Как найти математическое ожидание по ряду распределения

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание – это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины – срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Нужна помощь? Решаем теорию вероятностей на отлично

Понравилось? Добавьте в закладки

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом:
$$
x_i quad -1 quad 2 quad 5 quad 10 quad 20 \
p_i quad 0.1 quad 0.2 quad 0.3 quad 0.3 quad 0.1
$$

Используем формулу для м.о. дискретной случайной величины:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i}.
$$
Получаем:
$$
M(X)=sum_{i=1}^{n}{x_i cdot p_i} =-1cdot 0.1 + 2 cdot 0.2 +5cdot 0.3 +10cdot 0.3+20cdot 0.1=6.8.
$$
Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx.
$$
Подставляем из условия плотность вероятности и вычисляем значение интеграла:
$$
M(X)=int_{-infty}^{+infty} f(x) cdot x dx = int_{0}^{1} 12(x^2-x^3) cdot x dx = int_{0}^{1} 12(x^3-x^4) dx = \
=left.(3x^4-frac{12}{5}x^5) right|_0^1=3-frac{12}{5} = frac{3}{5}=0.6.
$$

Другие задачи с решениями по ТВ

Подробно решим ваши задачи по теории вероятностей

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку “Вычислить”.
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Спасибо за ваши закладки и рекомендации

Полезные ссылки

А теперь узнайте о том, как находить дисперсию или проверьте онлайн-калькулятор для вычисления математического ожидания, дисперсии и среднего квадратического отклонения дискретной случайной величины.

Что еще может пригодиться? Например, для изучения основ теории вероятностей – онлайн учебник по терверу. Для закрепления материала – еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Определение. Математическим
ожиданием

дискретной случайной величиныназывается выражение, вычисляемое по
формуле:

,
(6.1.1)

где
— значения случайной величины,— соответствующие им вероятности,
которые определяются равенством.

Для существования математического
ожидания необходимо, чтобы ряд (6.1.1)
сходился абсолютно, т.е.

,(6.1.2)

в противном
случае говорят, что математическое
ожидание не существует.

Пример 1.Пусть— случайная величина, равная числу
выпавших очков при бросании игрального
кубика. Найти математическое ожидание
случайной величины.

Решение. Случайная величинаимеет следующий ряд распределения:

1

2

3

4

5

6

Применяя формулу (6.1.1), получим

.

Таким образом, математическое ожидание
числа выпавших очков при бросании
игрального кубика равно
.

Пример 2. Найти математическое
ожидание случайной величины— число успехов в схеме Бернулли.

Решение. Как известно, распределение
случайной величинызадается формулой

где
— вероятность «успеха»,,— количество испытаний в схеме Бернулли.

Используя формулу (6.1.1), получим

Таким образом, математическое ожидание
числа успехов в схеме Бернулли равно
.

Определение.Математическим
ожиданием
непрерывной случайной величины
называется интеграл :

.
(6.1.3)

Условием существования математического
ожидания непрерывной случайной величины
является абсолютная сходимость интеграла

.
(6.1.4)

Пример 3. Найти математическое
ожидание случайной величины,
плотность которой имеет вид:

Решение: Используя (6.1.3), получим

.

Пример 4. Найти математическое
ожидание случайной величины,
плотность которой имеет вид:

.

Решение. Используя (6.1.3), получим

.
(6.1.5)

Делаем замену
или.
В этом случае (6.1.5) примет вид:

(6.1.6)

Первое слагаемое равно нулю, т.к. равен
нулю интеграл

.

Интеграл во втором слагаемом равен 1,
т.к. этот интеграл равен функции
распределения нормального закона с
параметрами
при значении аргумента равным,
т.е.

.

Таким образом, математическое ожидание
равно
.

Пример 5. Случайная величинаимеет плотность Коши:

.
(6.1.7)

Проверить,
имеет ли случайная величина
математическое ожидание.

