Как найти матрицу перехода калькулятор

Решение задач с матрицами

В матричный калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности матричного калькулятора

  • Между полями для ввода можно перемещаться нажимая клавиши , , и на клавиатуре.

Теория. Матрицы

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Калькулятор матриц

Калькулятор матриц для пошагового решения матриц с последовательностью решения, бесплатно в режиме онлайн. Для всех вычислений приводятся пояснения и ссылки на необходимую теорию.

Поле ручного ввода математического выражения для операций с матрицами

Матричный калькулятор позволяет выполнить умножение матриц, сложение и вычитание матриц, найти ранг, вычислить определитель, осуществить транспонирование матрицы, найти обратную матрицу, а также выполнить другие операции с матрицами.

Наш калькулятор поможет выполнить математические операции с матрицами или проверить уже выполненные самостоятельно вычисления.

Описание калькулятора матриц

Используя калькулятор матриц, вы сможете выполнить необходимые вычисления с матрицами, получив в результате требуемый ответ и подробную последовательность решения. Матричный калькулятор позволяет выполнять операции с одной матрицей или решать сложные выражения сразу с несколькими матрицами.

матрица перехода

Вы искали матрица перехода? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и матрица перехода от одного базиса к другому, не исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению в вуз. И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение. Например, «матрица перехода».

матрица перехода

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который может решить задачи, такие, как матрица перехода,матрица перехода от одного базиса к другому,матрица перехода от одного базиса к другому онлайн калькулятор,найти матрицу перехода от одного базиса к другому,переход от одного базиса к другому. На этой странице вы найдёте калькулятор, который поможет решить любой вопрос, в том числе и матрица перехода. Просто введите задачу в окошко и нажмите «решить» здесь (например, матрица перехода от одного базиса к другому онлайн калькулятор).

Где можно решить любую задачу по математике, а так же матрица перехода Онлайн?

Решить задачу матрица перехода вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице калькулятора.

Наш искусственный интеллект решает сложные математические задания за секунды.

Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!

Онлайн калькулятор. Разложение вектора по базису.

Этот онлайн калькулятор позволит вам очень просто разложить вектор по базисным векторам.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач и закрепить пройденый материал.

Калькулятор для разложения вектора по базисным векторам

Выберите размерность пространства

Количество координат в векторе:

Введите значение базисных векторов:

Введите значение вектора, который необходимо разложить по базису:

Инструкция использования калькулятора для разложение вектора по базисным векторам

  • Для того чтобы разложить вектор по базисным векторам онлайн:
  • выберите необходимую вам размерность пространства (количество координат в векторе);
  • введите значения базисных векторов;
  • введите значения вектора который нужно разложить по базису;
  • Нажмите кнопку “Разложить вектор по базису” и вы получите детальное решение задачи.

Ввод данных в калькулятор для разложение вектора по базисным векторам

В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.

Дополнительные возможности калькулятора разложение вектора по базисным векторам

  • Между полями для ввода можно перемещаться нажимая клавиши “влево” и “вправо” на клавиатуре.

Теория. Разложение вектора по базису

Чтобы разложить, вектор b по базисным векторам a1 , . an , необходимо найти коэффициенты x 1, . xn , при которых линейная комбинация векторов a1 , . an равна вектору b .

Коэффициенты x 1, . xn будут координатами вектора b в базисе a1 , . an .

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 – β*2 – γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b – 3/2c

Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х”1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х”2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х”3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х”1, x”2, x”3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х”1 = – x’1 + 3x’2 – 2x’3,
х’2 = 6x1 + 7x2 + x3, х”2 = – 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х”3 = 3x’1 – 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 – 1*1) – 6*(3*8 – 1*5) + 9*(3*1 – 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55 -19 -32
-39 -13 26
-57 23 10

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55 -19 -32
-39 -13 26
-57 23 10
* =
75 /182 -1 46 /91 1 9 /13
-13 /14 1 2 /7 -1
5 /182 1 3 /91 -1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.

Координаты и преобразования координат в линейном пространстве

Координаты векторов в данном базисе линейного пространства

Пусть — базис линейного пространства . Каждый вектор можно разложить по базису (см. теорему 8.1), т.е. представить в виде , причем коэффициенты в разложении определяются однозначно. Эти коэффициенты называются координатами вектора в базисе (или относительно базиса ). Координаты вектора — это упорядоченный на бор чисел, который представляется в виде матрицы-столбца и называется координатным столбцом вектора (в данном базисе). Вектор и его координатный столбец обозначаются одной и той же буквой полужирной или светлой соответственно.

Если базис (как упорядоченный набор векторов) представить в виде символической матрицы-строки , то разложение вектора по базису можно записать следующим образом:

Здесь умножение символической матрицы-строки на числовую матрицу-столбец производится по правилам умножения матриц.

