Как найти матрицу обратную к произведению матриц

Содержание:

Теоремы существования и единственности обратной матрицы:

Рассмотрим квадратную матрицу:

Обратная матрица - определение и нахождение с примерами решения

Определение 4.1.1. Матрица, которая в результате умножения на матрицу А, равна единичной матрице Е, называется обратной А и обозначается Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения.

Отметим, что если А и В квадратные матрицы одного порядка, то определитель Обратная матрица - определение и нахождение с примерами решения произведения матриц равен произведению

определителей множителейОбратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения

Теорема 4.1.1. (теорема существования). Для существования обратной матрицы необходимо и достаточно, чтобы матрица А была невырожденной, т. е. чтобы Обратная матрица - определение и нахождение с примерами решения .

Доказательство. Необходимость. Пусть обратная матрица Обратная матрица - определение и нахождение с примерами решения существует. Докажем, что Обратная матрица - определение и нахождение с примерами решения .

Так как обратная матрица существует, то Обратная матрица - определение и нахождение с примерами решения и Обратная матрица - определение и нахождение с примерами решения .Поскольку правая часть не равна нулю, то ни один из множителей левой части не может быть равен нулю. Следовательно Обратная матрица - определение и нахождение с примерами решения, что означает, что матрица A невырожденная.

Достаточность. Пусть Обратная матрица - определение и нахождение с примерами решения, докажем, что обратная матрица существует.

Вычислим алгебраические дополнения Обратная матрица - определение и нахождение с примерами решения каждого элемента Обратная матрица - определение и нахождение с примерами решения в определителе D(A). Из полученных алгебраических дополнений построим матрицу:

Обратная матрица - определение и нахождение с примерами решения

Матрица С называется союзной, или присоединенной, по отношению к матрице А, причем в i-й строке союзной матрицы С стоят алгебраические дополнения элементов i-го столбца матрицы А. Составим произведение матриц С и А, тогда элемент произведения, стоящий в i-й строке и k-м столбце, равен Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения. На основании теоремы разложения сумма произведений элементов определителя на их алгебраические дополнения равна величине определителя. А сумма парных произведений какого-нибудь ряда определителя на алгебраические дополнения параллельного ряда равна нулю (см. теорему аннулирования). Значит, все недиагональные элементы матрицы АС равны нулю, а диагональные равны D(A), следовательно:

Обратная матрица - определение и нахождение с примерами решения (4.1.1)

Так как Обратная матрица - определение и нахождение с примерами решения, то равенство (4.1.1) можно умножить на скаляр Обратная матрица - определение и нахождение с примерами решения. Получим:

Обратная матрица - определение и нахождение с примерами решения

Тогда матрица Обратная матрица - определение и нахождение с примерами решениябудет обратной для матрицы А. Теорема доказана.

Сформулируем алгоритм нахождения обратной матрицы:.

  1. Вычислите определитель Обратная матрица - определение и нахождение с примерами решенияисходной квадратной матрицы
  2. Если определитель равен нулю, то исходная матрица не имеет обратной; если определитель не равен нулю, то переходите ко второму шагу.
  3. Вычислите алгебраические дополнения элементов определителя исходной матрицы.
  4. Составьте присоединенную матрицу С, записав алгебраические дополнения элементов строк в столбцы.
  5. Умножьте элементы присоединенной матрицы на обратную величину определителя Обратная матрица - определение и нахождение с примерами решения исходной матрицы, тем самым постройте обратную матрицу Обратная матрица - определение и нахождение с примерами решения .
  6. Выполните проверку, т. е. рассмотрите произведение Обратная матрица - определение и нахождение с примерами решения или Обратная матрица - определение и нахождение с примерами решения. Должны получить единичную матрицу.

Этот алгоритм можно представить в виде следующей схемы:

Обратная матрица - определение и нахождение с примерами решения

Теорема 4.1.2. (теорема единственности). Для каждой неособенной матрицы А существует единственная обратная матрица.

Доказательство. Допустим, что наряду с обратной матрицей Обратная матрица - определение и нахождение с примерами решения существует другая обратная матрица Обратная матрица - определение и нахождение с примерами решения. Тогда по определению Обратная матрица - определение и нахождение с примерами решения. Умножая обе части этого равенства слева на Обратная матрица - определение и нахождение с примерами решения, получим Обратная матрица - определение и нахождение с примерами решения.

Поскольку Обратная матрица - определение и нахождение с примерами решения, тоОбратная матрица - определение и нахождение с примерами решения, а это значит, что Обратная матрица - определение и нахождение с примерами решения. Теорема доказана.

Вычислив определители левой и правой частей равенства Обратная матрица - определение и нахождение с примерами решения, получим Обратная матрица - определение и нахождение с примерами решения, следовательно Обратная матрица - определение и нахождение с примерами решения то есть определители матриц Обратная матрица - определение и нахождение с примерами решения взаимно обратные.

Замечание. Формула Обратная матрица - определение и нахождение с примерами решения позволяет найти явные выражения для элементов обратной матрицы через элементы матрицы А (см. алгоритм 1). Однако построение союзной матрицы очень трудоемкая операция при больших размерностях матриц. Поэтому доказанная формула, в большей мере, важна в теоретическом отношении.

Свойства обратной матрицы. Подобная матрица

Укажем некоторые свойства обратной матрицы:

  1. Обратная матрица является невырожденной, т.е. Обратная матрица - определение и нахождение с примерами решения.
  2. Обратной матрице Обратная матрица - определение и нахождение с примерами решения будет матрица Обратная матрица - определение и нахождение с примерами решения .
  3. Обратная к транспонированной матрице равна транспонированной обратной матрице: Обратная матрица - определение и нахождение с примерами решения .
  4. Если матрица А симметрическая, то такой же будет обратная матрица: Обратная матрица - определение и нахождение с примерами решения.
  5. Матрица, обратная к произведению матриц, равна произведению обратных матриц, взятых в обратном порядке при условии, что обратные матрицы существуют: Обратная матрица - определение и нахождение с примерами решения.
  6. Если А такова, что обратная к ней матрица равна транспонированной матрице А, то говорят, что А – ортогональная матрица и Обратная матрица - определение и нахождение с примерами решения.
  7. Обратная для блочной квазидиагональной матрицы равна квазидиагональной матрице, состоящей из обратных матриц диагональных клеток:Обратная матрица - определение и нахождение с примерами решения

Понятие обратной матрицы позволяет ввести следующее определение:

Определение 4.2.1. Квадратная матрица А называется подобной матрице В, если существует невырожденная матрица Т, для

которой выполняется равенство Обратная матрица - определение и нахождение с примерами решения.

Говорят, что матрица А трансформируется в матрицу В при помощи матрицы Т.

Отношение подобия обладает тремя основными свойствами:

  • а) рефлексивности: А подобна А;
  • б) симметричности: если А подобна В, то и В подобна А;
  • в) транзитивности: если А подобна В и В подобна С, то и А подобна С.

Приложения обратной матрицы в экономических исследованиях

Применение обратных матриц в экономических исследованиях столь многочисленно и разнообразно, что мы приведём отдельные примеры использования обратной матрицы в экономических исследованиях.

Пример:

Предположим, что затраты времени оборудования при выпуске изделий пропорциональны количеству готовых изделий и пусть известна квадратная матрица Т норм затрат времени оборудования на различные изделия на различных типах оборудования. Если задана матрица-столбец А затрат времени на различных типах оборудования, необходимое для выполнения производственной профаммы, то определение возможного выпуска готовых изделий X осуществляется с использованием обратной матрицы Обратная матрица - определение и нахождение с примерами решения :

  • Обратная матрица - определение и нахождение с примерами решения

Валовой выпуск продукции X также можно определить, зная матрицу Z норм затрат рабочего времени рабочих различных категорий и фонд рабочего времени F по категориям рабочих, вычислив произведение обратной матрицы Обратная матрица - определение и нахождение с примерами решения на F, т.е. Обратная матрица - определение и нахождение с примерами решения.

Пример:

Рассмотрим четырёхсскторнос описание экономики, в котором выделены две отрасли: сельское хозяйство и промышленность, один первичный фактор производства – труд и государственный сектор, который потребляет продукцию обеих отраслей и использует труд. Государственный сектор ничего не производит для экономики и его потребление представляет собой конечный спрос на товары, производимые в этих секторах. В процессе производства каждая отрасль потребляет некоторое количество продукции другой, отрасли, а также труд; рабочая сила нуждается в продукции обеих отраслей и, наряду с этим, в затратах труда для своего воспроизводства. Трудовые ресурсы могут быть свободно импортированы и экспортированы, таким образом, никогда не может быть безработицы или излишнего спроса на труд. Основной капитал и запасы продукции поддерживаются на одном и том же уровне в течение всего периода. Наблюдая за потоками продукции между четырьмя секторами экономики составим таблицу «затраты-выпуск», табл.4.3.1.

Таблица 4.3.1

Обратная матрица - определение и нахождение с примерами решения

Сумма показателей в строках даёт общий выпуск каждой отрасли и суммарное число занятых. Суммы показателей по столбцам показывают затраты данного сектора, необходимые для производства всего объёма продукции. Следовательно, каждый столбец описывает производственную функцию данного сектора. Так, например, первый столбец характеризует основной производственный процесс, который в текущем периоде применяется в сельском хозяйстве. Для производства 520 т продукции сельского хозяйства требуется 120 т сельскохозяйственной продукции, 200 машин и 160 работников. Определим валовой выпуск продукции для конечного спроса, определяемого матрицей-столбцом: Обратная матрица - определение и нахождение с примерами решения.

