Как найти мат ожидание по графику

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание – это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины – срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Нужна помощь? Решаем теорию вероятностей на отлично

Спасибо за ваши закладки и рекомендации

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Используем формулу для м.о. дискретной случайной величины:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Получаем:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$
Подставляем из условия плотность вероятности и вычисляем значение интеграла:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{1} 12(x^2-x^3) cdot x dx = int_{0}^{1} 12(x^3-x^4) dx = \
=left.(3x^4-frac{12}{5}x^5) right|_0^1=3-frac{12}{5} = frac{3}{5}=0.6.
$$

Другие задачи с решениями по ТВ

Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Лучшее спасибо – порекомендовать эту страницу

Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по терверу. Для закрепления материала – еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Непрерывная случайная величина

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Случайная величина называется непрерывной, если ее функция
распределения

 непрерывно дифференцируема. В этом случае

 имеет производную, которую обозначим через

 – плотность распределения вероятностей.

Плотностью распределения вероятностей непрерывной случайной
величины

 называются функцию

 – первую производную от функции распределения

:

Из этого определения следует, что функция распределения является
первообразной для плотности распределения.

Заметим, что для описания распределения вероятностей дискретной
случайной величины плотность распределения неприменима.

Вероятность того, что непрерывная случайная величина

 примет значение, принадлежащее интервалу

 равна определенному интегралу от плотности
распределения, взятому в пределах от

 до

.

Зная плотность распределения

,
можно найти функцию распределения

 по формуле:

Числовые характеристики непрерывной случайной величины

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для
дискретных случайных величин, сохраняются и для непрерывных величин.

Дисперсия непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

или равносильным равенством:

В частности, если все возможные значения

 принадлежат интервалу

,
то

или

Все свойства дисперсии, указанные для дискретных случайных
величин, сохраняются и для непрерывных случайных величин.

Среднее квадратическое отклонение
непрерывной случайной величины определяется так же, как и для дискретной
величины:

При решении задач, которые выдвигает практика, приходится
сталкиваться с различными распределениями непрерывных случайных величин.

Основные законы распределения непрерывных случайных величин

  • Нормальный закон распределения СВ
  • Показательный закон распределения СВ
  • Равномерный закон распределения СВ

Примеры решения задач


Пример 1

Дана
функция распределения F(х) непрерывной случайной величины 
Х.

Найти плотность распределения вероятностей f(x), математическое ожидание M(X), дисперсию D(X) и вероятность попадания X на отрезок [a,b]. Построить графики функций F(x) и f(x).

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Плотность
распределения вероятностей:

Математическое
ожидание:

Дисперсию
можно найти по формуле:

Вероятность
попадания на отрезок:

Построим графики функций F(x) и f(x).

График плотности
распределения

График функции
распределения


Пример 2

Случайная величина Х задана плотностью вероятности

Определить константу c, математическое ожидание, дисперсию, функцию распределения величины X, а также вероятность ее попадания в интервал [0;0,25].

Решение

Константу

 определим,
используя свойство плотности вероятности:

В нашем случае:

Найдем математическое
ожидание:

Найдем дисперсию:

Искомая дисперсия:

Найдем функцию
распределения:

для

:

для

:

для

:

Искомая функция
распределения: 

Вероятность попадания
в интервал

:


Пример 3

Плотность
распределения непрерывной случайной величины

 имеет вид:

Найти:

а)
параметр

;

б)
функцию распределения

;

в)
вероятность попадания случайной величины

 в интервал

г)
математическое ожидание

 и дисперсию

д)
построить графики функций

 и

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

а)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В нашем
случае эта формула имеет вид:

б)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем отметить,
что:

Остается
найти выражение для

, когда

 принадлежит
интервалу

:

Получаем:  

в)
Вероятность
попадания случайной величины

 в интервал

:

г)
Математическое ожидание находим по формуле:

Для
нашего примера:

Дисперсию
можно найти по формуле:

Среднее
квадратическое отклонение равно квадратному корню из дисперсии:

д) Построим графики

 и

:

График плотности вероятности f(x)

График функции распределения F(x)

Задачи контрольных и самостоятельных работ


Задача 1

НСВ на всей
числовой оси oX задана интегральной функцией:

Найти
вероятность, что в результате 2 испытаний случайная величина примет значение,
заключенное в интервале (0;4).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Дана
дифференциальная функция непрерывной СВ Х. Найти: постоянную С, интегральную
функцию F(x).