При необходимости, если речь идет о разных базисах, у координатного столбца указывается обозначение базиса, относительно которого получены координаты, например, — координатный столбец вектора в базисе .

Из теоремы 8.1 следует, что равные векторы имеют равные соответствующие координаты (в одном и том же базисе), и наоборот, если координаты векторов (в одном и том же базисе) соответственно равны, то равны и сами векторы .

Линейные операции в координатной форме

Пусть — базис линейного пространства , векторы и имеют в этом базисе координаты и соответственно, т.е.

Складывая эти равенства, получаем .

т.е. при сложении векторов их координаты складываются .

Умножая второе равенство в (8.7) на число , получаем

т.е. при умножении вектора на число все его координаты умножаются на это число .

Другими словами, сумма векторов имеет координаты , а произведение имеет координаты . Разумеется, что все координаты получены в одном базисе .

1. Нетрудно показать, что координатный столбец линейной комбинации векторов равен линейной комбинации координатных столбцов этих векторов.

2. Если система векторов линейно зависима (линейно независима), то их координатные столбцы, полученные относительно одного базиса, образуют линейно зависимую (соответственно, линейно независимую) систему. Это следует из равносильности равенств и . Например, если в этих равенствах не все коэффициенты равны нулю, т.е. система векторов и система их координатных столбцов линейно зависимы одновременно.

3. Все свойства линейной зависимости и линейной независимости векторов переносятся без изменений на их координатные столбцы, полученные в одном и том же базисе. И наоборот, свойства для матриц-столбцов, переносятся на векторы, если матрицы-столбцы считать их координатными столбцами.

4. Выбрав в n-мерном вещественном линейном пространстве некоторый базис, можно установить взаимно однозначное соответствие: каждому вектору поставить в соответствие его координатный столбец (в вы бранном базисе), и наоборот, каждому координатному столбцу поставить в соответствие вектор. Другими словами, любой фиксированный базис n-мерного вещественного линейного пространства позволяет установить взаимно однозначное соответствие между всеми векторами вещественно го пространства и всеми столбцами n-мерного арифметического пространства . Это соответствие обозначается . Для n-мерного комплексного линейного пространства аналогичное взаимно однозначное соответствие устанавливается с пространством .

Преобразование координат вектора при замене базиса

Пусть заданы два базиса пространства и . Базис будем условно называть “старым”, а базис — “новым”. Пусть известны разложения каждого вектора нового базиса по старому базису:

Записывая по столбцам координаты векторов в базисе , составляем матрицу:

Квадратная матрица , составленная из координатных столбцов векторов нового базиса в старом базисе , называется матрицей перехода от старого базиса к новому. При помощи матрицы перехода (8.9) формулы (8.8) можно записать в виде:

Умножение символической матрицы-строки на матрицу перехода в (8.10) производится по правилам умножения матриц.

Пусть в базисе вектор имеет координаты , а в базисе — координаты , т.е.

Подставляя в правую часть последнего равенства выражение (8.10), получаем — два разложения вектора в одном и том же базисе . Коэффициенты этих разложений должны совпадать (по теореме 8.1), так как это координаты одного и того же вектора в одном базисе. Поэтому

Формула (8.11) устанавливает связь координат вектора в разных базисах: координатный столбец вектора в старом базисе получается в результате умножения матрицы перехода на координатный столбец вектора в новом базисе .

Пример 8.3. В пространстве многочленов степени не выше второй даны две системы многочленов:

Доказать, что каждая система является базисом пространства . Найти матрицу перехода от базиса к базису . Определить координаты квадратного трехчлена относительно базисов и .

Решение. Система многочленов является стандартным базисом пространства . Докажем, что система является базисом. По ступим следующим образом. Найдем координатные столбцы этих многочленов в стандартном базисе. Раскладывая по базису , получаем

Составим из этих столбцов матрицу . Ранг этой матрицы равен 3, так как . Следовательно, столбцы линейно независимы, тогда и многочлены линейно независимы (см. пункт 2 замечаний 8.5). Итак, многочлены являются базисом пространства , а матрица — искомая матрица перехода от базиса к базису . Осталось найти координаты многочлена в этих базисах. Раскладывая по базисам, находим

Проверим результат, вычисляя по формуле (8.11):

Свойства матрицы перехода от одного базиса к другому

1. Пусть имеются три базиса пространства и известны матрицы перехода: от базиса к базису ; от к ; от к . Тогда

Действительно, запишем связь (8.10) для данных базисов:

Подставляя первое выражение во второе равенство, получаем . Сравнивая с третьим равенством, приходим к (8.12).