Решение:

Пусть Обратная матрица - определение и нахождение с примерами решения– валовой выпуск продукции i,i=1,2,3; а Обратная матрица - определение и нахождение с примерами решения-конечный спрос на продукцию /. Валовой выпуск каждого вида продукции должен быть равен сумме продукции, использованной при производстве всех видов продукции, плюс конечный спрос на эту же продукцию:

Обратная матрица - определение и нахождение с примерами решения

гдеОбратная матрица - определение и нахождение с примерами решения– количество продукции i, используемое при производстве единицы продукции j. В матричном обозначении получим:

X = AX + Y, (4.3.1)

где X, Y- матрицы столбцы, а А- матрица коэффициентов прямых затрат. Все её элементы неотрицательны.

Воспользовавшись алгебраическими операциями над матрицами, перепишем уравнение (4.3.1) в виде: EX – АХ = Y, (E-A)X = Y. Умножив последнее матричное уравнение слева на обратную матрицу Обратная матрица - определение и нахождение с примерами решения получаем матричное уравнение для определения матрицы-столбца валового выпуска продукции:

Обратная матрица - определение и нахождение с примерами решения. (4.3.2)

Следовательно, для определения валового выпуска продукции X в новом периоде нам нужно последовательно определить элементы матрицы А, Е-А и обратной матрицы Обратная матрица - определение и нахождение с примерами решения. Элементы матрицы А определим воспользовавшись предположением о пропорциональной зависимости между затратами и объёмами производства, т.е. линейными однородными функциями производственных затрат: Обратная матрица - определение и нахождение с примерами решения. Тогда элементы матрицы А определим из разноств: Обратная матрица - определение и нахождение с примерами решения Выполнив вычисления (разделив элементы первого столбца таблицы 4.3.1 на 520, второго – на 640, третьего – на 490), получаем матрицу А:

Обратная матрица - определение и нахождение с примерами решения

Далее вычисляем элементы матрицы Е-А: Обратная матрица - определение и нахождение с примерами решения

вычисляем определитель Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения

и алгебраические дополнения элементов матрицы (Е-А):

Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения

Составляем из алгебраических дополнений присоединённую матрицу С:

Обратная матрица - определение и нахождение с примерами решения

и вычисляем элементы обратной матрицы Обратная матрица - определение и нахождение с примерами решения:

Обратная матрица - определение и нахождение с примерами решения

Тогда в силу (4.3) находим валовой выпуск продукции: Обратная матрица - определение и нахождение с примерами решения

Таким образом, для удовлетворения новых показателей спроса необходимо будет произвести приблизительно 1042 т продукции сельского хозяйства, 1280 машин и нанять 1119 работников.

Особенности матриц в ценностном и натуральном выражении

Матрица коэффициентов прямых материальных затрат А, рассмотренная нами в примере предыдущего пункта, относится к классу неотрицательных матриц, так как матрица-столбец Обратная матрица - определение и нахождение с примерами решения должна быть неотрицательна.

Определение 4.4.1. Если решение системы (4.3.1) сществует для любой неотрицательной матрицы Y конечного спроса, то матрица А называется продуктивной.

Поэтому элементы матрицы А не могут принимать произвольные положительные значения. Все диагональные элементы матрицы А должны быть меньше единицы. В противном случае производство лишается всякого смысла (если Обратная матрица - определение и нахождение с примерами решения, то Обратная матрица - определение и нахождение с примерами решения). Произведение коэффициентов, симметричных относительно главной диагонали, должно быть также меньше единицы: Обратная матрица - определение и нахождение с примерами решения. Указанные ограничения на значения элементов матрицы А не зависят от единиц измерения. Однако в общем случае выбор единиц измерения существенно влияет на анализ свойств матриц межотраслевого баланса. Для матриц межотраслевого баланса в ценностном выражении обычно выполняются условия Обратная матрица - определение и нахождение с примерами решения • Если же для некоторой k-и отрасли Обратная матрица - определение и нахождение с примерами решения, то экономически это означает, что данная отрасль настолько убыточна, что её убытки перекрывают расходы на амортизацию и оплату труда.

Так как норму матрицы А можно определить по формуле

Обратная матрица - определение и нахождение с примерами решения, то при условии что Обратная матрица - определение и нахождение с примерами решения норма матрицы А меньше единицы, т.е. Обратная матрица - определение и нахождение с примерами решения.

Если норма матрицы А меньше единицы, то

  • 1) Обратная матрица - определение и нахождение с примерами решения;
  • 2) Обратная матрица - определение и нахождение с примерами решения;
  • 3) Обратная матрица - определение и нахождение с примерами решения;
  • 4) все собственные Обратная матрица - определение и нахождение с примерами решения матрицы А по модулю меньше единицы, а наибольшее собственное значение положительно (теорема Фрабеииуса-Перропа);
  • 5) все главные Обратная матрица - определение и нахождение с примерами решения матрицы (Е – А) положительны и меньше единицы.

Отметим, что в матрицах межотраслевого баланса в натуральном выражении условия Обратная матрица - определение и нахождение с примерами решения, практически никогда не выполняются. Более того, многие элементы этих матриц больше единицы. Однако можно подобрать такие новые измерители (матрицу T), что для подобной матрицы Обратная матрица - определение и нахождение с примерами решения будет выполняться Обратная матрица - определение и нахождение с примерами решения и следствия из него.

Подобные матрицы имеют равные по величине собственные значения и главные миноры;

Для продуктивности матрицы А необходимо и достаточно, чтобы выполнялось одно из приведенных ниже условий:

  1. Все главные миноры матрицы (Е – А) положительны и меньше единицы.
  2. Все собственные значения матрицы А по модулю меньше единицы.
  3. Матрица Обратная матрица - определение и нахождение с примерами решения полуположительна.

Условие Обратная матрица - определение и нахождение с примерами решенияявляется достаточным для продуктивностн матрицы А.

Матрица Обратная матрица - определение и нахождение с примерами решения называется матрицей коэффициентов полных затрат, а её элементы- коэффициентами полных затрат. Они Обратная матрица - определение и нахождение с примерами решения показывают, какой должен быть валовой выпуск i-Й отрасли для того, чтобы обеспечить выпуск единицы конечного продукта j-й отрасли.

Коэффициенты полных затрат Обратная матрица - определение и нахождение с примерами решенияне меньше коэффициентов прямых затрат: Обратная матрица - определение и нахождение с примерами решения так как они характеризуют совокупность прямых и косвенных затрат.

Вернёмся к примеру 1.12 и проанализируем матрицы коэффициентов прямых затрат А и полных затрат Обратная матрица - определение и нахождение с примерами решения:

Обратная матрица - определение и нахождение с примерами решения

Элементы матрицы А удовлетворяют условиям:

Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения

4) норма матрицы Обратная матрица - определение и нахождение с примерами решения

Обратная матрица - определение и нахождение с примерами решения

Значит матрица А является продуктивной и для неё существует обратная матрица Обратная матрица - определение и нахождение с примерами решения , называемая матрицей полных затрат.

Из вида матрицы В следует, что все коэффициенты полных затрат Обратная матрица - определение и нахождение с примерами решения. Например, элементы первого столбца матрицы В показывают, что для того чтобы произвести единицу конечной продукции сельского хозяйства нужно произвести 2,222 единиц сельского хозяйства, 1,766 единиц промышленности и занять 1,845 работников.

Определение обратной матрицы

Рассмотрим квадратную матрицу

Обратная матрица - определение и нахождение с примерами решения

Обозначим Обратная матрица - определение и нахождение с примерами решения

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Обратная матрица - определение и нахождение с примерами решения

Квадратная матрица В называется обратной для квадратной матрицы А того же порядка, если их произведение Обратная матрица - определение и нахождение с примерами решения – единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Матрица, обратная матрице А, обозначается через Обратная матрица - определение и нахождение с примерами решения так чтоОбратная матрица - определение и нахождение с примерами решения

Обратная матрица вычисляется по формуле Обратная матрица - определение и нахождение с примерами решения где Обратная матрица - определение и нахождение с примерами решения – алгебраические дополнения элементов Обратная матрица - определение и нахождение с примерами решения

Вычисление обратной матрицы по формуле (4.5) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить обратную матрицу с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ее ранга можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

  • Заказать решение задач по высшей математике

Пример:

Для матрицы Обратная матрица - определение и нахождение с примерами решения найти обратную.

Решение:

Находим сначала детерминант матрицы А:

Обратная матрица - определение и нахождение с примерами решения

значит, обратная матрица существует и мы ее можем найти по формуле: Обратная матрица - определение и нахождение с примерами решения – алгебраические дополнения элементовОбратная матрица - определение и нахождение с примерами решения исходной матрицы. Обратная матрица - определение и нахождение с примерами решения откуда Обратная матрица - определение и нахождение с примерами решения

Пример:

Методом элементарных преобразований найти обратную матрицу для матрицы: Обратная матрица - определение и нахождение с примерами решения

Решение:

Приписываем к исходной матрице справа единичную матрицу того же порядка: Обратная матрица - определение и нахождение с примерами решения

С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей. Для этого поменяем местами первый и второй столбцы: Обратная матрица - определение и нахождение с примерами решения

К третьему столбцу прибавим первый, а ко второму – первый, умноженный на -2:

Обратная матрица - определение и нахождение с примерами решения

Из первого столбца вычтем удвоенный второй, а из третьего – умноженный на 6 второй; Обратная матрица - определение и нахождение с примерами решения

Прибавим третий столбец к первому и второму: Обратная матрица - определение и нахождение с примерами решения

Умножим последний столбец на -1: Обратная матрица - определение и нахождение с примерами решения

Полученная справа от вертикальной черты квадратная матрица является обратной к данной матрице А. Итак, Обратная матрица - определение и нахождение с примерами решения

Что такое обратная матрица и как её решать

Квадратная матрица, у которой все элементы вне главной диагонали равны нулю, называется диагональной.