Задача 3

Случайная
величина Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х – f(x).

б) Построить графики
f(x), F(x).

в) Найти вероятность
попадания НСВ в интервал (0; 3).


Задача 4

Дифференциальная
функция НСВ Х задана на всей числовой оси ОХ:

Найти:

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -4<X<4;

г) построить
графики f(x), F(X).


Задача 5

Случайная величина
Х задана функцией распределения F(x):

а) Найти
плотность вероятности СВ Х – f(x).

б) Построить
графики f(x), F(x).

в) Найти
вероятность попадания НСВ в интервал (0;π⁄2).


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 6

НСВ X имеет
плотность вероятности (закон Коши)

а) постоянный
параметр С=const;

б) функцию
распределения F(x);

в) вероятность
попадания в интервал -1<X<1;

г) построить
графики f(x), F(X).


Задача 7

Случайная
величина X задана интегральной F(x) или дифференциальной f(x)
функцией. Требуется:

а) найти
параметр C;

б) при
заданной интегральной функции F(x) найти дифференциальную
функцию f(x), а при заданной дифференциальной функции f(x) найти интегральную
функцию F(x);

в)
построить графики функций F(x) и f(x);

г) найти
математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение σ(X);

д)
вычислить вероятность попадания в интервал P(a≤x≤b);

е)
определить, квантилем какого порядка является точка xp;

ж)
вычислить квантиль порядка p


Задание 8

Дана
интегральная функция распределения случайной величины X. Найти дифференциальную
функцию распределения, математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение.


Задача 9

Случайная
величина X задана интегральной функцией распределения

Найти
дифференциальную функцию, математическое ожидание и дисперсию X.


Задача 10

СВ Х
задана функцией распределения F(x). Найдите вероятность
того, что в результате испытаний НСВ Х попадет в заданный интервал (0;0,5).
Постройте график функции распределения. Найдите плотность вероятности НСВ Х и
постройте ее график. Найдите числовые
характеристики НСВ Х, если

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ


2.4.4. Как вычислить математическое ожидание и дисперсию НСВ?

Ответ на этот вопрос состоит из двух слов: с помощью интегралов.

Сам смысл математического ожидания и дисперсии мы уже разбирали ранее (но, конечно, повторим), и сейчас настало время узнать, как они определяются для непрерывной случайной величины. Всё очень просто, по аналогии с ДСВ:

Математическое ожидание непрерывной случайной величины  определяется, как несобственный интеграл:
, где  – функция плотности распределения этой случайной величины.
Дисперсия тоже имеет «знакомые очертания»:  (по определению), но в практических задачах гораздо удобнее применять формулу:
 

Как и в дискретном случае, дисперсия не может быть отрицательной!

И среднее квадратическое отклонение вычисляется точно так же:

Итак, все инструменты в руках и мы с энтузиазмом приступаем к любимому делу:

Задача 110
Непрерывная случайная величина  задана функцией

Вычислить . И построим ещё графики  и , ну а куда же без них? Повторение и ещё раз повторение!

Решение начнём как раз с графика функции распределения. При его ручном построении  удобно найти промежуточное значение  и аккуратно провести кусок кубической параболы :

Повторяем: функция распределения  описывает вероятность того, что случайная величина  примет значение, МЕНЬШЕЕ, чем переменная , «пробегающая» все значения от  до .  Данная функция изменяется в пределах  и не убывает (т. к. «накапливает» вероятности). Но если в дискретном случае она разрывна (вспоминаем «ступеньки»), то здесь – всюду непрерывна!

Очевидно, что случайная величина  принимает случайные значения из отрезка , и какие из них более вероятны, а какие – менее, наглядно показывает функция ПЛОТНОСТИ распределения вероятностей:

Найдём опорные точки параболы: , и готово:

В отличие от , функции плотности может быть разрывна и может принимать значения бОльшие единицы (как в нашем случае); может, как убывать, так и возрастать и даже иметь экстремумы (наш кусок параболы растёт). Однако (повторяем), она неотрицательна:   и обладает свойством , и это лучше всегда проверять (а то мало ли, опечатка или ошибка). Неотрицательность функции очевидна по чертежу, а вот интеграл подлежит вычислению. Используя свойство аддитивности, делим его на три части:

 – данный результат равен заштрихованной площади (см. выше) и с вероятностной точки зрения означает тот факт, что случайная величина  достоверно примет одно из значений отрезка . Причём, по чертежу хорошо видно, что значения из правой части отрезка гораздо более вероятны, чем значения слева.