2. Если — матрица перехода от базиса к базису , то матрица обратима и обратная матрица является матрицей перехода от базиса к базису . Координаты вектора в базисах и связаны формулами:

В самом деле, пусть — матрица перехода от базиса к базису . Учитывая, что матрица перехода от базиса к базису — единичная, применяем свойство 1 к трем базисам . Для трех базисов аналогично получаем: . Следовательно, .

3. Всякая обратимая квадратная матрица n-го порядка может служить матрицей перехода от одного базиса n-мерного линейного пространства к другому базису.

Пример 8.4. В двумерном арифметическом пространстве даны два базиса: и . Найти матрицу перехода от базиса к базису и координаты вектора в каждом из базисов.

Решение. Рассмотрим стандартный базис пространства . Находим координаты векторов в стандартном базисе. Раскладываем вектор

В стандартном базисе пространства координатный столбец совпадает с вектором . Для других векторов аналогично получаем . Из координатных столбцов составим матрицы перехода (8.9) от стандартного базиса к данным базисам и

По свойству 1 матриц перехода имеем . .По свойству 2: . Поэтому

В стандартном базисе пространства координатный столбец совпадает с вектором . Найдем координаты этого вектора в базисе (по свойству 2 матрицы перехода):

В самом деле, справедливо разложение

Найдем координаты вектора в базисе двумя способами

Полученный результат подтверждает разложение:

[spoiler title=”источники:”]

http://math.semestr.ru/matrix/basis.php

http://mathhelpplanet.com/static.php?p=pryeobrazovaniya-koordinat-v-linyeinom-prostranstve

[/spoiler]

Калькулятор матриц – действия с матрицами онлайн

С помощью калькулятора матриц вы сможете выполнять различные преобразования матриц, решать СЛАУ, а также находить некоторые характеристики, как, например, определитель, след и ранг. Подробнее о функционале и использовании калькулятора смотрите после блока с самим калькулятором.

Матричный калькулятор

Матрица A
Матрица B

Показатель степени:

Число:

Метод поиска обратной матрицы
Метод Гауса-Жордана
Метод союзной матрицы

Метод решения СЛАУ AX=B
Метод Гауса
Матричный метод
Метод Крамера

Элементарное преобразование

и

Выводить числа в виде

с знаками после запятой

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji

Выполнено действий:

Также может быть интересно:

  • Калькулятор таблицы истинности. СДНФ. СКНФ. Полином Жегалкина
  • Калькулятор комплексных чисел

Как пользоваться калькулятором матриц

  1. Выберите матрицу (или матрицы) с помощью переключателей ()
  2. Укажите размер с помощью выпадающих списков под матрицей ( × )
  3. Заполните элементы (нулевые элементы можно не заполнять.)
  4. Выберите в выпадающем списке требуемую функцию и, если требуется, введите дополнительные параметры.
  5. Нажмите кнопку .
  6. Если вывод чисел не устраивает, просто поменяйте его — доступны три варианта представления: правильные дроби (2), неправильные дроби () и десятичные дроби (2.4) с указанием числа знаков после запятой.

Ввод данных и функционал

  • В качестве элементов используются обыкновенные правильные дроби (1/2, 29/7, -1/125), десятичные дроби (12, -0.01, 3.14), а также числа в экспоненциальной форме (2.5e3, 1e-2).
  • Длина вводимых чисел ничем не ограничена, вводите хоть 1000 цифр, правда, возможно, придётся подождать, пока будут идти вычисления!
  • Используйте для работы одну или две матрицы (чтобы выполнять операции с двумя матрицами, передвиньте переключатель второй матрицы).
  • Вставляйте результат в A или B с помощью кнопок “Вставить в A” и “Вставить в B”.
  • Перетаскивайте (drag-and-drop) матрицы из результата в A или B.
  • Используйте стрелки (, , , ) для перемещения по элементам

Что умеет наш калькулятор матриц?

С одной матрицей (только Матрица A или Матрица B)

  • Транспонировать;
  • Вычислять определитель;
  • Находить ранг и след;
  • Возводить в степень;
  • Умножать на число;
  • Вычислять обратную матрицу;
  • Приводить к треугольному и ступенчатому вид;
  • Находить LU-разложение;
  • Выполнять элементарные преобразования;
  • Выполнять действия с выражениями, содержащими матрицы.

С двумя матрицами (Матрица A и Матрица B)

  • Складывать;
  • Вычитать;
  • Умножать;
  • Решать системы линейных алгебраических уравнений (СЛАУ) вида AX=B;
  • Выполнять действия с выражениями, содержащими матрицы.

Вычисление выражений с матрицами

Вы можете вычислять различные арифметические выражения с матрицами, а также с результатами некоторых преобразований этих матриц.

