Как найти математическое ожидание суммы выпавших очков

22
Апр 2019

Теория вероятностей

Математическое ожидание

Математическое ожидание.

В этой статье мы рассмотрим определение и свойства математического ожидания, а также рассмотрим примеры решения задач.

Рассмотрим некоторую случайную величину Подготовка к ГИА и ЕГЭ, которая может принимать числовые значения Подготовка к ГИА и ЕГЭ

Пусть распределение вероятностей случайной величины Подготовка к ГИА и ЕГЭ задано таблицей:

Математическое ожидание

Математическим ожиданием случайной величины Подготовка к ГИА и ЕГЭ называют число

    Решение задач на сайте www.ege-ok.ru

Математическое ожидание Подготовка к ГИА и ЕГЭ называют также ожидаемым значением случайной величины Подготовка к ГИА и ЕГЭ, средним значением случайной величины Подготовка к ГИА и ЕГЭ.

Свойства математического ожидания.

Свойство 1. Пусть Подготовка к ГИА и ЕГЭ – случайная величина, Подготовка к ГИА и ЕГЭ – некоторое число. Рассмотрим случайную величину Подготовка к ГИА и ЕГЭ. Тогда

    Решение задач на сайте www.ege-ok.ru

Свойство 2. Пусть Подготовка к ГИА и ЕГЭ и Подготовка к ГИА и ЕГЭ– две случайные величины. Тогда Подготовка к ГИА и ЕГЭ – тоже случайная величина, и при этом:

    Решение задач на сайте www.ege-ok.ru

Это значит, что математическое ожидание суммы случайных величин равно сумме их математических ожиданий.

Свойство 3. Если случайная величина Подготовка к ГИА и ЕГЭ принимает значения Подготовка к ГИА и ЕГЭ с одинаковой вероятностью, то

    Решение задач на сайте www.ege-ok.ru

Это значит, что если все значения случайной величины Подготовка к ГИА и ЕГЭ равновероятны, то математическое ожидание Подготовка к ГИА и ЕГЭ равно среднему арифметическому числовых значений случайной величины Подготовка к ГИА и ЕГЭ.

Пример 1. Страховой полис КАСКО в страховой компании стоит 35 000 рублей. По статистике в течение года владелец автомобиля попадает в мелкую аварию с вероятностью 0,18, и средняя сумма страховой выплаты при этом равна 50 000 рублей. С вероятностью 0,034 автомобилист попадает в серьезную аварию, и средняя сумма выплаты при этом 700 000 рублей. Найдите

  1. Математическое ожидание случайной величины “средняя сумма страховой выплаты”
  2. Математическое ожидание случайной величины “средний доход страховой компании от продажи одного полиса”

Решение. показать

Пример 2. Случайная величина Подготовка к ГИА и ЕГЭ задана распределением: 

  1. Сколько значений принимает случайная величина  Подготовка к ГИА и ЕГЭ?
  2. Найдите математическое ожидание случайной величины  Подготовка к ГИА и ЕГЭ.

Решение. показать

Пример 3. В торговом центре установлены два автомата, продающие кофе. С вероятностью Подготовка к ГИА и ЕГЭ  к вечеру в первом автомате заканчивается кофе. Во втором автомате кофе заканчивается к вечеру с вероятностью Подготовка к ГИА и ЕГЭ. Найдите математическое ожидание числа автоматов, в которых к вечеру закончится кофе.

Решение. показать

Пример 4. Баскетболист попадает в корзину с вероятностью Подготовка к ГИА и ЕГЭ. Найдите математическое ожидание числа попаданий при 50 бросках.

Решение. показать

Пример 5. Василий пытается отправить СМС в условиях слабой мобильной связи. Телефон делает попытки отправить СМС до тех пор, пока это не удастся. Известно, что вероятность удачной попытки равна Подготовка к ГИА и ЕГЭ независимо от предыдущих попыток. Найдите математическое ожидание числа сделанных попыток.