Диагональная матрица, элементы Обратная матрица - определение и нахождение с примерами решения которой равны единице, называется единичной матрицей. Обозначение: Е.

Пусть А – квадратная матрица порядка n. Матрица Обратная матрица - определение и нахождение с примерами решения называется обратной к А, если выполнены равенства

Обратная матрица - определение и нахождение с примерами решения

где Е – единичная матрица порядка n.

Внимание! Обратная матрица существует только для невырожденной квадратной матрицы.

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной. В противном случае матрица называется вырожденной.

Теорема:

Для невырожденной матрицы Обратная матрица - определение и нахождение с примерами решения существует единственная обратная матрица

Обратная матрица - определение и нахождение с примерами решения

где Обратная матрица - определение и нахождение с примерами решения – алгебраические дополнения элементов Обратная матрица - определение и нахождение с примерами решения матрицы А.

Пример:

Найти матрицу X из матричного уравнения АХ=В, где Обратная матрица - определение и нахождение с примерами решения

Решение:

Умножим уравнение АХ=В на Обратная матрица - определение и нахождение с примерами решения слева:

Обратная матрица - определение и нахождение с примерами решения

Найдем Обратная матрица - определение и нахождение с примерами решения Обратная матрица к А существует, т.к. матрица А невырожденная:

Обратная матрица - определение и нахождение с примерами решения

Вычислим алгебраические дополнения элементов матрицы А:

Обратная матрица - определение и нахождение с примерами решения

Следовательно,

Обратная матрица - определение и нахождение с примерами решения

Произведение матриц Обратная матрица - определение и нахождение с примерами решения существует, т.к. количество столбцов матрицы А равно количеству строк матрицы В и равно 3. Найдем его: Обратная матрица - определение и нахождение с примерами решения

  • Ранг матрицы – определение и вычисление
  • Определители второго и третьего порядков и их свойства
  • Метод Гаусса – определение и вычисление
  • Прямая линия на плоскости и в пространстве
  • Определённый интеграл
  • Кратный интеграл
  • Ряды в математике
  • Дифференциальные уравнения с примерами
  1. Обратная матрица для произведения матриц.

  1. Решение систем линейных уравнений с помощью обратной матрицы.

Рассмотрим
линейную систему (2.3):

и введем следующие обозначения:



матрица системы,


столбец неизвестных,



столбец свободных членов. Тогда систему
(2.3) можно записать в виде матричного
уравнения: АХ = В. (3.1)

Пусть
матрица А – невырожденная, тогда
существует обратная к ней матрица

Умножим
обе части равенства (3.1) слева на

Получим:

Но

тогда

,
а поскольку

(3.2)

Итак,
решением
матричного уравнения (3.1) является
произведение матрицы, обратной к А, на
столбец свободных членов системы (2.3).

  1. Вычисление обратной матрицы с помощью элементарных преобразований.

(берём
матрицу и считаем: складываем, вычитаем,
умножаем)

  1. Собственные числа и собственные столбцы матрицы.

Если

и

,
то λ – собственное значение,

– собственный вектор

  1. Характеристический многочлен.

Выберем
базис и обозначим через А матрицу
линейного преобразования А в этом
базисе. Тогда преобразование А-λЕ имеет
матрицу А-λЕ, и его ядро отлично от нуля
тогда и только тогда, когда


(1)

Равенство,
рассматриваемое как условие на λ ,
называется характеристическим
уравнением
матрицы
А, а его корни – характеристическими
числами

матрицы А. Разумеется, в вещественном
пространстве в качестве множителей
допускаются только вещественные числа,
и собственные значения должны быть
вещественными. В соответствии с этим
имеет место

Теорема.
В
комплексном пространстве все корни
характеристического уравнения и только
они являются собственными значениями.
В вещественном пространстве то же
справедливо для вещественных корней
характеристического уравнения.

Левая
часть характеристического уравнения
представляет собой многочлен степени
n.
Детерминант равен алгебраической сумме
произведений, в каждое из которых входит
по n
элементов матрицы. Содержат λ только
элементы, стоящие на главной диагонали.
Существует одно произведение

,
(2)

в
котором все сомножители содержат λ.
Если в какое-нибудь другое произведение
вошел сомножитель

,

то
в него не могут войти сомножители

и


.
Поэтому каждый член суммы, кроме (2),
содержит λ в степени не выше, чем n-2.
Раскрывая скобки в выражении (2), выпишем
два члена со старшими степенями λ:


.

Эти
же члены будут старшими во всем многочлене.
Свободный член многочлена равен его
значению при λ=0, а это значение равно
det(A-0E)=det
A.
Таким образом:

Этот
многочлен называется характеристическим
многочленом матрицы

А.

  1. Собственные числа вещественной симметричной матрицы.

Вещественное
число λ и вектор z называются собственной
парой матрицы A, если они удовлетворяют
следующему условию: Az = λz. При этом для
вещественной матрицы A может быть
поставлена задача поиска только
собственных чисел, или как собственных
чисел, так и векторов.

В
случае, если вещественная матрица A
размером NxN симметрична, у неё есть N
собственных чисел (не обязательно
различных) и N соответствующих им
собственных векторов, образующих
ортонормированный собственный базис
(в общем случае собственные векторы не
ортогональны, причем их может быть и
меньше, чем N).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Матрица BB является обратной матрицей к квадратной матрице AA, если AB=BA=EAB = BA = E.
Из определения можно понять, что обратная матрица BB будет квадратной матрицей аналогичного порядка, какой имеет матрица AA (иначе какое-либо из произведений ABAB или BABA будет не определено).
Обратная матрица для исходной матрицы AA определяется так: A−1A^{-1}. Можно утверждать, что если A−1A^{-1} существует, то AA−1=A−1A=EAA^{-1} = A^{-1} A= E.
Также легко видеть, что (A−1)−1=A(A^{-1})^{-1} = A.

Если детерминант матрицы является нулем, то обратную к ней матрицу нельзя получить.

Онлайн-калькулятор

Квадратную матрицу AA можно назвать вырожденной матрицей тогда, когда определитель матрицы AA равен нулю, и невырожденной, если определитель не равен нулю.

Важно

В том случае, если обратная матрица может существовать, то она будет единственной.

Формула для вычисления обратной матрицы

Обратную матрицу A−1A^{-1} к матрице AA можно найти по формуле:

A−1=1det⁡A⋅A∗A^{-1}=frac{1}{det A}cdot A^*

det⁡Adet A — определитель матрицы A,A,

A∗A^* — транспонированая матрица алгебраических дополнений к матрице A.A.

Задача 1

Нужно найти обратную матрицу для следующей матрицы:

A=(1−20 342 −131)A = begin{pmatrix}
1& -2 & 0\
3 & 4 & 2\
-1& 3& 1 \
end{pmatrix}

Решение

Вычислим детерминант:

det⁡A=∣1−20342−131∣=1∣4231∣−(−2)∣32−11∣+0∣34−13∣=8det A = begin{vmatrix}
1 & -2 & 0 \
3 & 4 & 2 \
-1 & 3 & 1 \
end{vmatrix} = 1 begin{vmatrix}
4 & 2 \
3 & 1 \
end{vmatrix} – (-2) begin{vmatrix}
3 & 2 \
-1 & 1 \
end{vmatrix} +0 begin{vmatrix}
3 & 4 \
-1 & 3 \
end{vmatrix} = 8

Так как det⁡A≠0det A neq 0, то матрица – невырожденная, и обратная для нее существует.

Посчитаем алгебраические дополнение:

A11=(−1)1+1∣4231∣=−2,A_{11} = (-1)^{1+1} begin{vmatrix}
4 & 2 \
3 & 1 \
end{vmatrix} = -2,

A12=(−1)1+2∣32−11∣=−5,A_{12} = (-1)^{1+2} begin{vmatrix}
3 & 2 \
-1 & 1 \
end{vmatrix} = -5,

A13=(−1)1+3∣34−13∣=13A_{13} = (-1)^{1+3} begin{vmatrix}
3 & 4 \
-1 & 3 \
end{vmatrix} = 13
,

A21=(−1)2+1∣−2031∣=2A_{21} = (-1)^{2+1} begin{vmatrix}
-2 & 0 \
3 & 1 \
end{vmatrix} = 2
,

A22=(−1)2+2∣10−11∣=1A_{22} = (-1)^{2+2} begin{vmatrix}
1 & 0 \
-1 & 1 \
end{vmatrix} = 1
,

A23=(−1)2+3∣1−2−13∣=−1A_{23} = (-1)^{2+3} begin{vmatrix}
1 & -2 \
-1 & 3 \
end{vmatrix} = -1
,

A31=(−1)3+1∣−2042∣=−4A_{31} = (-1)^{3+1} begin{vmatrix}
-2 & 0 \
4 & 2 \
end{vmatrix} = -4
,

A32=(−1)3+2∣1032∣=−2A_{32} = (-1)^{3+2} begin{vmatrix}
1 & 0 \
3 & 2 \
end{vmatrix} = -2
,

A33=(−1)3+3∣1−234∣=10.A_{33} = (-1)^{3+3} begin{vmatrix}
1 & -2 \
3 & 4 \
end{vmatrix} = 10.

Обратная матрица:

A−1=18(−22−4−51−213−110)A^{-1} = frac{1}{8} begin{pmatrix}
-2 & 2 & -4 \
-5 & 1 & -2 \
13 & -1 & 10 \
end{pmatrix}

Важно

Чтобы избежать ошибок, необходимо сделать проверку: для этого нужно посчитать произведение первоначальной матрицы на конечную. Если в результате получится единичная матрица, то вы нашли обратную матрицу безошибочно.

