная система счисления
N22 | Двадцатидвухричная система счисления
N23 | Двадцатитрехричная система счисления
N24 | Двадцатичетырехричная система счисления
N25 | Двадцатипятеричная система счисления
N26 | Двадцатишестеричная система счисления
N27 | Двадцатисемеричная система счисления
N28 | Двадцативосьмеричная система счисления
N29 | Двадцатидевятиричная система счисления
N30 | Тридцатиричная система счисления
N31 | Тридцатиодноричная система счисления
N32 | Тридцатидвухричная система счисления
N33 | Тридцатитрехричная система счисления
N34 | Тридцатичетырехричная система счисления
N35 | Тридцатипятиричная система счисления
N36 | Тридцатишестиричная система счисления
Калькуляторы площади геометрических фигур
Площадь квадрата
Площадь прямоугольника
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
Калькуляторы (Комбинаторика)
Калькулятор нахождения числа перестановок из n элементов
Калькулятор нахождения числа сочетаний из n элементов
Калькулятор нахождения числа размещений из n элементов
Калькуляторы линейная алгебра и аналитическая геометрия
Калькулятор сложения и вычитания матриц
Калькулятор умножения матриц
Калькулятор транспонирование матрицы
Калькулятор нахождения определителя (детерминанта) матрицы
Калькулятор нахождения обратной матрицы
Длина отрезка. Онлайн калькулятор расстояния между точками
Онлайн калькулятор нахождения координат вектора по двум точкам
Калькулятор нахождения модуля (длины) вектора
Калькулятор сложения и вычитания векторов
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами
Калькулятор скалярного произведения векторов через координаты
Калькулятор векторного произведения векторов через координаты
Калькулятор смешанного произведения векторов
Калькулятор умножения вектора на число
Калькулятор нахождения угла между векторами
Калькулятор проверки коллинеарности векторов
Калькулятор проверки компланарности векторов
Генератор Pdf с примерами
Тренажёры решения примеров
Тренажер по математике
Тренажёр таблицы умножения
Тренажер счета для дошкольников
Тренажер счета на внимательность для дошкольников
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ.
Тренажер решения примеров с разными действиями
Тренажёры решения столбиком
Тренажёр сложения столбиком
Тренажёр вычитания столбиком
Тренажёр умножения столбиком
Тренажёр деления столбиком с остатком
Калькуляторы решения столбиком
Калькулятор сложения, вычитания, умножения и деления столбиком
Калькулятор деления столбиком с остатком
Генераторы
Генератор примеров по математике
Генератор случайных чисел
Генератор паролей

Задачи на Закон сохранения импульса с решениями

Формулы, используемые на уроках «Задачи на импульс тела. Задачи на Закон сохранения импульса».

Название величины

Обозначение

Единица измерения

Формула

Скорость тела

v

м/с

v = p/m

Масса тела

m

кг

m = p/v

Импульс тела (модуль)

p

кг•м/с

p = m•v


ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ


Задача № 1.
 Определите массу автомобиля, имеющего импульс 2,5•104 кг•м/с и движущегося со скоростью 90 км/ч.


Задача № 2.
 Тележка массой 40 кг движется со скоростью 4 м/с навстречу тележке массой 60 кг, движущейся со скоростью 2 м/с. После неупругого соударения тележки движутся вместе. В каком направлении и с какой скоростью будут двигаться тележки ?


Задача № 3.
 Снаряд, выпущенный вертикально вверх, разорвался в верхней точке траектории. Первый осколок массой 1 кг приобрел скорость 400 м/с, направленную горизонтально. Второй осколок массой 1,5 кг полетел вверх со скоростью 200 м/с. Какова скорость третьего осколка, если его масса равна 2 кг?

Решение. Взрывающийся снаряд можно считать замкнутой системой, потому, что сила тяжести намного меньше, чем сила давления пороховых газов, разрывающих снаряд на осколки. Значит, можно использовать закон сохранения импульса. Поскольку разрыв снаряда произошел в верхней точке траектории, векторная сумма импульсов всех осколков должна быть равна нулю. Следовательно, векторы импульсов осколков образуют треугольник; этот треугольник прямоугольный, а искомый вектор — его гипотенуза.


Ответ: 250 м/с.


Задача № 4.
 К стене прикреплен шланг с насадкой, изогнутой под прямым углом (см. рисунок). Из шланга вытекает вода со скоростью v = 10 м/с. Найдите горизонтальную составляющую силы, с которой шланг давит на стену. Площадь сечения шланга S = 10 см2.


F = 1000 (кг/м3) • 0,001 (м2) • 100 (м22) = 100 (кг/м•с2)
Ответ: 100 Н.


Задача № 5.
 Какую силу тяги развивает реактивный двигатель, выбрасывающий каждую секунду 10 кг продуктов сгорания топлива со скоростью 3 км/с относительно ракеты?


Ответ: 30 кН.


Задача № 6. Повышенной сложности
 Конькобежец массой М = 70 кг, стоя на коньках на льду, бросает в горизонтальном направлении камень массой m = 3 кг со скоростью v = 8 м/с относительно льда. Найдите, на какое расстояние S откатится при этом конькобежец, если μ = 0,02.


Ответ: 0,3 м.


Задача № 7. Повышенной сложности
 Деревянный брусок, движущейся вертикально, падает со скоростью v = 3 м/с на горизонтальную ленту транспортера, движущегося со скоростью u = 1 м/с. Брусок после удара не подскакивает. При каком коэффициенте трения брусок не будет проскальзывать по транспортеру?


Ответ: μ ≥ 0.33


Задача № 8.
  ОГЭ
 Конькобежец массой M = 70 кг, стоя на льду, бросает в горизонтальном направлении шайбу массой m = 0,3 кг со скоростью v = 40 м/с. На какое расстояние s откатится конькобежец, если коэффициент трения коньков о лёд μ = 0,02?


Задача № 9.
   ЕГЭ
 Вагон массой m = 4•104 кг, движущийся со скоростью v = 2 м/с, в конце запасного пути ударяется о пружинный амортизатор. На сколько он сожмёт пружину амортизатора, жёсткость которой k = 2,25•106 Н/м?


Краткая теория для решения задачи на Закон сохранения импульса.

ЗАДАЧИ на Закон сохранения импульса

Алгоритм решения задач на закон сохранения импульса:
1. Записать «дано».
2. Сделать чертеж, на котором изобразить направления импульсов (или скоростей) каждого тела до взаимодействия и после взаимодействия.
3. Записать закон сохранения импульса для данной системы в векторной форме.
4. Выбрать координатную ось (оси), найти проекции векторов на эту ось (оси).
5. Записать закон сохранения импульса в скалярной форме.
6. Решить получившееся уравнение относительно неизвестной величины.
7. Оценить ответ на реальность.

Рассмотрим взаимодействия тел, при котором они движутся вдоль одной прямой в одном направлении или навстречу друг другу. При столкновении тела испытывают соударение. Соударение может быть двух типов: упругий удар и неупругий удар.

Упругий удар — тела после взаимодействия приобретают скорости, направленные в разные стороны.
Неупругий удар — тела после взаимодействия будут двигаться вместе, как одно целое.


Это конспект по теме «ЗАДАЧИ на Закон сохранения импульса». Выберите дальнейшие действия:

  • Перейти к теме: ЗАДАЧИ на Механические колебания
  • Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
  • Вернуться к списку конспектов по Физике.
  • Проверить свои знания по Физике.
Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 19.9k

Добавить комментарий