Решение. показать

Пример 6. Найдите математическое ожидание случайной величины Подготовка к ГИА и ЕГЭ “число неудач” в серии из 16 испытаний Бернулли с вероятностью успеха Подготовка к ГИА и ЕГЭ в одном испытании.

Решение. показать

Пример 7. Найдите математическое ожидание случайной величины Подготовка к ГИА и ЕГЭ “число очков, выпавших на игральной кости”.

Решение. показать

Пример 8. Игральную кость бросают 5 раз. Найдите математическое ожидание суммы выпавших очков.

Решение. показать

Репетитор по математике И.В. Фельдман

Математическое ожидание

Математическое ожидание случайной величины и его свойства

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Математическим ожиданием
дискретной случайной величины
, множество возможных значений которой
конечно, называется сумма произведений всех ее возможных значений на
соответствующие вероятности:

Если множество возможных
значений счетное, то

Причем математическое
ожидание существует, если ряд в правой части сходится абсолютно.

Математическое ожидание
приближенно равно среднему значению случайной величины.

Математическое ожидание непрерывной случайной величины

,
возможные значения которой принадлежат всей оси

,
определяется равенством:

где

 – плотность распределения случайной величины

.
Предполагается, что интеграл сходится абсолютно.

В частности, если все возможные значения принадлежат интервалу

,
то:

Все свойства математического ожидания, указанные для дискретных случайных величин, сохраняются и для непрерывных величин.

Свойства математического ожидания

Свойство 1.

Математическое ожидание
константы равно этой константе:

Свойство 2.

Постоянный множитель
можно выносить за знак математического ожидания:

Свойство 3.

Математическое ожидание
суммы случайных величин равно сумме математических ожиданий слагаемых:

Свойство 4.

Математическое ожидания
произведения случайных величин:

где 

 –
ковариация  случайных величин

 и

В частности, если

 и

 независимы, то

И вообще, для независимых случайных величин
математическое ожидание их произведения равно произведению математических
ожиданий сомножителей:

Смежные темы решебника:

  • Дисперсия и ее свойства. Среднее квадратическое отклонение
  • Дискретная случайная величина
  • Непрерывная случайная величина

Примеры решения задач


Пример 1

Производится
3 выстрела с вероятностями попадания в цель, равными p1=0,4; p2=0,3 и p3=0,6. Найти математическое
ожидание общего числа попаданий.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Число
попаданий при первом выстреле есть случайная величина

, которая может принимать
только два значения:

1 –
попадание с вероятностью

0 –
промах с вероятностью

Математическое
ожидание числа попаданий при первом выстреле:

Аналогично
находим математические ожидания числа попаданий при втором и третьем выстрелах:

Общее
число попаданий есть также случайная величина, состоящая из суммы попаданий в
каждом из трех выстрелов:

Искомое
математическое ожидание:

Ответ:


Пример 2

Для случайных величин X,Y известны
характеристики M(X)=3, M(Y)=7, D(X)=16, D(Y)=49, ρXY=0.35

Найдите математическое ожидание M(XY).

Решение

Коэффициент корреляции:

Искомое математическое ожидание:

Ответ:


Пример 3

Даны законы распределения двух независимых
случайных величин X и Y:

Требуется:


составить закон распределения случайной величины Z=3X-Y;

– найти
числовые характеристики случайных величин X, Y, Z;


проверить свойство M(Z)=3M(X)-M(Y);


построить функцию распределения для

Z и построить ее график.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Составим закон распределения

:

или

Проверка:

Закон
распределения величины

:

Найдем математические
ожидания:

Проверим
свойство:

 – выполняется

Найдем
дисперсии:

Средние
квадратические отклонения:

Запишем
функцию распределения:

 

График функции распределения


Пример 4

Найти
математическое ожидание суммы числа очков, которые могут выпасть при бросании
двух игральных костей.

Решение

Обозначим
число очков, которое может выпасть на первой кости, через

, и на второй – через

.

Возможные
значения этих величин одинаковы и равны: 1,2,3,4,5 и 6.

При этом
вероятность каждого из этих значений равна 1/6.