Решение. Проверим условие (6.1.4)
существования математического ожидания

.

Математическое ожидание случайной
величины
,
имеющей плотность Коши, не существует,
т.к. условие существования математического
ожидания не выполнено.

§2. Математическое ожидание функции от случайной величины. Свойства математического ожидания

Пусть
— функция от случайной величины.
Определим математическое ожидание.
Это возможно сделать двумя способами.
Первый способ состоит в том, что сначала
строится распределение случайной
величины,
затем уже находим.
Мы рассмотрим другой способ. Пусть
сначала— дискретная случайная величина,
принимающая значения.
Тогда случайная величинапринимает значенияс теми же вероятностями.
В этом случае математическое ожидание
определяется по формуле

.
(6.2.1)

В случае, если случайная величина
принимает счетное число значений, то
математическое ожидание случайной
величиныопределяется по формуле

.
(6.2.2)

При этом
условие существования математического
ожидания (6.1.4) примет вид:

.
(6.2.3)

Пример 6. Случайная величинаимеет ряд распределения:

4

16

100

0,7

0,1

0,2

Найти
математическое ожидание математической
величины:
.

Решение. Для решения задачи
применим формулу (6.2.1).

Таким образом, математическое ожидание
математической величины
равно 28,2.

Пусть
— непрерывная случайная величина,
имеющая плотность распределения.
Пусть функциянепрерывная (за исключением, быть может,
счетного числа точек). Тогда математическое
ожидание случайной величиныопределяется по формуле

.
(6.2.4)

Условие существования математического
ожидания случайной величины
имеет вид:

.
(6.2.5)

Пример 7. Случайная величинаимеет нормальное распределение с
параметрами,
т.е. ее плотность имеет вид:

.

Найти
математическое ожидание случайной
величины
.

Решение. Используя формулу (6.2.4),
получаем:

.

Пример 8. Случайная величинараспределена равномерно в интервале,
т.е.

Найти
математическое ожидание случайной
величины
.

Решение.Используя формулу (6.2.4.)
, получаем:

.

Свойства математического ожидания.

1. Математическое ожидание постоянной
равно самой этой постоянной, т.е.

,
где.

Доказательство. Постояннуюможно рассматривать как случайную
величину, принимающую только одно
значениес вероятностью 1. Следовательно,

.

2.
.

Доказательство. Пусть— непрерывная случайная величина. Тогда
для случайной величиныпо формуле (6.2.4.) получаем:

Аналогично доказывается и для дискретной
случайной величины. 

3. Для любых случайных величин
иматематическое ожидание их суммы
случайных величин равно сумме их
математических ожиданий, т.е.

.

Доказательство. Пусть случайные
величиныи— дискретные. Случайная величинапринимает значения,
а случайная величинапринимает значения.
Рассмотрим случайную величину.
Случайная величинапринимает значенияс вероятностями.
Тогда:

При доказательстве
воспользовались тем, что

и.

Действительно,
учитывая, что

,

то

,

аналогично
доказывается, что

.

Аналогично доказывается и для непрерывной
случайной величины. 

4. Если
инезависимые случайные величины, то
математическое ожидание произведения
случайных величин равно произведению
их математических ожиданий, т.е.

.

Доказательство. Пусть величиныи— дискретные. В силу независимости
случайных величин имеет место равенство:

.
Тогда

Аналогично доказывается и для дискретной
случайной величины. 

Заметим, что свойство 3 допускает
обобщение на сумму любого числа слагаемых,
а свойство 4 допускает обобщение на
произведение любого числа независимых
(в совокупности) сомножителей.

Пример 9. Найти математическое
ожидание случайной величины— число успехов в схеме Бернулли.

Решение. Представим число успеховв схеме Бернулли изnиспытаний в виде,
где— число успехов вi-ом
испытании. Очевидно, что.
По свойству 3 математического ожидания,
получаем

.

