Как найти мат ожидание онлайн

Математическое ожидание

Данный калькулятор предназначен для вычисления математического ожидания дискретной случайной величины онлайн.
Оценка математического ожидания и дисперсии случайной величины имеет большое значение в теории вероятности.
Математическое ожидание – среднее значение случайной величины. Чтобы найти математическое ожидание случайной величины, следует вычислить сумму парных произведений всех возможных значений случайной величины на соответствующие им вероятности.

Свойства математического ожидания заключаются в следующем. Во-первых, математическое ожидание суммы независимых случайных величин равно сумме их математических ожиданий. Во-вторых, математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Как найти среднее значение , формула (на примере следующих величин):
xi= 1 ; 2 ; 5 ; 6 (случайные величины)
pi = 0.1 ; 0.3 ; 0.1 ; 0.5 (вероятность)

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 1×0.1 + 2×0.3 + 5×0.1 + 6×0.5 = 0.1 + 0.6 + 0.5 + 3 = 4.2

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание – это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины – срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Нужна помощь? Решаем теорию вероятностей на отлично

Лучшее спасибо – порекомендовать эту страницу

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Используем формулу для м.о. дискретной случайной величины:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Получаем:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$
Подставляем из условия плотность вероятности и вычисляем значение интеграла:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{1} 12(x^2-x^3) cdot x dx = int_{0}^{1} 12(x^3-x^4) dx = \
=left.(3x^4-frac{12}{5}x^5) right|_0^1=3-frac{12}{5} = frac{3}{5}=0.6.
$$

Другие задачи с решениями по ТВ

Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Понравилось? Добавьте в закладки

Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по терверу. Для закрепления материала – еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Онлайн калькулятор. Вычисление математического ожидания дискретного распределения

Онлайн калькулятор, который поможет легко и быстро найти математическое ожидание дискретного распределения случайных величин X (M[X]).

Воспользовавшись онлайн калькулятором для вычисления математического ожидания, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач и закрепить пройденный материал.

Калькулятор для вычисления математического ожидания дискретного распределения случайных величин

Выберите количество случайных величин:
n =

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.


20:51

найти математическое ожидание онлайн

 Калькулятор для вычисления математического ожидания дискретной случайной величины.

Пример 1. Дискретная случайная величина имеет ряд распределения

найти математическое ожидание.

Решение. Для получения ответа нажимаем кнопку найти, ответ математическое ожидание M(X)=17.

Для того чтобы найти математическое ожидание вашего задания, необходимо ввести данные ряда распределения так, как указано в примере.

Следующий калькулятор для вычисления математического ожидания непрерывной случайной величины заданной плотностью распределения

Пример 2. Случайная величина задана функцией плотности распределения найти математическое ожидание.

  • 1
  • 2
  • 3
  • 4
  • 5

Категория: Математическое ожидание (калькулятор) | Просмотров: 16958 | | Теги: математическое ожидание | Рейтинг: 3.0/4

Нахождение математического ожидания дискретного распределения

Математическое ожидание – мера среднего значения случайной величины в теории вероятности.
Математическое ожидание – число, вокруг которого сосредоточены значения случайной величины.
Математическое ожидание случайной величины x обозначается M(x).

При помощи нашей программы Вы можете найти математическое ожидание онлайн, прямо на сайте. Программа
распишет и прокомментирует каждое действие, вам необходимо только
заполнить предлагаемые формы и нажать кнопку [Ввести данные].


Нахождение математического ожидания дискретного распределения.

Значения x случайной величины Х

х1

х2

хk

Вероятности P(X = x)

p1

p2

pk

Введите число k, число случайных величин:

  • Нахождение числа размещений
  • Нахождение дисперсии

Если после использования данного онлайн калькулятора
(Нахождение математического ожидания) у Вас возникли какие-то вопросы по работе сервиса или вопросы
образовательного характера, то Вы всегда можете задать их на нашем
форуме.

Вы поняли, как решать? Нет?

Калькулятор стоимости

Рассчитайте цену решения ваших задач

Ошибка

Ошибка

Закрыть

Калькулятор
стоимости

Решение контрольной

от 300 рублей
*

* Точная стоимость будет определена после загрузки задания для исполнителя

+Загрузить файл


Файлы doc, pdf, xls, jpg, png не более 5 МБ.

Ошибка

Ошибка

Добавить комментарий