Математическое
ожидание числа очков, выпавших на первой кости:

Аналогично
математическое ожидание числа очков, выпавших на второй кости:

Искомое
математическое ожидание:

Ответ:

.

Задачи контрольных и самостоятельных работ


Задача 1

Найти
математическое ожидание случайной величины Z=6X-9Y+7XY-10, если известно, что
M(X)=2; M(Y)=3.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 2

Случайные
величины X и Y независимы и распределены
равномерно: X – в интервале (a,b), Y

– в интервале (c,d).
Найти математическое ожидание случайной величины Z.

a=-3, b=4, c=3, d=6, Z=6XY, M(Z)-?


Задача 3

Найти
математическое ожидание и дисперсию случайной величины Z=3+2.2X-Y, где X и Y –
независимые случайные величины, если известны M(X)=1, D(X)=0.5,
M(Y)=2, D(Y)=2.


Задача 4

Независимые
случайные величины заданы законами распределения:

и

Построить ряд распределения F(Z), где Z=X-Y.
Проверить свойства:

M(Z)=M(X)-M(Y)

D(Z)=D(X)+D(Y)


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 5

Независимые
случайные величины X и Y заданы следующими законами
распределения:

и

Найти
математическое ожидание случайной величины XY


Задача 6

Дискретная
случайная величина X принимает три возможных значения: x1=4 с вероятностью p1=0.5; x2=6 c вероятностью p2=0.3 и x3 с вероятностью p3. Найти x3 и p3, зная, что M(X)=8.


Задача 7

Дан
перечень возможных значений случайной величины X: x1=-1, x2=0, x3=1, а также известны
математические ожидания этой величины и ее квадрата:

M(X)=0.1, M(X2)=0.9.

Найти
вероятности p1, p2, p3 соответствующие возможным
значениям x1, x2, x3.


Задача 8

Дан
перечень возможных значений дискретной случайной величины X:

x1=1, x2=2, x3=3

А также
известны математические ожидания этой величины и ее квадрата:

M(X)=2.3

M(X2)=5.9

Найти вероятности, соответствующие
возможным значениям X.

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Игральную кость бросают три раза. Событие А — выпадение грани с нечётным количеством очков. — Составить в виде таблицы закон распределения частоты появления события А
— Рассчитать её математическое ожидание и дисперсию
— Рассчитать вероятность появления события А хотя бы в одном испытании

Vasily1975

Частота появления события А является случайной величиной, обозначим её через X.

Так как грань с нечётным количеством очков может выпасть 0, 1, 2 или 3 раза, то частота появления принимает значения 0, 1/3, 2/3 и 1. При этом так как на игральной кости 3 грани с нечётным количеством очков и 3 — с чётным, то вероятность события А в одном опыте (то есть при одном бросании кости) равна 3/6=1/2. Найдём соответствующие вероятности:

P0=1/2*1/2*1/2=1/8; P1=3*1/2*1/2*1/2=3/8; P2=3*1/2*1/2*1/2=3/8; P3=1/2*1/2*1/2=1/8.

Проверка: p0+p1+p2+p3=1, так что вероятности найдены верно. Составляем закон распределения частоты появления события А:

Математическое ожидание M[X]=∑Xi*Pi=1/2; дисперсия D[X]=∑(Xi-M[X])²*Pi=1/12. Пусть событие А1 заключается в том, что событие A появится хотя бы в одном испытании. Для нахождения вероятности P(A1) рассмотрим противоположное ему событие B1, которое заключается в том, что грань с нечётным количеством очков не появится ни при одном броске. Так как события A1 и B1 — независимые и притом образуют полную группу, то P(A1)+P(B1)=1, откуда P(A1)=1-P(B1). А так как P(B1)=1/2*1/2*1/2=1/8, то P(A1)=1-1/8=7/8=0,875.

Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.

От нашего клиента с логином yGrSQWmv на электронную почту пришел вопрос: «Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.» это здание мы отнесли к разделу ЕГЭ (школьный). Так как клиент является зарегистрированным пользователем нашего сайта, то мы бесплатно предоставим ответ.