Задача 2

Найдите обратную матрицу для матрицы:

A=(13−25)A = begin{pmatrix}
1 & 3\
-2 & 5 \
end{pmatrix}

Решение

det⁡A=11≠0→A−1det A= 11 neq 0 rightarrow A^{-1} – существует.

A11=(−1)1+1⋅5=5A_{11} = (-1)^ {1+1} cdot 5 = 5,

A12=(−1)1+2⋅(−2)=2A_{12} = (-1)^ {1+2} cdot (-2) = 2,

A21=(−1)2+1⋅3=−3A_{21} = (-1)^ {2+1} cdot 3 = -3,

A22=(−1)2+2⋅1=1.A_{22} = (-1)^ {2+2} cdot 1 = 1.

Ответ:

A−1=111(5−321)A^{-1} = frac{1}{11} begin{pmatrix}
5 & -3 \
2 & 1 \
end{pmatrix}

Нами был рассмотрен способ нахождения матрицы с помощью алгебраических дополнений. Существует еще один способ, который называется методом элементарных преобразований.

Метод элементарных преобразований

Метод основан на элементарных преобразованиях матриц, под которыми будем понимать такие преобразования, в результате которых сохраняется эквивалентность матриц:

  1. перестановка местами любых двух рядов (строк или столбцов) матрицы;
  2. умножение любого ряда матрицы (строки или столбца) на некоторое число, отличное от нуля;
  3. прибавление к любому ряду (строке или столбцу) матрицы другого ряда (строки или столбца), умноженного на некоторое число, отличное от нуля.

Рассмотрим алгоритм нахождения обратной матрицы данным методом.

Алгоритм нахождения обратной матрицы методом элементарных преобразований

  1. Из исходной матрицы AA и единичной матрицы EE того же порядка составить расширенную матрицу, т.е. матрицу вида (A∣E)begin{pmatrix}A|Eend{pmatrix}.
  2. С помощью элементарных преобразований над строками расширенной матрицы получить единичную матрицу слева от черты: (E∣A−1)begin{pmatrix}E|A^{-1}end{pmatrix}.
  3. Выписать обратную матрицу, которая находится справа от черты.
Задача 1

Найти матрицу K−1K^{-1}, если K=(1301)K=begin{pmatrix}1&3\0&1end{pmatrix}.

Из матрицы KK второго порядка и единичной матрицы второго порядка составим расширенную матрицу:

(1301∣1001)begin{pmatrix}left.begin{matrix}1&3\0&1end{matrix}right|begin{matrix}1&0\0&1end{matrix}end{pmatrix}.

Произведем элементарные преобразования расширенной матрицы.

Прибавим к строке №1 строку №3, умноженную на -3:

(1301∣1001)∼(1001∣1−301)begin{pmatrix}left.begin{matrix}1&3\0&1end{matrix}right|begin{matrix}1&0\0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0\0&1end{matrix}right|begin{matrix}1&-3\0&1end{matrix}end{pmatrix}.

Слева получили единичную матрицу.

Выпишем обратную матрицу:

K−1=(1−301)K^{-1}=begin{pmatrix}1&-3\0&1end{pmatrix}.

Сделаем проверку, чтобы убедиться в том, что найденная матрица действительно является обратной.

K⋅K−1=(1301)⋅(1−301)=(1⋅1+3⋅01⋅(−3)+3⋅10⋅1+1⋅00⋅(−3)+1⋅1)=(1001)Kcdot K^{-1}=begin{pmatrix}1&3\0&1end{pmatrix}cdotbegin{pmatrix}1&-3\0&1end{pmatrix}=begin{pmatrix}1cdot1+3cdot0&1cdot(-3)+3cdot1\0cdot1+1cdot0&0cdot(-3)+1cdot1end{pmatrix}=begin{pmatrix}1&0\0&1end{pmatrix}.

Значит, обратная матрица найдена правильно.

Задача 2

Найти матрицу F−1F^{-1}, если F=(110010033)F=begin{pmatrix}1&1&0\0&1&0\0&3&3end{pmatrix}.

Из матрицы FF третьего порядка и единичной матрицы третьего порядка составим расширенную матрицу:

(110010033∣100010001)begin{pmatrix}left.begin{matrix}1&1&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}end{pmatrix}.

Произведем элементарные преобразования расширенной матрицы.

Прибавим к строке №1 строку №2, умноженную на -1:

(110010033∣100010001)∼(100010033∣1−10010001)begin{pmatrix}left.begin{matrix}1&1&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&0&1end{matrix}end{pmatrix}.

Прибавим к строке №3 строку №2, умноженную на -3:

(100010033∣1−10010001)∼(100010003∣1−100100−31)begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&3&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&0&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-3&1end{matrix}end{pmatrix}.

Умножим строку №3 на 13frac{1}{3}:

(100010003∣1−100100−31)∼(100010001∣1−100100−113)begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&3end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-3&1end{matrix}end{pmatrix}sim begin{pmatrix}left.begin{matrix}1&0&0\0&1&0\0&0&1end{matrix}right|begin{matrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{matrix}end{pmatrix}.

Слева получили единичную матрицу.

Выпишем обратную матрицу:

F−1=(1−100100−113)F^{-1}=begin{pmatrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{pmatrix}.

Сделаем проверку, чтобы убедиться в том, что найденная матрица действительно является обратной.

F⋅F−1=(110010033)⋅(1−100100−113)=(100010001)Fcdot F^{-1}=begin{pmatrix}1&1&0\0&1&0\0&3&3end{pmatrix}cdotbegin{pmatrix}1&-1&0\0&1&0\0&-1&frac{1}{3}end{pmatrix}=begin{pmatrix}1&0&0\0&1&0\0&0&1end{pmatrix}.

Значит, обратная матрица найдена правильно.

Выполнение контрольных работ на заказ недорого от профильных авторов на бирже Студворк!

Обратная матрица и её свойства

15 февраля 2018

  • Домашняя работа
  • Ответы

Эта тема является одной из самых ненавистных среди студентов. Хуже, наверное, только определители.

Фишка в том, что само понятие обратного элемента (и я сейчас не только о матрицах) отсылает нас к операции умножения. Даже в школьной программе умножение считается сложной операцией, а уж умножение матриц — вообще отдельная тема, которой у меня посвящён целый параграф и видеоурок.

Сегодня мы не будем вдаваться в подробности матричных вычислений. Просто вспомним: как обозначаются матрицы, как они умножаются и что из этого следует.

Повторение: умножение матриц

Прежде всего договоримся об обозначениях. Матрицей $A$ размера $left[ mtimes n right]$ называется просто таблица из чисел, в которой ровно $m$ строк и $n$ столбцов:

[A=left[ mtimes n right]=underbrace{left[ begin{matrix} {{a}_{11}} & {{a}_{12}} & … & {{a}_{1n}} \ {{a}_{21}} & {{a}_{22}} & … & {{a}_{2n}} \ … & … & … & … \ {{a}_{m1}} & {{a}_{m2}} & … & {{a}_{mn}} \end{matrix} right]}_{n}]

Чтобы случайно не перепутать строки и столбцы местами (поверьте, на экзамене можно и единицу с двойкой перепутать — что уж говорить про какие-то там строки), просто взгляните на картинку:

Определение индексов для клеток матрицы

Что происходит? Если разместить стандартную систему координат $OXY$ в левом верхнем углу и направить оси так, чтобы они охватывали всю матрицу, то каждой клетке этой матрицы можно однозначно сопоставить координаты $left( x;y right)$ — это и будет номер строки и номер столбца.

Почему система координат размещена именно в левом верхнем углу? Да потому что именно оттуда мы начинаем читать любые тексты. Это очень просто запомнить.

А почему ось $x$ направлена именно вниз, а не вправо? Опять всё просто: возьмите стандартную систему координат (ось $x$ идёт вправо, ось $y$ — вверх) и поверните её так, чтобы она охватывала матрицу. Это поворот на 90 градусов по часовой стрелке — его результат мы и видим на картинке.

В общем, как определять индексы у элементов матрицы, мы разобрались. Теперь давайте разберёмся с умножением.

Определение. Матрицы $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$, когда количество столбцов в первой совпадает с количеством строк во второй, называются согласованными.

Именно в таком порядке. Можно сумничать и сказать, мол, матрицы $A$ и $B$ образуют упорядоченную пару $left( A;B right)$: если они согласованы в таком порядке, то совершенно необязательно, что $B$ и $A$, т.е. пара $left( B;A right)$ — тоже согласована.

Умножать можно только согласованные матрицы.

Определение. Произведение согласованных матриц $A=left[ mtimes n right]$ и $B=left[ ntimes k right]$ — это новая матрица $C=left[ mtimes k right]$, элементы которой ${{c}_{ij}}$ считаются по формуле:

[{{c}_{ij}}=sumlimits_{k=1}^{n}{{{a}_{ik}}}cdot {{b}_{kj}}]

Другими словами: чтобы получить элемент ${{c}_{ij}}$ матрицы $C=Acdot B$, нужно взять $i$-строку первой матрицы, $j$-й столбец второй матрицы, а затем попарно перемножить элементы из этой строки и столбца. Результаты сложить.

Да, вот такое суровое определение. Из него сразу следует несколько фактов:

  1. Умножение матриц, вообще говоря, некоммутативно: $Acdot Bne Bcdot A$;
  2. Однако умножение ассоциативно: $left( Acdot B right)cdot C=Acdot left( Bcdot C right)$;
  3. И даже дистрибутивно: $left( A+B right)cdot C=Acdot C+Bcdot C$;
  4. И ещё раз дистрибутивно: $Acdot left( B+C right)=Acdot B+Acdot C$.