Этот результат
совпадает с результатом примера 3, но
получен более легкими вычислениями. 

Пример 10. Производится ряд независимых
опытов, в каждом из которых может
появиться событиеA.
Вероятность событияAв
каждом опыте равнаp. Опыты
производятся до первого появления
события А, после чего они прекращаются.
Случайная величина— число произведенных опытов. Найти.

Решение. Рассмотрим событие,
в этом случае событиеAпроизошло при первом опыте, т.о..
Перейдем к событию,
в этом случае событиеAпри первом опыте не произошло, но
произошло при втором опыте, т.о..

Производя
аналогичные рассуждения, получаем ряд
распределения:

1

2

3

Используя
формулу (6.1.1), получим:

Таким образом,
математическое ожидание равно
.

Пример 11. Независимые случайные
величиныизаданы своими рядами распределений:

Для случайной
величины
найти математическое ожидание двумя
способами:

  1. по
    определению математического ожидания;

  2. по свойствам
    математического ожидания.

Решение. Рассмотрим 1 способ
нахождения математического ожидания.
Для этого составим ряд распределения
случайной величины.
Для этого удобно воспользоваться
таблицей сумми соответствующих им вероятностей.
Например:.

Далее очень легко получить ряд
распределения случайной величины
.

Z

-1

0

1

2

3

P

1/24

1/6

7/24

1/3

1/6

Естественно, можно было бы обойтись и
без таблицы. Например:

Используя ряд распределения, находим
математическое ожидание

.

Перейдем ко второму способу нахождения
математического ожидания случайной
величины
.
Используя свойство 3, получим:

.

Соседние файлы в папке пособия

  • #
  • #
  • #
  • #
  • #
  • #

Математическое ожидание

Данный калькулятор предназначен для вычисления математического ожидания дискретной случайной величины онлайн.
Оценка математического ожидания и дисперсии случайной величины имеет большое значение в теории вероятности.
Математическое ожидание – среднее значение случайной величины. Чтобы найти математическое ожидание случайной величины, следует вычислить сумму парных произведений всех возможных значений случайной величины на соответствующие им вероятности.

Свойства математического ожидания заключаются в следующем. Во-первых, математическое ожидание суммы независимых случайных величин равно сумме их математических ожиданий. Во-вторых, математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Как найти среднее значение , формула (на примере следующих величин):
xi= 1 ; 2 ; 5 ; 6 (случайные величины)
pi = 0.1 ; 0.3 ; 0.1 ; 0.5 (вероятность)

M[X] = x1p1 + x2p2 + x3p3 + x4p4 = 1×0.1 + 2×0.3 + 5×0.1 + 6×0.5 = 0.1 + 0.6 + 0.5 + 3 = 4.2

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Математическое ожидание случайной величины и его свойства

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Математическим ожиданием
дискретной случайной величины
, множество возможных значений которой
конечно, называется сумма произведений всех ее возможных значений на
соответствующие вероятности:

Если множество возможных
значений счетное, то

Причем математическое
ожидание существует, если ряд в правой части сходится абсолютно.

Математическое ожидание
приближенно равно среднему значению случайной величины.

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для дискретных случайных величин, сохраняются и для непрерывных величин.

Свойства математического ожидания

Свойство 1.

Математическое ожидание
константы равно этой константе:

Свойство 2.

Постоянный множитель
можно выносить за знак математического ожидания:

Свойство 3.

Математическое ожидание
суммы случайных величин равно сумме математических ожиданий слагаемых:

Свойство 4.