ЕГЭ (школьный) — довольно сложный раздел, здесь действительно попадаются вопросы, которые даже у специалиста с законченным высшим образованием поставят в тупик при подготовке правильного ответа. Но мы известны тем, что сложности нас не останавливают, а наоборот развивают и расширяют наши знания.

Вы спрашивали Найти математическое ожидание суммы числа очков, которые могут выпасть при бросании двух игральных костей.? — отвечаем:

Найти математическое ожидание дисперсию и среднее квадратическое отклонение числа очков выпадающих при бросании игральной кости 0 1 2 3 1 / 35 2 / 35 8 / 35 4 / 35?

Найти математическое ожидание дисперсию и среднее квадратическое отклонение числа очков выпадающих при бросании игральной кости 0 1 2 3 1 / 35 2 / 35 8 / 35 4 / 35.

M(X) = [xi * pi] = (1 / 35) * 0 + (2 / 35 * 1) + (8 / 35 * 2) + (4 / 35) * 3 = 14 / 35 = 0.

M = xi ^ 2 * pi — (M(X)) ^ 2 = (0 ^ 2 * (1 / 35) + 1 ^ 2 * (2 / 35) + 2 ^ 2 * (8 / 35) + 3 ^ 2(4 / 35)) — 0.

4 = 0 + (4 / 35) + (32 / 35) + (24 / 35) — 0.

Среднее квадратичное отклонение

6(сигма) = корень из дисперсии = корень из 1, 31428 = 1, 1464.

Определите вероятность того, что при бросании игрального кубика (правильной кости)выподает более 3 очков?

Определите вероятность того, что при бросании игрального кубика (правильной кости)выподает более 3 очков.

Определите вероятность того, что при бросании игрального кубика выпало четное число очков?

Определите вероятность того, что при бросании игрального кубика выпало четное число очков.

Брошены две игральные кости?

Брошены две игральные кости.

Случайная величина Х — сумма выпавших очков.

Найти дисперсию D[x].

Найдите вероятность того, что число выпавших при бросании двух игральных костей очков : больше 3?

Найдите вероятность того, что число выпавших при бросании двух игральных костей очков : больше 3.

Найти вероятность, что при одном бросании игрального кубика выпадет 4 очка?

Найти вероятность, что при одном бросании игрального кубика выпадет 4 очка.

Определите вероятность того что при бросании игрального кубика выпало нечетное число очков?

Определите вероятность того что при бросании игрального кубика выпало нечетное число очков.

Помогите задачу решить?

Помогите задачу решить!

Математическое ожидание случайной величины Х Мх = 5, а дисперсия Dx = 2.

Найти математическое ожидание и дисперсию случайной величины Y = 2 * X + 4.

Андрей и Олег договорились, что если при бросании двух игральных кубиков в сумме выпадает число очков, кратное 5, то выигрывает Андрей, а если в сумме выпадает число очков, кратное 6, то выигрывает Ол?

Андрей и Олег договорились, что если при бросании двух игральных кубиков в сумме выпадает число очков, кратное 5, то выигрывает Андрей, а если в сумме выпадает число очков, кратное 6, то выигрывает Олег.

У кого из мальчиов больше шансов выиграть?

Какова вероятность того, что при бросание игрального кубика выпадает 3 очка?

Какова вероятность того, что при бросание игрального кубика выпадает 3 очка.

Найти P2, математическое ожидание и дисперсию данной случайной величины X?

Найти P2, математическое ожидание и дисперсию данной случайной величины X.

Вы открыли страницу вопроса Найти математическое ожидание дисперсию и среднее квадратическое отклонение числа очков выпадающих при бросании игральной кости 0 1 2 3 1 / 35 2 / 35 8 / 35 4 / 35?. Он относится к категории Алгебра. Уровень сложности вопроса – для учащихся 10 — 11 классов. Удобный и простой интерфейс сайта поможет найти максимально исчерпывающие ответы по интересующей теме. Чтобы получить наиболее развернутый ответ, можно просмотреть другие, похожие вопросы в категории Алгебра, воспользовавшись поисковой системой, или ознакомиться с ответами других пользователей. Для расширения границ поиска создайте новый вопрос, используя ключевые слова. Введите его в строку, нажав кнопку вверху.