И эти вероятности оцениваются кусками площади, а не значениями функции !!! (окончательно избавляемся от распространённой иллюзии)

Ради интереса вычислим:
 – вероятность того, что случайная величина  примет какое-нибудь значение из промежутка

Теперь числовые характеристики. Очевидно, что математическое ожидание (среднеожидаемое значение) случайной величины  должно находиться в «живом» отрезке , причём – ближе к его правому концу (поскольку там выше плотность вероятности).

Убедимся в этом аналитически. По формуле вычисления математического ожидания, и в силу того же свойства аддитивности:


 – ну что же, вполне и вполне правдоподобно, результат я отметил красной точкой на чертеже.

! Примечание: в общем случае (и в этом, в частности)  не делит площадь на 2 равные части!

Если промежуток конечен, то можно сразу записывать, что матожидание равно определённому интегралу:
 

Дисперсию (меру рассеяния случайных значений относительно ) вычислим по формуле:

Сначала удобно разделаться с интегралом, здесь я не буду расписывать подробно:

Таким образом:

И, наконец, среднее квадратическое отклонение:

Вот такое вот у нас получилось захватывающее повторение-изучение-исследование! И коль скоро спрашивалось немного, запишем:

ответ:

Строго говоря, ответ следовало записывать и в предыдущих задачах, но когда пунктов много, то итоговые результаты вполне допустимо помечать по ходу решения, например, подчёркивать или обводить карандашом.

Следующее задание для самостоятельного решения:

Задача 111
Дана функция:

Представить  в аналитическом виде и показать, что она может служить плотностью вероятностей случайной величины . Вычислить  и 

Справка: уравнение прямой, проходящей через точки , можно составить по формуле .
Бывает, вычисление матожидания и дисперсии сопряжено с техническими трудностями, и в соответствующей статье сайта я рассмотрел следующие функции:

Однако вся трудность этих заданий состоит в более сложных интегралах, что, собственно, уже не относится к теории вероятностей, и посему я не включил эти примеры в настоящую книгу. Но вот задачка с несобственными интегралами не помешает:

Задача 112
Непрерывная случайная величина  задана плотностью распределения вероятностей:

Найти  и . Составить функцию распределения и построить графики . Вычислить вероятность того, что случайная величина  примет значение, бОльшее, чем её математическое ожидание.

Попробуйте решить её самостоятельно! И для желающих есть более трудное задание с функцией  (смотрите опять же на сайте – ссылка выше).

Но этим всё дело не ограничивается. Точно так же, как и в дискретном случае, у непрерывной случайной величины существуют особые законы распределения вероятностей, и наиболее популярные из них мы рассмотрим прямо сейчас:

2.5.1. Равномерное распределение вероятностей

2.4.3. Функция ПЛОТНОСТИ распределения вероятностей

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Математическое ожидание

.

Интегрируя
по частям, найдем

Таким
образом, окончательно имеем:

.

2.
По формуле

найдем начальные моменты третьего и
четвертого порядков:

,

.

Найдем
центральные моменты, воспользуемся
формулами, выражающими центральные
моменты через начальные:

;

.

Подставив
в эти формулы ранее найденные начальные
моменты, получим:

,

.

3.
Построим графики функций f(x) и F(x),

где

Р
ис.1.
График дифференциальной функции f(x)

Рис.2.
График интегральной функции F(x)

ЗАДАЧА
4.
Случайные
величины X
и Y независимы
и имеют равномерное распределение на
интервалах (1,3) и (2,8) соответственно.

Найти:

1)
плотность f(x) и функцию F(x) равномерного
распределения, построить графики;

2)
математическое ожидание M(X), дисперсию
D(X), (X);

3)
математическое ожидание произведения
M(XY);

4)
дисперсию произведения D(XY).

Решение:
1. Плотность
равномерного распределения f(x)=1/(b-a), где
(b-a)-длина интервала, в котором заключены
возможные значения X. Подставив a=1, b=3.
Найдем:

График
плотности распределения изображен на
рис.3.