Математическое ожидания
произведения случайных величин:

где 

 –
ковариация  случайных величин

 и

В частности, если

 и

 независимы, то

И вообще, для независимых случайных величин
математическое ожидание их произведения равно произведению математических
ожиданий сомножителей:

Смежные темы решебника:

  • Дисперсия и ее свойства. Среднее квадратическое отклонение
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

Производится
3 выстрела с вероятностями попадания в цель, равными p1=0,4; p2=0,3 и p3=0,6. Найти математическое
ожидание общего числа попаданий.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Число
попаданий при первом выстреле есть случайная величина

, которая может принимать
только два значения:

1 –
попадание с вероятностью

0 –
промах с вероятностью

Математическое
ожидание числа попаданий при первом выстреле:

Аналогично
находим математические ожидания числа попаданий при втором и третьем выстрелах:

Общее
число попаданий есть также случайная величина, состоящая из суммы попаданий в
каждом из трех выстрелов:

Искомое
математическое ожидание:

Ответ:


Пример 2

Для случайных величин X,Y известны
характеристики M(X)=3, M(Y)=7, D(X)=16, D(Y)=49, ρXY=0.35

Найдите математическое ожидание M(XY).

Решение

Коэффициент корреляции:

Искомое математическое ожидание:

Ответ:


Пример 3

Даны законы распределения двух независимых
случайных величин X и Y:

Требуется:


составить закон распределения случайной величины Z=3X-Y;

– найти
числовые характеристики случайных величин X, Y, Z;


проверить свойство M(Z)=3M(X)-M(Y);


построить функцию распределения для

Z и построить ее график.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Составим закон распределения

:

или

Проверка:

Закон
распределения величины

:

Найдем математические
ожидания:

Проверим
свойство:

 – выполняется

Найдем
дисперсии:

Средние
квадратические отклонения:

Запишем
функцию распределения:

 

График функции распределения


Пример 4

Найти
математическое ожидание суммы числа очков, которые могут выпасть при бросании
двух игральных костей.

Решение

Обозначим
число очков, которое может выпасть на первой кости, через

, и на второй – через

.

Возможные
значения этих величин одинаковы и равны: 1,2,3,4,5 и 6.

При этом
вероятность каждого из этих значений равна 1/6.

Математическое
ожидание числа очков, выпавших на первой кости:

Аналогично
математическое ожидание числа очков, выпавших на второй кости:

Искомое
математическое ожидание:

Ответ:

.

Задачи контрольных и самостоятельных работ


Задача 1

Найти
математическое ожидание случайной величины Z=6X-9Y+7XY-10, если известно, что
M(X)=2; M(Y)=3.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Случайные
величины X и Y независимы и распределены
равномерно: X – в интервале (a,b), Y

– в интервале (c,d).
Найти математическое ожидание случайной величины Z.

a=-3, b=4, c=3, d=6, Z=6XY, M(Z)-?


Задача 3

Найти
математическое ожидание и дисперсию случайной величины Z=3+2.2X-Y, где X и Y –
независимые случайные величины, если известны M(X)=1, D(X)=0.5,
M(Y)=2, D(Y)=2.


Задача 4

Независимые
случайные величины заданы законами распределения:

и

Построить ряд распределения F(Z), где Z=X-Y.
Проверить свойства:

M(Z)=M(X)-M(Y)

D(Z)=D(X)+D(Y)


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 5

Независимые
случайные величины X и Y заданы следующими законами
распределения:

и

Найти
математическое ожидание случайной величины XY


Задача 6

Дискретная
случайная величина X принимает три возможных значения: x1=4 с вероятностью p1=0.5; x2=6 c вероятностью p2=0.3 и x3 с вероятностью p3. Найти x3 и p3, зная, что M(X)=8.


Задача 7

Дан
перечень возможных значений случайной величины X: x1=-1, x2=0, x3=1, а также известны
математические ожидания этой величины и ее квадрата:

M(X)=0.1, M(X2)=0.9.

Найти
вероятности p1, p2, p3 соответствующие возможным
значениям x1, x2, x3.


Задача 8

Дан
перечень возможных значений дискретной случайной величины X:

x1=1, x2=2, x3=3

А также
известны математические ожидания этой величины и ее квадрата:

M(X)=2.3

M(X2)=5.9

Найти вероятности, соответствующие
возможным значениям X.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 1 октября 2021 года; проверки требуют 7 правок.