(Возьму в скобки, чтобы было понятней, чтоб ничего не смешалось. ) (с — 2z / 3c + 6z) + (5c / c + 6z) = = (c — 2z / 3c + 6z) + (3•5c / 3c + 6z) = = (c — 2z / 3c + 6z) + (15c / 3c + 6z) = = c — 2z + 15 / 3c + 6z. Всё.

Диагонали прямоугольника в точке пересечения делятся пополам Значит ОС = 1 2 АС = 14 2 = 7 см Диагонали прямоугольника равны Значит ВО + ОС = 7 см РΔ ВОС = 11 + 7 + 7 = 25 см.

Вас прошу только помочь с построением ряда распределения случайной величины. Сумма очков очевидно может меняться от 3 до 18, но как найти промежуточные значения? не перебором ведь всех возможных вариантов. и даже если перебором (3,4,5,6,7. 18), то по какой тогда формуле найти вероятность этой случайной величины?

Бросают 2 игральные кости. Найти вероятности для разных сумм очков
Бросают две игральные кости. Найти вероятность того, что : а) сумма очков будет больше, чем их.

Бросают три игральные кости. Найти вероятность того, что на каждой из них выпало 6 очков, если известно, что
Здравствуйте, уважаемые форумчане! Помогите, пожалуйста, решить задачу по теории вероятностей.

Закон распределения и математическое ожидание суммы очков
закон распределения количества очков, которые выбивает первый стрелок при одном выстреле, даётся.

Зачем Вы хотите искать ряд распределения? Не вижу, чтобы это требовалось в условии задачи. Если бы бросали не три, а тридцать три игральные кости, тоже понадобился бы ряд распределения суммы?

Используйте свойства математического ожидания и дисперсии.

Случайная величина Xi — число очков, выпавших на i-й кости. (i=1,2,3) \Чему равны ее мат. ожидание и дисперсия?

как связана ваша с.в. из условия, допустим, Y с этими тремя с.в.?

Сообщение от rahim

Зачем Вы хотите искать ряд распределения? Не вижу, чтобы это требовалось в условии задачи. Если бы бросали не три, а тридцать три игральные кости, тоже понадобился бы ряд распределения суммы?

Используйте свойства математического ожидания и дисперсии.

Эмм. просто мы мат.ожидание находим через рЯд распределения (как сумма произведений случ.величины на соответствующую вероятность) А может мы типа должны были здесь проявить сообразительность а через какое свойство? просто когда обратишься, вроде как подсказку конкретную хочешь, а вы начинаете загадками говорить якобы какова вероятность того, что она отгадает сию загадку))

Ааа, сорри! Там есть задание дальше, чтобы для всех этих задач (другие я решила ) построить функцию распределения случайной величины. Ведь для нее то точно ряд распределения нужен??

Ответ:

dfrac{7}{2}n

Объяснение:

Для каждого кубика зададим СВ X_i: число выпавших на кубике очков.

Тогда искомое матожидание можно записать как E(X_1+X_2+...+X_n)

Но матожидание суммы СВ равно сумме матожиданий:

E(X_1+X_2+...+X_n)=E(X_1)+E(X_2)+...+E(X_n)

Очевидно, распределения величин X_i совпадают (кубики одинаковы).

Тогда и их матожидания совпадают: E(X_1)+E(X_2)+...+E(X_n)=nE(X_1)

Найдем матожидание для кубика:

СВ может принять одно из 6 значений 1,2,3,4,5,6 с равной вероятностью. А тогда эта вероятность равна dfrac{1}{6} , откуда E(X_1)=dfrac{1}{6}(1+2+3+4+5+6)=dfrac{21}{6}=dfrac{7}{2}

Тогда искомое матожидание равно dfrac{7}{2}n

Лекция 7.