Функция
F(x)
равномерного распределения имеет вид

В
рассматриваемой задаче a=1,
b=3,
получим

Искомая
функция распределения изображена на
рис.4

2.
Математическое ожидание и дисперсию
СВ, равномерно распределенной в интервале
(a,b)
можно получить по формулам

Подставив
a=1,
b=3,
найдем M(x)=2,
D(x)=.

Среднее
квадратичное отклонение

3.
Математическое ожидание произведения
M(XY) двух равномерно распределенных СВ
X и Y на интервалах (1,3) и (2,8) соответственно
M(XY)=
M(X)=2, M(Y)=5, таким образом, M(XY)=
=10.

4.
Найдем дисперсию D(XY) произведения
независимых СВ, распределенных равномерно:
X-в
интервале (a,b),
Y-в
интервале (с,d).

.
(*)


можно
найти по формуле

.

Подставив
,

и выполняя интегрирование, получим

,

где
a=1,
b=3. Аналогично
найдем

где
c=2,
d=8.

Подставив

а также
,


в (*), окончательно получим

.

ЗАДАЧА
5.
Случайная
величина X
имеет нормальное распределение, плотность
которого имеет вид

(**)

Найти:

1.
Математическое ожидание M(X),
дисперсию D(X),

асимметрию

,
эксцесс
,
моду
,
медиану

нормального распределения. Построить
графики

и F(x).

2.
Вероятность того, что абсолютная величина
отклонения меньше =1
, вероятность того, что в результате
испытаний СВ Х примет значение, заключенное
в интервале (2,5).

3.
СВ Х распределена нормально с М(Х)=а и
(Х)=
.
Найти интервал, симметричный относительно
математического ожидания, в который с
вероятностью 0,9973 попадает величина Х
в результате испытания.

Решение:

1.
Математическое ожидание и среднее
квадратическое отклонение СВ Х,
распределенной по нормальному закону,
найдем по виду плотности распределения:

где
М(Х)=а,
.

Для
заданной плотности (**) математическое
ожидание а=2, среднее квадратическое
отклонение 
(Х)=3, дисперсия
.
Асимметрия, эксесс, мода и медиана
нормального распределения соответственно
равны:

АS=0,
Е
k=
0, Мо=а=2, Ме=а=2.

Кривая
нормального распределения и интегральная
кривая распределения изображены на
рис.5 и рис.6 соответственно.

Рис.5

Рис.6

2.
Найдем вероятность того, что абсолютная
величина отклонения меньше >0,

Р(|х-а|<)
= 2 Ф(
/).

Подставив
а=2, =1,
=3,
получим (/)=1/30,33.

По
таблице значений функций Ф(Х) найдем
Ф(0,33)=0,1293, и тогда получим

Р(|х-2|<1)
=
2 *0,1293 = 0,2586.

Вероятность
того, что Х
примет значение, принадлежащее интервалу
(,).

.

Подставив
=2,
=5,
а=2, =3,
получим

Р(2<X<5)=Ф(1)-Ф(0).
По таблице находим Ф(1)=0,3413, Ф(0)=0. Искомая
вероятность Р(2<X<5)=0,3413.

  1. Воспользуемся
    формулой правила трех сигм

Р(|X-a|<3)=2Ф(3)=0,9973.

Отсюда
найдём интервал, симметричный относительно
М(Х)=а, в который с вероятностью 0,9973 в
результате испытания попадает Х:

а-35
<X<
а+3.
Подставив а=2, =3,
получим -7<Х<11.

ЗАДАЧА
6.
Случайная
величина Х
имеет показательное распределение с
параметром
=0,03.

Найти:

1)
плотность

и функцию

показательного распределения, построить
графики;

2)
математическое ожидание М(Х), дисперсию
D(Х),
(Х),
R(t)
– функцию надежности.

Решение:
1. Плотность
показательного (экспоненциального)
распределения с параметром
=0,03
(рис.7) имеет вид

Функция
распределения показательного закона
(рис.8)

.

1

0


y


X


F(X)

Рис.7

Рис.8

2.
Математическое ожидание, дисперсия,
среднее квадратическое отклонение
показательного распределения
соответственно равны:

.