Дистрибутивность умножения пришлось отдельно описывать для левого и правого множителя-суммы как раз из-за некоммутативности операции умножения.

Если всё же получается так, что $Acdot B=Bcdot A$, такие матрицы называются перестановочными.

Среди всех матриц, которые там на что-то умножаются, есть особые — те, которые при умножении на любую матрицу $A$ снова дают $A$:

Определение. Матрица $E$ называется единичной, если $Acdot E=A$ или $Ecdot A=A$. В случае с квадратной матрицей $A$ можем записать:

[Acdot E=Ecdot A=A]

Единичная матрица — частый гость при решении матричных уравнений. И вообще частый гость в мире матриц.:)

А ещё из-за этой $E$ кое-кто придумал всю ту дичь, которая будет написана дальше.

Что такое обратная матрица

Поскольку умножение матриц — весьма трудоёмкая операция (приходится перемножать кучу строчек и столбцов), то понятие обратной матрицы тоже оказывается не самым тривиальным. И требующим некоторых пояснений.

Ключевое определение

Что ж, пора познать истину.

Определение. Матрица $B$ называется обратной к матрице $A$, если

[Acdot B=Bcdot A=E]

Обратная матрица обозначается через ${{A}^{-1}}$ (не путать со степенью!), поэтому определение можно переписать так:

[Acdot {{A}^{-1}}={{A}^{-1}}cdot A=E]

Казалось бы, всё предельно просто и ясно. Но при анализе такого определения сразу возникает несколько вопросов:

  1. Всегда ли существует обратная матрица? И если не всегда, то как определить: когда она существует, а когда — нет?
  2. А кто сказал, что такая матрица ровно одна? Вдруг для некоторой исходной матрицы $A$ найдётся целая толпа обратных?
  3. Как выглядят все эти «обратные»? И как, собственно, их считать?

Насчёт алгоритмов вычисления — об этом мы поговорим чуть позже. Но на остальные вопросы ответим прямо сейчас. Оформим их в виде отдельных утверждений-лемм.

Основные свойства

Начнём с того, как в принципе должна выглядеть матрица $A$, чтобы для неё существовала ${{A}^{-1}}$. Сейчас мы убедимся в том, что обе эти матрицы должны быть квадратными, причём одного размера: $left[ ntimes n right]$.

Лемма 1. Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда обе эти матрицы — квадратные, причём одинакового порядка $n$.

Доказательство. Всё просто. Пусть матрица $A=left[ mtimes n right]$, ${{A}^{-1}}=left[ atimes b right]$. Поскольку произведение $Acdot {{A}^{-1}}=E$ по определению существует, матрицы $A$ и ${{A}^{-1}}$ согласованы в указанном порядке:

[begin{align} & left[ mtimes n right]cdot left[ atimes b right]=left[ mtimes b right] \ & n=a end{align}]

Это прямое следствие из алгоритма перемножения матриц: коэффициенты $n$ и $a$ являются «транзитными» и должны быть равны.

Вместе с тем определено и обратное умножение: ${{A}^{-1}}cdot A=E$, поэтому матрицы ${{A}^{-1}}$ и $A$ тоже согласованы в указанном порядке:

[begin{align} & left[ atimes b right]cdot left[ mtimes n right]=left[ atimes n right] \ & b=m end{align}]

Таким образом, без ограничения общности можем считать, что $A=left[ mtimes n right]$, ${{A}^{-1}}=left[ ntimes m right]$. Однако согласно определению $Acdot {{A}^{-1}}={{A}^{-1}}cdot A$, поэтому размеры матриц строго совпадают:

[begin{align} & left[ mtimes n right]=left[ ntimes m right] \ & m=n end{align}]

Вот и получается, что все три матрицы — $A$, ${{A}^{-1}}$ и $E$ — являются квадратными размером $left[ ntimes n right]$. Лемма доказана.

Что ж, уже неплохо. Мы видим, что обратимыми бывают лишь квадратные матрицы. Теперь давайте убедимся, что обратная матрица всегда одна.

Лемма 2. Дана матрица $A$ и обратная ей ${{A}^{-1}}$. Тогда эта обратная матрица — единственная.

Доказательство. Пойдём от противного: пусть у матрицы $A$ есть хотя бы два экземпляра обратных —$B$ и $C$. Тогда, согласно определению, верны следующие равенства:

[begin{align} & Acdot B=Bcdot A=E; \ & Acdot C=Ccdot A=E. \ end{align}]

Из леммы 1 мы заключаем, что все четыре матрицы — $A$, $B$, $C$ и $E$ — являются квадратными одинакового порядка: $left[ ntimes n right]$. Следовательно, определено произведение:

[Bcdot Acdot C]

Поскольку умножение матриц ассоциативно (но не коммутативно!), мы можем записать:

[begin{align} & Bcdot Acdot C=left( Bcdot A right)cdot C=Ecdot C=C; \ & Bcdot Acdot C=Bcdot left( Acdot C right)=Bcdot E=B; \ & Bcdot Acdot C=C=BRightarrow B=C. \ end{align}]

Получили единственно возможный вариант: два экземпляра обратной матрицы равны. Лемма доказана.

Приведённые рассуждения почти дословно повторяют доказательство единственность обратного элемента для всех действительных чисел $bne 0$. Единственное существенное дополнение — учёт размерности матриц.

Впрочем, мы до сих пор ничего не знаем о том, всякая ли квадратная матрица является обратимой. Тут нам на помощь приходит определитель — это ключевая характеристика для всех квадратных матриц.

Лемма 3. Дана матрица $A$. Если обратная к ней матрица ${{A}^{-1}}$ существует, то определитель исходной матрицы отличен от нуля:

[left| A right|ne 0]

Доказательство. Мы уже знаем, что $A$ и ${{A}^{-1}}$ — квадратные матрицы размера $left[ ntimes n right]$. Следовательно, для каждой из них можно вычислить определитель: $left| A right|$ и $left| {{A}^{-1}} right|$. Однако определитель произведения равен произведению определителей:

[left| Acdot B right|=left| A right|cdot left| B right|Rightarrow left| Acdot {{A}^{-1}} right|=left| A right|cdot left| {{A}^{-1}} right|]

Но согласно определению $Acdot {{A}^{-1}}=E$, а определитель $E$ всегда равен 1, поэтому

[begin{align} & Acdot {{A}^{-1}}=E; \ & left| Acdot {{A}^{-1}} right|=left| E right|; \ & left| A right|cdot left| {{A}^{-1}} right|=1. \ end{align}]

Произведение двух чисел равно единице только в том случае, когда каждое из этих чисел отлично от нуля:

[left| A right|ne 0;quad left| {{A}^{-1}} right|ne 0.]

Вот и получается, что $left| A right|ne 0$. Лемма доказана.

На самом деле это требование вполне логично. Сейчас мы разберём алгоритм нахождения обратной матрицы — и станет совершенно ясно, почему при нулевом определителе никакой обратной матрицы в принципе не может существовать.

Но для начала сформулируем «вспомогательное» определение:

Определение. Вырожденная матрица — это квадратная матрица размера $left[ ntimes n right]$, чей определитель равен нулю.

Таким образом, мы можем утверждать, что всякая обратимая матрица является невырожденной.

Как найти обратную матрицу

Сейчас мы рассмотрим универсальный алгоритм нахождения обратных матриц. Вообще, существует два общепринятых алгоритма, и второй мы тоже сегодня рассмотрим.

Тот, который будет рассмотрен сейчас, очень эффективен для матриц размера $left[ 2times 2 right]$ и — частично — размера $left[ 3times 3 right]$. А вот начиная с размера $left[ 4times 4 right]$ его лучше не применять. Почему — сейчас сами всё поймёте.

Алгебраические дополнения

Готовьтесь. Сейчас будет боль. Нет, не переживайте: к вам не идёт красивая медсестра в юбке, чулках с кружевами и не сделает укол в ягодицу. Всё куда прозаичнее: к вам идут алгебраические дополнения и Её Величество «Союзная Матрица».

Начнём с главного. Пусть имеется квадратная матрица размера $A=left[ ntimes n right]$, элементы которой именуются ${{a}_{ij}}$. Тогда для каждого такого элемента можно определить алгебраическое дополнение:

Определение. Алгебраическое дополнение ${{A}_{ij}}$ к элементу ${{a}_{ij}}$, стоящего в $i$-й строке и $j$-м столбце матрицы $A=left[ ntimes n right]$ — это конструкция вида

[{{A}_{ij}}={{left( -1 right)}^{i+j}}cdot M_{ij}^{*}]

Где $M_{ij}^{*}$ — определитель матрицы, полученной из исходной $A$ вычёркиванием той самой $i$-й строки и $j$-го столбца.

Ещё раз. Алгебраическое дополнение к элементу матрицы с координатами $left( i;j right)$ обозначается как ${{A}_{ij}}$ и считается по схеме:

  1. Сначала вычёркиваем из исходной матрицы $i$-строчку и $j$-й столбец. Получим новую квадратную матрицу, и её определитель мы обозначаем как $M_{ij}^{*}$.
  2. Затем умножаем этот определитель на ${{left( -1 right)}^{i+j}}$ — поначалу это выражение может показаться мозговыносящим, но по сути мы просто выясняем знак перед $M_{ij}^{*}$.
  3. Считаем — получаем конкретное число. Т.е. алгебраическое дополнение — это именно число, а не какая-то новая матрица и т.д.

Саму матрицу $M_{ij}^{*}$ называют дополнительным минором к элементу ${{a}_{ij}}$. И в этом смысле приведённое выше определение алгебраического дополнения является частным случаем более сложного определения — того, что мы рассматривали в уроке про определитель.