Основные числовые характеристики
дискретных и непрерывных случайных
величин: математическое ожидание,
дисперсия и среднее квадратическое
отклонение. Их свойства и примеры.

Закон распределения (функция распределения
и ряд распределения или плотность
веро-ятности) полностью описывают
поведение случайной величины. Но в ряде
задач доста-точно знать некоторые
числовые характеристики исследуемой
величины (например, ее среднее значение
и возможное отклонение от него), чтобы
ответить на поставленный во-прос.
Рассмотрим основные числовые характеристики
дискретных случайных величин.

Математическое
ожидание.

Определение 7.1. Математическим
ожиданием
дискретной случайной
величины называ-ется сумма произведений
ее возможных значений на соответствующие
им вероятности:

М(Х) = х1р1
+ х2р2 + … + хпрп
.
(7.1)

Если число возможных значений случайной
величины бесконечно, то
,
если полученный ряд сходится абсолютно.

Замечание 1. Математическое ожидание
называют иногда взвешенным средним,
так как оно приближенно равно среднему
арифметическому наблюдаемых значений
случайной величины при большом числе
опытов.

Замечание 2. Из определения
математического ожидания следует, что
его значение не меньше наименьшего
возможного значения случайной величины
и не больше наибольше-го.

Замечание 3. Математическое ожидание
дискретной случайной величины есть
неслучай-ная (постоянная) величина.
В дальнейшем увидим, что это же справедливо
и для непре-рывных случайных величин.

Пример 1. Найдем математическое ожидание
случайной величины Х – числа
стандартных деталей среди трех, отобранных
из партии в 10 деталей, среди которых 2
бракованных. Составим ряд распределения
для Х. Из условия задачи следует,
что Х может принимать значения 1, 2,
3.

Тогда

Пример 2. Определим математическое
ожидание случайной величины Х
числа бросков монеты до первого появления
герба. Эта величина может принимать
бесконечное число значений (множество
возможных значений есть множество
натуральных чисел). Ряд ее распределения
имеет вид:

Х

1

2

п

р

0,5

(0,5)2

(0,5)п

Тогда
..+

+
(при вычислении дважды использовалась
формула суммы бесконечно убывающей
геометрической прогрессии:
,
откуда
).

Свойства
математического ожидания.

  1. Математическое ожидание постоянной
    равно самой постоянной:

М(С) = С.
(7.2)

Доказательство. Если рассматривать С
как дискретную случайную величину,
принимающую только одно значение С
с вероятностью р = 1, то М(С)
= С·1 = С.

  1. Постоянный множитель можно выносит за
    знак математического ожидания:

М(СХ) = С М(Х).
(7.3)

Доказательство. Если случайная величина
Х задана рядом распределения

xi

x1

x2

xn

pi

p1

p2

pn

то ряд распределения для СХ имеет
вид:

Сxi

Сx1

Сx2

Сxn

pi

p1

p2

pn

Тогда М(СХ) = Сх1р1
+ Сх2р2 + … + Схпрп
= С( х1р1 + х2р2
+ … + хпрп) =
СМ(Х).

Определение 7.2. Две случайные величины
называются независимыми, если закон
распределения одной из них не зависит
от того, какие значения приняла другая.
В противном случае случайные величины
зависимы.

Определение 7.3. Назовем произведением
независимых случайных величин
Х
и
Y случайную
величину XY, возможные
значения которой равны произведениям
всех возможных значений Х на все
возможные значения Y,
а соответствующие им вероят-ности равны
произведениям вероятностей сомножителей.

  1. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY)
= M(X)M(Y).
(7.4)

Доказательство. Для упрощения вычислений
ограничимся случаем, когда Х и Y
принимают только по два возможных
значения:

xi

x1

x2

pi

p1

p2

уi

у1

у2

gi

g1

g2

Тогда ряд распределения для XY
выглядит так:

ХY

x1y1

x2y1

x1y2

x2y2

p

p1g1

p2
g1

p1g2

p2g2

Следовательно, M(XY)
= x1y1·p1g1
+ x2y1·p2g1
+ x1y2·p1g2
+ x2y2·p2g2
= y1g1(x1p1
+ x2p2)
+ + y2g2(x1p1
+ x2p2)
= (y1g1
+ y2g2)
(x1p1
+ x2p2)
= M(XM(Y).