Математи́ческое ожида́ние — понятие в теории вероятностей, означающее среднее (взвешенное по вероятностям возможных значений) значение случайной величины[1]. В случае непрерывной случайной величины подразумевается взвешивание по плотности распределения (более строгие определения см. ниже). Математическое ожидание случайного вектора равно вектору, компоненты которого равны математическим ожиданиям компонентов случайного вектора.

Обозначается через {mathbb  {E}}[X][2] (например, от англ. Expected value или нем. Erwartungswert);
в русскоязычной литературе также встречается обозначение M[X] (возможно, от англ. Mean value или нем. Mittelwert, а возможно от «Математическое ожидание»). В статистике часто используют обозначение mu .

Для случайной величины, принимающей значения только 0 или 1 математическое ожидание равно p — вероятности «единицы». Математическое ожидание суммы таких случайных величин равно np, где n — количество таких случайных величин. При этом вероятности появления определенного кол-ва единиц рассчитываются по биномиальному распределению. Поэтому в литературе, скорее всего, легче найти запись, что мат. ожидание биномиального распределения равно np[3].

Некоторые случайные величины не имеют математического ожидания, например, случайные величины, имеющие распределение Коши.

На практике математическое ожидание обычно оценивается как среднее арифметическое наблюдаемых значений случайной величины (выборочное среднее, среднее по выборке). Доказано, что при соблюдении определенных слабых условий (в частности, если выборка является случайной, то есть наблюдения являются независимыми) выборочное среднее стремится к истинному значению математического ожидания случайной величины при стремлении объема выборки (количества наблюдений, испытаний, измерений) к бесконечности.

Определение[править | править код]

Общее определение через интеграл Лебега[править | править код]

Пусть задано вероятностное пространство (Omega,mathfrak{A},mathbb{P}) и определённая на нём случайная величина X. То есть, по определению, Xcolon Omega to mathbb {R}  — измеримая функция. Если существует интеграл Лебега от X по пространству Omega , то он называется математическим ожиданием, или средним (ожидаемым) значением и обозначается M[X] или {mathbb  {E}}[X].

{displaystyle mathbb {E} [X]=int limits _{Omega }!X(omega ),mathbb {P} (domega ).}

Определение через функцию распределения случайной величины[править | править код]

Если F_{X}(x) — функция распределения случайной величины, то её математическое ожидание задаётся интегралом Лебега — Стилтьеса:

{displaystyle mathbb {E} [X]=int limits _{-infty }^{infty }!x,dF_{X}(x)}, {displaystyle xin mathbb {R} }.

Определение для абсолютно непрерывной случайной величины (через плотность распределения)[править | править код]

Математическое ожидание абсолютно непрерывной случайной величины, распределение которой задаётся плотностью f_{X}(x), равно

{displaystyle mathbb {E} [X]=int limits _{-infty }^{infty }!xf_{X}(x),dx}.

Определение для дискретной случайной величины[править | править код]

Если X — дискретная случайная величина, имеющая распределение

{displaystyle mathbb {P} (X=x_{i})=p_{i}} , {displaystyle sum limits _{i=1}^{infty }p_{i}=1},

то прямо из определения интеграла Лебега следует, что

{displaystyle mathbb {E} [X]=sum limits _{i=1}^{infty }x_{i},p_{i}}.