Важное замечание. Вообще-то во «взрослой» математике алгебраические дополнения определяются так:

  1. Берём в квадратной матрице $k$ строчек и $k$ столбцов. На их пересечении получится матрица размера $left[ ktimes k right]$ — её определитель называется минором порядка $k$ и обозначается ${{M}_{k}}$.
  2. Затем вычёркиваем эти «избранные» $k$ строчек и $k$ столбцов. Снова получится квадратная матрица — её определитель называется дополнительным минором и обозначается $M_{k}^{*}$.
  3. Умножаем $M_{k}^{*}$ на ${{left( -1 right)}^{t}}$, где $t$ — это (вот сейчас внимание!) сумма номеров всех выбранных строчек и столбцов. Это и будет алгебраическое дополнение.

Взгляните на третий шаг: там вообще-то сумма $2k$ слагаемых! Другое дело, что для $k=1$ мы получим лишь 2 слагаемых — это и будут те самые $i+j$ — «координаты» элемента ${{a}_{ij}}$, для которого мы ищем алгебраическое дополнение.

Таким образом сегодня мы используем слегка упрощённое определение. Но как мы увидим в дальнейшем, его окажется более чем достаточно. Куда важнее следующая штука:

Определение. Союзная матрица $S$ к квадратной матрице $A=left[ ntimes n right]$ — это новая матрица размера $left[ ntimes n right]$, которая получается из $A$ заменой ${{a}_{ij}}$ алгебраическими дополнениями ${{A}_{ij}}$:

[A=left[ begin{matrix} {{a}_{11}} & {{a}_{12}} & … & {{a}_{1n}} \ {{a}_{21}} & {{a}_{22}} & … & {{a}_{2n}} \ … & … & … & … \ {{a}_{n1}} & {{a}_{n2}} & … & {{a}_{nn}} \end{matrix} right]Rightarrow S=left[ begin{matrix} {{A}_{11}} & {{A}_{12}} & … & {{A}_{1n}} \ {{A}_{21}} & {{A}_{22}} & … & {{A}_{2n}} \ … & … & … & … \ {{A}_{n1}} & {{A}_{n2}} & … & {{A}_{nn}} \end{matrix} right]]

Первая мысль, возникающая в момент осознания этого определения — «это сколько же придётся всего считать!» Расслабьтесь: считать придётся, но не так уж и много.:)

Что ж, всё это очень мило, но зачем это нужно? А вот зачем.

Основная теорема

Вернёмся немного назад. Помните, в Лемме 3 утверждалось, что обратимая матрица $A$ всегда не вырождена (т.е. её определитель отличен от нуля: $left| A right|ne 0$).

Так вот, верно и обратное: если матрица $A$ не вырождена, то она всегда обратима. И даже существует схема поиска ${{A}^{-1}}$. Зацените:

Теорема об обратной матрице. Пусть дана квадратная матрица $A=left[ ntimes n right]$, причём её определитель отличен от нуля: $left| A right|ne 0$. Тогда обратная матрица ${{A}^{-1}}$ существует и считается по формуле:

[{{A}^{-1}}=frac{1}{left| A right|}cdot {{S}^{T}}]

А теперь — всё то же самое, но разборчивым почерком. Чтобы найти обратную матрицу, нужно:

  1. Посчитать определитель $left| A right|$ и убедиться, что он отличен от нуля.
  2. Составить союзную матрицу $S$, т.е. посчитать 100500 алгебраических дополнений ${{A}_{ij}}$ и расставить их на месте ${{a}_{ij}}$.
  3. Транспонировать эту матрицу $S$, а затем умножить её на некое число $q={1}/{left| A right|};$.

И всё! Обратная матрица ${{A}^{-1}}$ найдена. Давайте посмотрим на примеры:

Задача. Найдите обратную матрицу:

[left[ begin{matrix} 3 & 1 \ 5 & 2 \end{matrix} right]]

Решение. Проверим обратимость. Посчитаем определитель:

[left| A right|=left| begin{matrix} 3 & 1 \ 5 & 2 \end{matrix} right|=3cdot 2-1cdot 5=6-5=1]

Определитель отличен от нуля. Значит, матрица обратима. Составим союзную матрицу:

[S=left[ begin{matrix} {{A}_{11}} & {{A}_{12}} \ {{A}_{21}} & {{A}_{22}} \end{matrix} right]]

Посчитаем алгебраические дополнения:

[begin{align} & {{A}_{11}}={{left( -1 right)}^{1+1}}cdot left| 2 right|=2; \ & {{A}_{12}}={{left( -1 right)}^{1+2}}cdot left| 5 right|=-5; \ & {{A}_{21}}={{left( -1 right)}^{2+1}}cdot left| 1 right|=-1; \ & {{A}_{22}}={{left( -1 right)}^{2+2}}cdot left| 3 right|=3. \ end{align}]

Обратите внимание: определители |2|, |5|, |1| и |3| — это именно определители матриц размера $left[ 1times 1 right]$, а не модули. Т.е. если в определителях стояли отрицательные числа, убирать «минус» не надо.

Итого наша союзная матрица выглядит так:

[S=left[ begin{array}{*{35}{r}}2 & -5 \ -1 & 3 \end{array} right]]

Осталось посчитать обратную:

[{{A}^{-1}}=frac{1}{left| A right|}cdot {{S}^{T}}=frac{1}{1}cdot {{left[ begin{array}{*{35}{r}} 2 & -5 \ -1 & 3 \end{array} right]}^{T}}=left[ begin{array}{*{35}{r}} 2 & -1 \ -5 & 3 \end{array} right]]

Ну вот и всё. Задача решена.

Ответ. $left[ begin{array}{*{35}{r}} 2 & -1 \ -5 & 3 \end{array} right]$

Задача. Найдите обратную матрицу:

[left[ begin{array}{*{35}{r}} 1 & -1 & 2 \ 0 & 2 & -1 \ 1 & 0 & 1 \end{array} right]]

Решение. Опять считаем определитель:

[begin{align} & left| begin{array}{*{35}{r}} 1 & -1 & 2 \ 0 & 2 & -1 \ 1 & 0 & 1 \end{array} right|=begin{matrix} left( 1cdot 2cdot 1+left( -1 right)cdot left( -1 right)cdot 1+2cdot 0cdot 0 right)- \ -left( 2cdot 2cdot 1+left( -1 right)cdot 0cdot 1+1cdot left( -1 right)cdot 0 right) \end{matrix}= \ & =left( 2+1+0 right)-left( 4+0+0 right)=-1ne 0. \ end{align}]

Определитель отличен от нуля — матрица обратима. А вот сейчас будет самая жесть: надо посчитать аж 9 (девять, мать их!) алгебраических дополнений. И каждое из них будет содержать определитель $left[ 2times 2 right]$. Полетели:

[begin{matrix} {{A}_{11}}={{left( -1 right)}^{1+1}}cdot left| begin{matrix} 2 & -1 \ 0 & 1 \end{matrix} right|=2; \ {{A}_{12}}={{left( -1 right)}^{1+2}}cdot left| begin{matrix} 0 & -1 \ 1 & 1 \end{matrix} right|=-1; \ {{A}_{13}}={{left( -1 right)}^{1+3}}cdot left| begin{matrix} 0 & 2 \ 1 & 0 \end{matrix} right|=-2; \ … \ {{A}_{33}}={{left( -1 right)}^{3+3}}cdot left| begin{matrix} 1 & -1 \ 0 & 2 \end{matrix} right|=2; \ end{matrix}]

Короче, союзная матрица будет выглядеть так:

[S=left[ begin{matrix} 2 & -1 & -2 \ 1 & -1 & -1 \ -3 & 1 & 2 \end{matrix} right]]

Следовательно, обратная матрица будет такой:

[{{A}^{-1}}=frac{1}{-1}cdot left[ begin{matrix} 2 & -1 & -2 \ 1 & -1 & -1 \ -3 & 1 & 2 \end{matrix} right]=left[ begin{array}{*{35}{r}}-2 & -1 & 3 \ 1 & 1 & -1 \ 2 & 1 & -2 \end{array} right]]

Ну и всё. Вот и ответ.

Ответ. $left[ begin{array}{*{35}{r}} -2 & -1 & 3 \ 1 & 1 & -1 \ 2 & 1 & -2 \end{array} right]$

Как видите, в конце каждого примера мы выполняли проверку. В связи с этим важное замечание:

Не ленитесь выполнять проверку. Умножьте исходную матрицу на найденную обратную — должна получиться $E$.

Выполнить эту проверку намного проще и быстрее, чем искать ошибку в дальнейших вычислениях, когда, например, вы решаете матричное уравнение.

Альтернативный способ

Как я и говорил, теорема об обратной матрице прекрасно работает для размеров $left[ 2times 2 right]$ и $left[ 3times 3 right]$ (в последнем случае — уже не так уж и «прекрасно»), а вот для матриц больших размеров начинается прям печаль.

Но не переживайте: есть альтернативный алгоритм, с помощью которого можно невозмутимо найти обратную хоть для матрицы $left[ 10times 10 right]$. Но, как это часто бывает, для рассмотрения этого алгоритма нам потребуется небольшая теоретическая вводная.

Элементарные преобразования

Среди всевозможных преобразований матрицы есть несколько особых — их называют элементарными. Таких преобразований ровно три:

  1. Умножение. Можно взять $i$-ю строку (столбец) и умножить её на любое число $kne 0$;
  2. Сложение. Прибавить к $i$-й строке (столбцу) любую другую $j$-ю строку (столбец), умноженную на любое число $kne 0$ (можно, конечно, и $k=0$, но какой в этом смысл? Ничего не изменится же).
  3. Перестановка. Взять $i$-ю и $j$-ю строки (столбцы) и поменять местами.