Из чего могут состоять выражения?

  • Целые и дробные числа
  • Матрицы A, B
  • Знаки арифметических действий: + - * /
  • Круглые скобки для изменения приоритета операций: ( )
  • Транспонирование: ^T
  • Возведение в целую степень: ^

Примеры корректных выражений

  • Cложение двух матриц: A+B, (A)+(B), ((A) + B)
  • Возведение линейной комбинации матриц в степень: (3A - 0.5B)^5
  • Произведение транспонированной матрицы на исходную: A^TA
  • Обратная матрица в квадрате для B: B^-2

Что такое матрица?

Матрицей размера n×m называется прямоугольная таблица специального вида, состоящая из n строк и m столбцов, заполненная числами. Матрицы обозначаются заглавными латинскими буквами. При необходимости размер записывается следующим образом: An×m.

Примеры матриц

Элементы матрицы

Элементы A обозначаются aij, где i – номер строки, в которой находится элемент, j – номер столбца.

Некоторые теоретические сведения

Транспонирование — операция, при которой строки и столбцы матрицы меняются местами: aTij = aji

Главная диагональ квадратной матрицы — диагональ, которая проходит через верхний левый и нижний правый углы. Элементы главной диагонали — aii

Единичная матрица En×n — квадратная матрица из n столбцов и n строк с единицами на главной диагонали и нулями вне её.

Ранг — это максимальное количество линейно независимых строк (столбцов) этой матрицы. Обозначение: rank(A)

След — это сумма элементов, находящихся на её главной диагонали. Обозначение: tr(A) или track(A)

Умножение матрицы на число — матрица такой же размерности, что и исходная, каждый элемент которой является произведением соответствующего элемента исходной матрицы на заданное число.

Возведение в степень — умножение заданной матрицы саму на себя n-ое количество раз, где n – степень, в которую необходимо возвести исходную матрицу. Обозначение: An

Обратная матрица A−1 — матрица, произведение которой на исходную матрицу A равно единичной матрице: A-1×A = A×A-1 = E

Треугольная матрица — квадратная матрица, у которой выше (верхнетреугольная матрица) или ниже (нижнетреугольная матрица) главной диагонали находятся нули.

LU-разложение — представление матрицы в виде произведения двух матриц L и U, где L — нижнетреугольная матрица с еденичной диагональю, а U — верхнетреугольная матрица. A = L·U

Сложение матриц An×m и Bn×m — матрица Cn×m, получаемая попарной суммой соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij+bij

Разность матриц An×m и Bn×m — матрица Cn×m, получаемая попарной разностью соответствующих элементов матриц A и B, то есть каждый элемент матрицы C равен: сij=aij-bij

Умножение матриц An×k и Bk×m — матрица Cn×m, у которой элемент (cij) равен сумме произведений элементов i-той строки матрицы A на соответствующие элементы j-того столбца матрицы B: cij = ai1·b1j + ai2·b2j + ... + aik·bkj

матрица перехода

Вы искали матрица перехода? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и матрица перехода от одного базиса к другому, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели – у нас уже есть решение.
Например, «матрица перехода».

матрица перехода

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как матрица перехода,матрица перехода от одного базиса к другому,матрица перехода от одного базиса к другому онлайн калькулятор,найти матрицу перехода от одного базиса к другому,переход от одного базиса к другому. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и матрица перехода. Просто введите задачу в окошко и нажмите
«решить» здесь (например, матрица перехода от одного базиса к другому онлайн калькулятор).

Где можно решить любую задачу по математике, а так же матрица перехода Онлайн?

Решить задачу матрица перехода вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать – это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице
калькулятора.

Матрица – это прямоугольная таблица каких-либо элементов. В качестве элементов мы будем рассматривать числа, то есть числовые матрицы.
С помощью этого онлайн калькулятора вы сможете рассчитать: найти определитель матрицы, вычислить ранг матрицы, возвести матрицу в степень, транспонировать матрицу, найти сумму и произведение матриц, вычислить обратную матрицу, умножить матрицу, треугольный и диагональный вид матрицы.

Заполните поля для элементов матрицы и нажмите соответствующую кнопку.
оставляйте лишние ячейки пустыми для ввода не квадратных матриц
элементы матриц – десятичные (конечные и периодические) дроби: 1/23 ,
12.45 ,
-1.3(56) ,
1.2e-4 ; либо арифметические выражения:
2/3+3*(10-4),
(1+x)/y^2,
2^0.5
используйте ввод, пробел, клавиши-стрелки для перемещения по ячейкам
перетаскивайте матрицы из результата (drag-and-drop), или даже из текстового редактора

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Добавить комментарий