Замечание 1. Аналогично можно доказать
это свойство для большего количества
возможных значений сомножителей.

Замечание 2. Свойство 3 справедливо
для произведения любого числа независимых
случайных величин, что доказывается
методом математической индукции.

Определение 7.4. Определим сумму
случайных величин
Х и Y
как случайную величину Х + Y,
возможные значения которой равны суммам
каждого возможного значения Х с
каждым возможным значением Y;
вероятности таких сумм равны произведениям
вероятностей слагаемых (для зависимых
случайных величин – произведениям
вероятности одного слагаемого на
условную вероятность второго).

4) Математическое ожидание суммы двух случайных величин ( зависимых или незави-симых ) равно сумме математических ожиданий слагаемых:

M (X
+
Y) = M
(X) + M
(Y).
(7.5)

Доказательство.

Вновь рассмотрим случайные величины,
заданные рядами распределения,
приведен-ными при доказательстве
свойства 3. Тогда возможными значениями
X + Y
являются х1 + у1,
х1 + у2, х2
+ у1, х2 + у2.
Обозначим их вероятности соответственно
как р11, р12, р21
и р22. Найдем М( Х +Y
) = (x1 + y1)p11
+ (x1 + y2)p12
+ (x2 + y1)p21
+ (x2 + y2)p22
=

= x1(p11
+ p12)
+ x2(p21
+ p22)
+ y1(p11
+ p21)
+ y2(p12
+ p22).

Докажем, что р11 + р22
= р1. Действительно, событие,
состоящее в том, что X
+
Y примет значения
х1 + у1 или х1
+ у2 и вероятность которого
равна р11 + р22,
совпадает с событием, заключающемся в
том, что Х = х1 (его вероятность
р1). Аналогично дока-зывается,
что p21 + p22
= р2, p11
+ p21 = g1,
p12 + p22
= g2. Значит,

M(X
+ Y
) = x1p1
+ x2p2
+ y1g1
+ y2g2
= M (X)
+ M (Y).

Замечание. Из свойства 4 следует,
что сумма любого числа случайных величин
равна сумме математических ожиданий
слагаемых.

Пример. Найти математическое ожидание
суммы числа очков, выпавших при броске
пяти игральных костей.

Найдем математическое ожидание числа
очков, выпавших при броске одной кости:

М(Х1) = (1 + 2 + 3 + 4 + 5 + 6)
Тому же числу равно математическое
ожидание числа очков, выпавших на любой
кости. Следовательно, по свойству 4
М(Х)=

Дисперсия.

Для того, чтобы иметь представление о
поведении случайной величины, недостаточно
знать только ее математическое ожидание.
Рассмотрим две случайные величины: Х
и Y, заданные рядами
распределения вида

Х

49

50

51

р

0,1

0,8

0,1

Y

0

100

p

0,5

0,5

Найдем М(Х) = 49·0,1 + 50·0,8 + 51·0,1 = 50,
М(Y) = 0·0,5 + 100·0,5 =
50. Как видно, мате-матические ожидания
обеих величин равны, но если для Х
М
(Х) хорошо описывает пове-дение
случайной величины, являясь ее наиболее
вероятным возможным значением (при-чем
остальные значения ненамного отличаются
от 50), то значения Y
существенно отсто-ят от М(Y).
Следовательно, наряду с математическим
ожиданием желательно знать, на-сколько
значения случайной величины отклоняются
от него. Для характеристики этого
показателя служит дисперсия.

Определение 7.5. Дисперсией
(рассеянием)
случайной величины
называется математи-ческое ожидание
квадрата ее отклонения от ее математического
ожидания:

D(X)
= M (X
M(X))².
(7.6)

Пример.