Почему эти преобразования называются элементарными (для больших матриц они выглядят не такими уж элементарными) и почему их только три — эти вопросы выходят за рамки сегодняшнего урока. Поэтому не будем вдаваться в подробности.

Важно другое: все эти извращения нам предстоит выполнять над присоединённой матрицей. Да, да: вы не ослышались. Сейчас будет ещё одно определение — последнее в сегодняшнем уроке.

Присоединённая матрица

Наверняка в школе вы решали системы уравнений методом сложения. Ну, там, вычесть из одной строки другую, умножить какую-то строку на число — вот это вот всё.

Так вот: сейчас будет всё то же, но уже «по-взрослому». Готовы?

Определение. Пусть дана матрица $A=left[ ntimes n right]$ и единичная матрица $E$ такого же размера $n$. Тогда присоединённая матрица $left[ Aleft| E right. right]$ — это новая матрица размера $left[ ntimes 2n right]$, которая выглядит так:

[left[ Aleft| E right. right]=left[ begin{array}{rrrr|rrrr}{{a}_{11}} & {{a}_{12}} & … & {{a}_{1n}} & 1 & 0 & … & 0 \{{a}_{21}} & {{a}_{22}} & … & {{a}_{2n}} & 0 & 1 & … & 0 \… & … & … & … & … & … & … & … \{{a}_{n1}} & {{a}_{n2}} & … & {{a}_{nn}} & 0 & 0 & … & 1 \end{array} right]]

Короче говоря, берём матрицу $A$, справа приписываем к ней единичную матрицу $E$ нужного размера, разделяем их вертикальной чертой для красоты — вот вам и присоединённая.:)

В чём прикол? А вот в чём:

Теорема. Пусть матрица $A$ обратима. Рассмотрим присоединённую матрицу $left[ Aleft| E right. right]$. Если с помощью элементарных преобразований строк привести её к виду $left[ Eleft| B right. right]$, т.е. путём умножения, вычитания и перестановки строк получить из $A$ матрицу $E$ справа, то полученная слева матрица $B$ — это обратная к $A$:

[left[ Aleft| E right. right]to left[ Eleft| B right. right]Rightarrow B={{A}^{-1}}]

Вот так всё просто! Короче говоря, алгоритм нахождения обратной матрицы выглядит так:

  1. Записать присоединённую матрицу $left[ Aleft| E right. right]$;
  2. Выполнять элементарные преобразования строк до тех пор, пока права вместо $A$ не появится $E$;
  3. Разумеется, слева тоже что-то появится — некая матрица $B$. Это и будет обратная;
  4. PROFIT!:)

Конечно, сказать намного проще, чем сделать. Поэтому давайте рассмотрим парочку примеров: для размеров $left[ 3times 3 right]$ и $left[ 4times 4 right]$.

Задача. Найдите обратную матрицу:

[left[ begin{array}{*{35}{r}} 1 & 5 & 1 \ 3 & 2 & 1 \ 6 & -2 & 1 \end{array} right]]

Решение. Составляем присоединённую матрицу:

[left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 3 & 2 & 1 & 0 & 1 & 0 \ 6 & -2 & 1 & 0 & 0 & 1 \end{array} right]]

Поскольку последний столбец исходной матрицы заполнен единицами, вычтем первую строку из остальных:

[begin{align} & left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 3 & 2 & 1 & 0 & 1 & 0 \ 6 & -2 & 1 & 0 & 0 & 1 \end{array} right]begin{matrix} downarrow \ -1 \ -1 \end{matrix}to \ & to left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 2 & -3 & 0 & -1 & 1 & 0 \ 5 & -7 & 0 & -1 & 0 & 1 \end{array} right] \ end{align}]

Больше единиц нет, кроме первой строки. Но её мы не трогаем, иначе в третьем столбце начнут «размножаться» только что убранные единицы.

Зато можем вычесть вторую строку дважды из последней — получим единицу в левом нижнем углу:

[begin{align} & left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 2 & -3 & 0 & -1 & 1 & 0 \ 5 & -7 & 0 & -1 & 0 & 1 \end{array} right]begin{matrix} \ downarrow \ -2 \end{matrix}to \ & left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 2 & -3 & 0 & -1 & 1 & 0 \ 1 & -1 & 0 & 1 & -2 & 1 \end{array} right] \ end{align}]

Теперь можно вычесть последнюю строку из первой и дважды из второй — таким образом мы «занулим» первый столбец:

[begin{align} & left[ begin{array}{rrr|rrr} 1 & 5 & 1 & 1 & 0 & 0 \ 2 & -3 & 0 & -1 & 1 & 0 \ 1 & -1 & 0 & 1 & -2 & 1 \end{array} right]begin{matrix} -1 \ -2 \ uparrow \end{matrix}to \ & to left[ begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \ 0 & -1 & 0 & -3 & 5 & -2 \ 1 & -1 & 0 & 1 & -2 & 1 \end{array} right] \ end{align}]

Умножим вторую строку на −1, а затем вычтем её 6 раз из первой и прибавим 1 раз к последней:

[begin{align} & left[ begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \ 0 & -1 & 0 & -3 & 5 & -2 \ 1 & -1 & 0 & 1 & -2 & 1 \end{array} right]begin{matrix} \ left| cdot left( -1 right) right. \ \end{matrix}to \ & to left[ begin{array}{rrr|rrr} 0 & 6 & 1 & 0 & 2 & -1 \ 0 & 1 & 0 & 3 & -5 & 2 \ 1 & -1 & 0 & 1 & -2 & 1 \end{array} right]begin{matrix} -6 \ updownarrow \ +1 \end{matrix}to \ & to left[ begin{array}{rrr|rrr} 0 & 0 & 1 & -18 & 32 & -13 \ 0 & 1 & 0 & 3 & -5 & 2 \ 1 & 0 & 0 & 4 & -7 & 3 \end{array} right] \ end{align}]

Осталось лишь поменять местами строки 1 и 3:

[left[ begin{array}{rrr|rrr} 1 & 0 & 0 & 4 & -7 & 3 \ 0 & 1 & 0 & 3 & -5 & 2 \ 0 & 0 & 1 & -18 & 32 & -13 \end{array} right]]

Готово! Справа — искомая обратная матрица.

Ответ. $left[ begin{array}{*{35}{r}}4 & -7 & 3 \ 3 & -5 & 2 \ -18 & 32 & -13 \end{array} right]$

Задача. Найдите обратную матрицу:

[left[ begin{matrix} 1 & 4 & 2 & 3 \ 1 & -2 & 1 & -2 \ 1 & -1 & 1 & 1 \ 0 & -10 & -2 & -5 \end{matrix} right]]

Решение. Снова составляем присоединённую:

[left[ begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \end{array} right]]

Немного позалимаем, попечалимся от того, сколько сейчас придётся считать… и начнём считать. Для начала «обнулим» первый столбец, вычитая строку 1 из строк 2 и 3:

[begin{align} & left[ begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \ 1 & -2 & 1 & -2 & 0 & 1 & 0 & 0 \ 1 & -1 & 1 & 1 & 0 & 0 & 1 & 0 \ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \end{array} right]begin{matrix} downarrow \ -1 \ -1 \ \end{matrix}to \ & to left[ begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \end{array} right] \ end{align}]

Наблюдаем слишком много «минусов» в строках 2—4. Умножим все три строки на −1, а затем «выжжем» третий столбец, вычитая строку 3 из остальных:

[begin{align} & left[ begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \ 0 & -6 & -1 & -5 & -1 & 1 & 0 & 0 \ 0 & -5 & -1 & -2 & -1 & 0 & 1 & 0 \ 0 & -10 & -2 & -5 & 0 & 0 & 0 & 1 \end{array} right]begin{matrix} \ left| cdot left( -1 right) right. \ left| cdot left( -1 right) right. \ left| cdot left( -1 right) right. \end{matrix}to \ & to left[ begin{array}{rrrr|rrrr} 1 & 4 & 2 & 3 & 1 & 0 & 0 & 0 \ 0 & 6 & 1 & 5 & 1 & -1 & 0 & 0 \ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \ 0 & 10 & 2 & 5 & 0 & 0 & 0 & -1 \end{array} right]begin{matrix} -2 \ -1 \ updownarrow \ -2 \end{matrix}to \ & to left[ begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \end{array} right] \ end{align}]

Теперь самое время «поджарить» последний столбец исходной матрицы: вычитаем строку 4 из остальных:

[begin{align} & left[ begin{array}{rrrr|rrrr} 1 & -6 & 0 & -1 & -1 & 0 & 2 & 0 \ 0 & 1 & 0 & 3 & 0 & -1 & 1 & 0 \ 0 & 5 & 1 & 2 & 1 & 0 & -1 & 0 \ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \end{array} right]begin{matrix} +1 \ -3 \ -2 \ uparrow \end{matrix}to \ & to left[ begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \end{array} right] \ end{align}]

Финальный бросок: «выжигаем» второй столбец, вычитая строку 2 из строки 1 и 3:

[begin{align} & left[ begin{array}{rrrr|rrrr} 1 & -6 & 0 & 0 & -3 & 0 & 4 & -1 \ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \ 0 & 5 & 1 & 0 & 5 & 0 & -5 & 2 \ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \end{array} right]begin{matrix} 6 \ updownarrow \ -5 \ \end{matrix}to \ & to left[ begin{array}{rrrr|rrrr} 1 & 0 & 0 & 0 & 33 & -6 & -26 & -17 \ 0 & 1 & 0 & 0 & 6 & -1 & -5 & 3 \ 0 & 0 & 1 & 0 & -25 & 5 & 20 & -13 \ 0 & 0 & 0 & 1 & -2 & 0 & 2 & -1 \end{array} right] \ end{align}]

И снова слева единичная матрица, значит справа — обратная.:)

Ответ. $left[ begin{matrix} 33 & -6 & -26 & 17 \ 6 & -1 & -5 & 3 \ -25 & 5 & 20 & -13 \ -2 & 0 & 2 & -1 \end{matrix} right]$

Ну вот и всё. Проверку сделайте сами — мне в лом.:)

Смотрите также:

  1. Определитель
  2. Дополнительные соображения
  3. Тест к уроку «Площади многоугольников на координатной сетке» (легкий)
  4. Четырехугольная пирамида в задаче C2
  5. Задача B5: площадь кольца
  6. Случай четырехугольной пирамиды

Обра́тная ма́трица — такая матрица A^{{-1}}, при умножении которой на исходную матрицу A получается единичная матрица E:

{displaystyle AA^{-1}=A^{-1}A=E.}

Обратную матрицу можно определить как:

{displaystyle A^{-1}={frac {{mbox{adj}}A}{|A|}},}
где {displaystyle {mbox{adj}}A} — соответствующая присоединённая матрица,
|A| — определитель матрицы A.