Математическое ожидание целочисленной величины[править | править код]

  • Если X — положительная целочисленная случайная величина (частный случай дискретной), имеющая распределение вероятностей
{displaystyle mathbb {P} (X=j)=p_{j}} , {displaystyle j=0,1,dotsc }, {displaystyle sum limits _{j=0}^{infty }p_{j}=1},

то её математическое ожидание может быть выражено через производящую функцию последовательности {p_{i}}

P(s)=sum _{{k=0}}^{infty };p_{k}s^{k}

как значение первой производной в единице: {displaystyle mathbb {E} [X]=P'(1)}. Если математическое ожидание X бесконечно, то lim _{{sto 1}}P'(s)=infty и мы будем писать {displaystyle P'(1)=mathbb {E} [X]=infty }

Теперь возьмём производящую функцию Q(s) последовательности «хвостов» распределения {q_{k}}

{displaystyle q_{k}=mathbb {P} (X>k)=sum _{j=k+1}^{infty }{p_{j}}} , {displaystyle Q(s)=sum _{k=0}^{infty }q_{k}s^{k}.}

Эта производящая функция связана с определённой ранее функцией P(s) свойством: Q(s)={frac  {1-P(s)}{1-s}} при |s|<1. Из этого по теореме о среднем следует, что математическое ожидание равно просто значению этой функции в единице:

{displaystyle mathbb {E} [X]=P'(1)=Q(1)}

Математическое ожидание случайного вектора[править | править код]

Пусть X=(X_{1},dots ,X_{n})^{{top }}colon Omega to {mathbb  {R}}^{n} — случайный вектор. Тогда по определению

{displaystyle mathbb {E} [X]=(mathbb {E} [X_{1}],dots ,mathbb {E} [X_{n}])^{top }},

то есть математическое ожидание вектора определяется покомпонентно.

Математическое ожидание преобразования случайной величины[править | править код]

Пусть gcolon {mathbb  {R}}to {mathbb  {R}} — борелевская функция, такая что случайная величина Y = g(X) имеет конечное математическое ожидание. Тогда для него справедлива формула

{displaystyle mathbb {E} left[g(X)right]=sum limits _{i=1}^{infty }g(x_{i})p_{i},}

если X имеет дискретное распределение;

{displaystyle mathbb {E} left[g(X)right]=int limits _{-infty }^{infty }!g(x)f_{X}(x),dx,}

если X имеет абсолютно непрерывное распределение.

Если распределение mathbb {P} ^{X} случайной величины X общего вида, то

{displaystyle mathbb {E} left[g(X)right]=int limits _{-infty }^{infty }!g(x),mathbb {P} ^{X}(dx).}

В специальном случае, когда {displaystyle g(X)=X^{k}}, математическое ожидание {displaystyle mathbb {E} [g(X)]=mathbb {E} [X^{k}]} называется k-м моментом случайной величины.

Свойства математического ожидания[править | править код]

  • Математическое ожидание числа (не случайной, фиксированной величины, константы) есть само число.
{displaystyle mathbb {E} [a]=a}
ain {mathbb  {R}} — константа;
  • Математическое ожидание линейно[4], то есть
{displaystyle mathbb {E} [aX+bY]=amathbb {E} [X]+bmathbb {E} [Y]},
где X,Y — случайные величины с конечным математическим ожиданием, а a,bin mathbb{R} — произвольные константы;

В частности, математическое ожидание суммы (разности) случайных величин равно сумме (соответственно — разности) их математических ожиданий.

{displaystyle 0leqslant mathbb {E} [X]leqslant mathbb {E} [Y]}.
  • Математическое ожидание не зависит от поведения случайной величины на событии вероятности нуль, то есть если X=Y почти наверняка, то
{displaystyle mathbb {E} [X]=mathbb {E} [Y]}.
  • Математическое ожидание произведения двух независимых или некоррелированных[5] случайных величин X,Y равно произведению их математических ожиданий
{displaystyle mathbb {E} [XY]=mathbb {E} [X]cdot mathbb {E} [Y]}.

Неравенства, связанные с математическим ожиданием[править | править код]

Неравенство Маркова — для неотрицательной случайной величины {displaystyle Xcolon Omega to mathbb {R} ^{+}} определённой на вероятностном пространстве (Omega ,{mathcal  {F}},{mathbb  {P}}) с конечным математическим ожиданием {displaystyle mathbb {E} (X)} выполняется неравенство:

{displaystyle mathbb {P} left(Xgeqslant aright)leqslant {frac {mathbb {E} (X)}{a}}}, где a>0.