Найдем дисперсию случайной величины Х
(числа стандартных деталей среди
отобранных) в примере 1 данной лекции.
Вычислим значения квадрата отклонения
каждого возможно-го значения от
математического ожидания:

(1 – 2,4)2 = 1,96; (2 – 2,4)2 = 0,16; (3 –
2,4)2 = 0,36. Следовательно,

Замечание 1. В определении дисперсии
оценивается не само отклонение от
среднего, а его квадрат. Это сделано для
того, чтобы отклонения разных знаков
не компенсировали друг друга.

Замечание 2. Из определения дисперсии
следует, что эта величина принимает
только неотрицательные значения.

Замечание 3. Существует более удобная
для расчетов формула для вычисления
дисперсии, справедливость которой
доказывается в следующей теореме:

Теорема 7.1. D(X)
= M(X
²) – M ²(X).
(7.7)

Доказательство.

Используя то, что М(Х) – постоянная
величина, и свойства математического
ожидания, преобразуем формулу (7.6) к
виду:

D(X)
= M(X
M(X))²
= M(X²
– 2X·M(X)
+ M²(X))
= M(X²)
– 2M(XM(X)
+ M²(X)
=

= M(X²)
– 2M²(X)
+ M²(X)
= M(X²)
M²(X),
что и требовалось доказать.

Пример. Вычислим дисперсии случайных
величин Х и Y,
рассмотренных в начале этого раздела.
М(Х) = (492·0,1 + 502·0,8 +
512·0,1) – 502 = 2500,2 – 2500 = 0,2.

М(Y) = (02·0,5
+ 100²·0,5) – 50² = 5000 – 2500 =
2500. Итак, дисперсия второй случайной
величины в несколько тысяч раз больше
дисперсии первой. Таким образом, даже
не зная законов распределения этих
величин, по известным значениям дисперсии
мы можем утверждать, что Х мало
отклоняется от своего математического
ожидания, в то время как для Y
это отклонение весьма существенно.

Свойства
дисперсии.

  1. Дисперсия постоянной величины С
    равна нулю:

D
(C) = 0.
(7.8)

Доказательство. D(C)
= M((C
M(C))²)
= M((C
C)²) = M(0)
= 0.

  1. Постоянный множитель можно выносить
    за знак дисперсии, возведя его в квадрат:

D(CX)
= C²D(X).
(7.9)

Доказательство. D(CX)
= M((CX
M(CX))²)
= M((CX
CM(X))²)
= M(C²(X
M(X))²)
=

= C²D(X).

  1. Дисперсия суммы двух независимых
    случайных величин равна сумме их
    дисперсий:

D(X
+
Y) = D(X)
+ D(Y).
(7.10)

Доказательство. D(X
+ Y
) = M(X²
+ 2XY +
Y²) –
(M(X)
+ M(Y))²
= M(X²)
+ 2M(X)M(Y)
+

+ M(Y²)
M²(X)
– 2M(X)M(Y)
M²(Y)
= (M(X²)
M²(X))
+ (M(Y²)
M²(Y))
= D(X)
+ D(Y).

Следствие 1. Дисперсия суммы нескольких
взаимно независимых случайных величин
равна сумме их дисперсий.

Следствие 2. Дисперсия суммы постоянной
и случайной величин равна дисперсии
случайной величины.

  1. Дисперсия разности двух независимых
    случайных величин равна сумме их
    дисперсий:

D(X
Y) = D(X)
+ D(Y).
(7.11)

Доказательство. D(X
– Y
) = D(X)
+ D(-Y)
= D(X)
+ (-1)²D(Y)
= D(X)
+ D(X).

Дисперсия дает среднее значение квадрата
отклонения случайной величины от
среднего; для оценки самого отклонения
служит величина, называемая средним
квадратическим отклонением.

Определение 7.6. Средним квадратическим
отклонением
σ случайной величины Х
называется квадратный корень из
дисперсии:

.
(7.12)

Пример. В предыдущем примере средние
квадратические отклонения Х и Y
равны соответственно

Добавить комментарий