Из этого определения следует критерий обратимости: матрица обратима тогда и только тогда, когда она невырождена, то есть её определитель не равен нулю. Для неквадратных матриц и вырожденных матриц обратных матриц не существует. Однако возможно обобщить это понятие и ввести псевдообратные матрицы, похожие на обратные по многим свойствам.

Свойства обратной матрицы[править | править код]

Пусть квадратные матрицы {displaystyle A,~B} — невырожденные. Тогда:

Способы нахождения обратной матрицы[править | править код]

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

Точные (прямые) методы[править | править код]

Метод Жордана—Гаусса[править | править код]

Возьмём две матрицы: саму A и единичную матрицу E. Приведём матрицу A к единичной методом Гаусса—Жордана, применяя преобразования по строкам (можно также применять преобразования и по столбцам). После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A^{{-1}}.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц Lambda _{i} (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

{displaystyle Lambda _{1}cdot dots cdot Lambda _{n}cdot A=Lambda A=ERightarrow Lambda =A^{-1}.}
{displaystyle Lambda _{m}={begin{bmatrix}1&dots &0&-a_{1m}/a_{mm}&0&dots &0\&&&dots &&&\0&dots &1&-a_{m-1m}/a_{mm}&0&dots &0\0&dots &0&1/a_{mm}&0&dots &0\0&dots &0&-a_{m+1m}/a_{mm}&1&dots &0\&&&dots &&&\0&dots &0&-a_{nm}/a_{mm}&0&dots &1end{bmatrix}}.}

Вторая матрица после применения всех операций станет равна Lambda , то есть будет искомой. Сложность алгоритма — O(n^{3}).

С помощью матрицы алгебраических дополнений[править | править код]

Матрица, обратная матрице A, представима в виде:

{displaystyle {A}^{-1}={{{mbox{adj}}(A)} over {det(A)}},}
где {mbox{adj}}(A) — присоединенная матрица (матрица, составленная из алгебраических дополнений для соответствующих элементов транспонированной матрицы).

Сложность алгоритма зависит от сложности {displaystyle O_{det }} алгоритма расчета определителя и равна {displaystyle O(n^{2})cdot O_{det }}.

Использование LU- или LUP-разложения[править | править код]

Матричное уравнение AX=I_{n} для обратной матрицы X можно рассматривать как совокупность n систем вида Ax=b. Обозначим i-й столбец матрицы X через X_{i}; тогда AX_{i}=e_{i}, i=1,ldots ,n, поскольку i-м столбцом матрицы I_{n} является единичный вектор e_{i}. Иными словами, нахождение обратной матрицы сводится к решению n уравнений с одной матрицей и разными правыми частями. Решение этих уравнений может быть упрощено с помощью LU- или LUP-разложения матрицы A. После выполнения LUP-разложения за время O(n^{3}) на решение каждого из n уравнений нужно время O(n^{2}), так что и этот алгоритм требует времени O(n^{3})[1].

Матрицу, обратную к заданной невырожденной матрице A, можно также вычислить непосредственно с помощью матриц, полученных в результате разложения.

Результатом LUP-разложения матрицы A является равенство PA=LU. Пусть PA=B, B^{{-1}}=D. Тогда из свойств обратной матрицы можно записать: D=U^{{-1}}L^{{-1}}. Если умножить это равенство на U и L то можно получить два равенства вида UD=L^{{-1}} и DL=U^{{-1}}. Первое из этих равенств представляет собой систему из n^{2} линейных уравнений, для n(n+1)/2 из которых известны правые части (из свойств треугольных матриц). Второе также представляет систему из n^{2} линейных уравнений, для n(n-1)/2 из которых известны правые части (также из свойств треугольных матриц). Вместе они представляют собой систему из n^{2} равенств. С их помощью можно рекуррентно определить все n^{2} элементов матрицы D. Тогда из равенства {displaystyle (PA)^{-1}=A^{-1}P^{-1}=B^{-1}=D} получаем равенство A^{{-1}}=DP.

В случае использования LU-разложения (A=LU) не требуется перестановки столбцов матрицы D, но решение может разойтись даже если матрица A невырождена.

Сложность обоих алгоритмов — O(n^{3}).

Итерационные методы[править | править код]

Матрицу A^{{-1}} можно вычислить с произвольной точностью в результате выполнения следующего итерационного процесса, называющегося методом Шульца и являющегося обобщением классического метода Ньютона:

{displaystyle X_{k+1}=2X_{k}-X_{k}AX_{k}.}

Последовательность матриц X_{k} сходится к A^{{-1}} при kto infty . Существует также так называемый обобщённый метод Шульца, который описывается следующими рекуррентными соотношениями[2]:

{displaystyle {begin{cases}Psi _{k}=E-AX_{k},\X_{k+1}=X_{k}sum limits _{i=0}^{n}Psi _{k}^{i}.end{cases}}}

Выбор начального приближения[править | править код]

Проблема выбора начального приближения X_{0} в рассматриваемых здесь процессах итерационного обращения матриц не позволяет относиться к ним как к самостоятельным универсальным методам, конкурирующими с прямыми методами обращения, основанными, например, на LU-разложении матриц. Имеются некоторые рекомендации по выбору X_{0}, обеспечивающие выполнение условия {displaystyle rho (Psi _{0})<1} (спектральный радиус матрицы меньше единицы), являющегося необходимым и достаточным для сходимости итерационного процесса. Однако при этом, во-первых, требуется знать оценку сверху спектра обращаемой матрицы A либо матрицы {displaystyle AA^{T}} (а именно, если A — симметричная положительно определённая матрица и {displaystyle rho (A)leqslant beta }, то можно взять {displaystyle X_{0}={alpha }E}, где {displaystyle alpha in left(0,2/beta right)}; если же A — произвольная невырожденная матрица и {displaystyle rho (AA^{T})leqslant beta }, то полагают {displaystyle X_{0}={alpha }A^{T}}, где также {displaystyle alpha in left(0,2/beta right)}; можно, конечно, упростить ситуацию и, воспользовавшись тем, что {displaystyle rho (AA^{T})leqslant {mathcal {k}}AA^{T}{mathcal {k}}}, положить {displaystyle X_{0}=A^{T}/|AA^{T}|}). Во-вторых, при таком задании начальной матрицы нет гарантии, что {displaystyle |Psi _{0}|} будет малой (возможно, даже окажется {displaystyle |Psi _{0}|>1}), и высокий порядок скорости сходимости обнаружится далеко не сразу.

Для метода Ньютона в качестве начального приближения можно выбрать {displaystyle X_{0}=A^{H}/left(||A||_{1}||A||_{infty }right)}, где верхний индекс H обозначает эрмитово сопряжение, {displaystyle ||cdot ||_{1}} и {displaystyle ||cdot ||_{infty }} — соответствующие матричные нормы. Такое X_{0} вычисляется всего за O(n^{2}) операций, где n — порядок матрицы, и обеспечивает сходимость алгоритма[3].

Примеры[править | править код]

Матрица 2 × 2[править | править код]

{displaystyle mathbf {A} ^{-1}={begin{bmatrix}a&b\c&d\end{bmatrix}}^{-1}={frac {1}{det mathbf {A} }}{begin{bmatrix}d&-b\-c&a\end{bmatrix}}={frac {1}{ad-bc}}{begin{bmatrix}d&-b\-c&a\end{bmatrix}}.}[4]

Обращение матрицы 2 × 2 возможно только при условии, что ad-bc=det Aneq 0.

Примечания[править | править код]

  1. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы: построение и анализ, — М.: Вильямс, 2006 (с. 700).
  2. Petković, M. D. Generalized Schultz iterative methods for the computation of outer inverses (англ.) // Computers & Mathematics with Applications. — 2014. — June (vol. 67, iss. 10). — P. 1837—1847. — doi:10.1016/j.camwa.2014.03.019.
  3. Pan, V., Reif, J. Fast and efficient parallel solution of dense linear systems (англ.) // Computers & Mathematics with Applications. — 1989. — Vol. 17, iss. 11. — P. 1481—1491. — doi:10.1016/0898-1221(89)90081-3.
  4. Как найти обратную матрицу? mathprofi.ru. Дата обращения: 18 октября 2017. Архивировано 17 октября 2017 года.

Ссылки[править | править код]

  • Реализация с полным выбором ведущего элемента на C++

Добавить комментарий