Функция
надежности R(t)
определяет вероятность безотказной
работы элемента за время длительностью
t:

,
где
=0,03.

ЗАДАЧА
7.
Испытывают
два независимо работающих элемента.
Длительность времени безотказной работы
первого элемента имеет показательное
распределение F1(t)=1-e-0,1t
, второго
F2(t)=1-e-0,2t
. Найти
вероятность того, что за время t=5
часов :

1)
оба элемента откажут;

2)
оба элемента не откажут;

3)
только один элемент откажет;

4)
хотя бы один элемент откажет.

Решение:
1.Вероятность
отказа первого элемента

P1=F1(5)=1-e-0,1*5=1-e-0,5=1-0,6065=0,3935.

Вероятность
отказа второго элемента

P2=F1(5)=1-e-0,2*5=1-e-1=1-0,3679=0,6321.

Вероятность
отказа обоих элементов

P1
*
P2=0,3935*0,6321=0,2487.

2.
Вероятность безотказной работы первого
элемента

q1=R1(5)=
e-0,1*5
= e-0,5
= 0,6065.

Вероятность
безотказной работы второго элемента

q2=R2(5)=
e-0,2*5
= e-1
= 0,3679.

Вероятность
безотказной работы обоих элементов

q1*
q2
=0,6065*0,3679=0,2231.

3.
Вероятность того, что только один элемент
откажет

P1*q2+P2*q1=0,3935*0.3679+0,6321*0,6065=0,5282.

4.Вероятность
того, что хотя бы один элемент откажет

P=1-q1*q2
= 0,7769.

ЗАДАЧА
8.
Случайная
величина X
задана плотностью распределения
f(x)=3/8(x-1)2
в интервале (1,3); вне этого интервала
f(x)=0. Определив предварительно плотность
распределения g(y) величины

Y=(x)=3x-1.

Найти:

1)
функцию распределения G(y);

2)
математическое ожидание M(Y);

3)
дисперсию D(Y) величины Y.

Решение:
Найдем
плотность g(y) случайной величины Y. Так
как функция (x)=3x-1
строго возрастающая, то плотность g(y)
будем искать по формуле

g(y)=f[(y)](y),

где

и учитывая, что f(x)=3/8(x-1)2,
(y)=1/3,
получим

.

Возможные
значения Y заключены
в интервале (2,8) (т.к. y=3x-1
и 1<x<3, то 2<y<8).

Контроль:

.

1. Найдем
функцию распределения G(y).
Используем формулу

.

Если
y2,
то g(y)=0,
следовательно,

Если

то

.

Если

то

.

Итак,
искомая функция распределения

2.
Математическое
ожидание заданной величины
Y

.

Окончательно
получим

3.
Дисперсия

.

Вычислим

Окончательно
найдем

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi
M(X) = ∑ xi × pi
Где:
М — математическое ожидание,
X — случайная величина,
p — вероятность появления случайной величины.

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет “1” — 1/6, “2” — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx
M(X) = ∫ f(x) × x.dx
Где:
М — математическое ожидание
f (x) — функция (которая будет предоставлена в условии задачи)
x — случайная величина
dx — элемент интегрирования

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

Кратко:

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Математическое ожидание непрерывной случайной величины рассчитать формула: M(X) = -∞+∞f(x) × x.dx

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

Математическое ожидание дискретной случайной величины рассчитать формула:  M(X)=∑ Xi×Pi

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

M(X) = -∞+∞f(x) × x.dx математическое ожидание пример

Узнайте больше про Интегралы.

Основные свойства математического ожидания

  1. Математическое ожидание постоянной равно самой постоянной: М(c)=c.
  2. Математическое ожидание сложения/вычитания двух случайных величин равно сумме/вычитанию их математических ожиданий: пусть X и Y — две случайные величины, значит М (X ± Y) = М (X) ± М (Y).
  3. Если умножить случайную величину X на c, её среднее значение также умножается на эту константу (c): М (cX) = cМ (X).
  4. Если добавить или вычесть c из случайной величины X, то произойдёт та же операция (сложение или вычитание константы) с её средним значением: М (X ± c) = М (X) ± c.
  5. Если X и Y — две независимые случайные величины, значит: М(XY)=М(X)×М(Y).

Узнайте больше про Теорию вероятностей.

Добавить комментарий