Неравенство Йенсена для математического ожидания выпуклой функции от случайной величины. Пусть (Omega ,{mathcal {F}},mathbb {P} ) — вероятностное пространство, {displaystyle Xcolon Omega to mathbb {R} } — определённая на нём случайная величина, varphi colon {mathbb  {R}}to {mathbb  {R}} — выпуклая борелевская функция, такие, что X,varphi (X)in L^{1}(Omega ,{mathcal  {F}},{mathbb  {P}}), то

{displaystyle varphi (mathbb {E} (X))leqslant mathbb {E} (varphi (X))}.

Теоремы, связанные с математическим ожиданием[править | править код]

{displaystyle lim limits _{nto infty }mathbb {E} (X_{n})=mathbb {E} (X)} .
{displaystyle mathbb {E} left(sum _{i=1}^{N}X_{i}right)=mathbb {E} (N)mathbb {E} (X)}
{displaystyle mathbb {E} (X)=G'(0)}.

Примеры[править | править код]

  • Пусть случайная величина имеет дискретное равномерное распределение, то есть mathbb {P} (X=x_{i})={frac {1}{n}},;i=1,ldots ,n. Тогда её математическое ожидание
{displaystyle mathbb {E} [X]={frac {1}{n}}sum limits _{i=1}^{n}x_{i}}

равно среднему арифметическому всех принимаемых значений.

{displaystyle mathbb {E} [X]=int limits _{a}^{b}!{frac {x}{b-a}},dx={frac {a+b}{2}}}.
  • Пусть случайная величина X имеет стандартное распределение Коши. Тогда
int limits _{-infty }^{infty }!xf_{X}(x),dx=infty ,

то есть математическое ожидание X не определено.

См. также[править | править код]

  • Дисперсия случайной величины
  • Моменты случайной величины
  • Условное математическое ожидание

Примечания[править | править код]

  1. «Математическая энциклопедия» / Главный редактор И. М. Виноградов. — : «Советская энциклопедия», 1979. — 1104 с. — (51[03] М34). — 148 800 экз.
  2. А. Н. Ширяев. 1 // «Вероятность». — : МЦНМО, 2007. — 968 с. — ISBN 978-5-94057-036-3, 978-5-94057-106-3, 978-5-94057-105-6.
  3. В.Е.Гмурман. Часть вторая. Случайные величины. ->
    Глава 4. Дискретные случайные величины. ->
    Параграф 3.
    // [http://elenagavrile.narod.ru/ms/gmurman.pdf РУКОВОДСТВО К РЕШЕНИЮ ЗАДАЧ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И
    МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ]. — 1979. — С. 63. — 400 с.
    Архивная копия от 21 января 2022 на Wayback Machine
  4. Пытьев Ю. П., Шишмарев И. А., Теория вероятностей, математическая статистика и элементы теории возможностей для физиков. — М.: Физический факультет МГУ, 2010.
  5. Теория вероятностей: 10.2. Теоремы о числовых характеристиках. sernam.ru. Дата обращения: 10 января 2018. Архивировано 10 января 2018 года.

Литература[править | править код]

  • Феллер В. Глава XI. Целочисленные величины. Производящие функции // Введение в теорию вероятностей и её приложения = An introduction to probability theory and its applicatons, Volume I second edition / Перевод с англ. Р. Л. Добрушина, А. А. Юшкевича, С. А. Молчанова Под ред. Е. Б. Дынкина с предисловием А. Н. Колмогорова. — 2-е изд. — М.: Мир, 1964. — С. 270—272.

Ссылки[править | править код]

  • Математическое ожидание и его свойства на http://www.toehelp.ru

Добавить комментарий