Как найти матрицу преобразования координат

Все курсы > Линейная алгебра > Занятие 3

На прошлых занятиях мы поговорили про векторы и векторные пространства. Сегодня рассмотрим матрицы и линейные преобразования.

Ноутбук к сегодняшнему занятию⧉

Как матрицы преобразовывают пространство

Посмотрим, как матрица может изменить положение вектора.

Преобразование базисных векторов

Начнем с базисных векторов. Возьмем матрицу $A$ и два базисных вектора $mathbf i$ и $mathbf j$.

A = np.array([[2, 3],

              [10, 1]])

i = np.array([1, 0])

j = np.array([0, 1])

Если поочередно умножить матрицу на каждый из векторов, то первый столбец матрицы $A$ определит новые координаты вектора $mathbf i$, второй столбец — вектора $mathbf j$.

$$ begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} cdot begin{bmatrix} 1 \ 0 end{bmatrix} = begin{bmatrix} 2 \ 10 end{bmatrix} $$

$$ begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} cdot begin{bmatrix} 0 \ 1 end{bmatrix} = begin{bmatrix} 3 \ 1 end{bmatrix} $$

Так трансформационная матрица (transformation matrix, левый множитель) оказывает влияние на базисные (и все остальные) векторы и, таким образом, меняет пространство.

Посмотрим на результат на графике.

ax = plt.axes()

plt.xlim([0.5, 5])

plt.ylim([0.5, 6])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# найдем координаты с помощью произведения

arrow_a = ax.arrow(0, 0, np.dot(A, i)[0], np.dot(A, i)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘r’, ec = ‘r’)

arrow_b = ax.arrow(0, 0, np.dot(A, j)[0], np.dot(A, j)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘r’, ec = ‘r’)

plt.show()

преобразование базисных векторов с помощью матрицы

Продемонстрируем, что при преобразовании любого вектора, мы по сути меняем базисные векторы, умноженные на скаляр. Рассмотрим, как в результате умножения матрицы A на вектор $mathbf r$, мы получим новый вектор $mathbf r’$.

$$A cdot mathbf r = mathbf r’ $$

Очевидно, мы можем умножать векторы $mathbf r$ и $mathbf r’$ на скаляр $n$ или представить их в виде суммы двух (базисных) векторов.

$$A cdot n mathbf r = n mathbf r’ $$

$$A cdot (mathbf i + mathbf j) = (mathbf i + mathbf j)’ $$

Тогда справедливо, что

$$A cdot (n mathbf i+m mathbf j) = (n mathbf i+m mathbf j)’ $$

Выполним умножение.

$$ A cdot (n mathbf i + m mathbf j) = (nA mathbf i+mA mathbf j) = n mathbf i’ + m mathbf j’ $$

Обратите внимание, что умножение матрицы на скаляр коммутативно, то есть $A n mathbf i = n A mathbf i $.

Таким образом, можно сказать, что при преобразовании пространства матрица преобразует масштабированные (scaled) базисные векторы. Приведем пример.

$$  begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} begin{bmatrix} 2 \ 3 end{bmatrix} = begin{bmatrix} 12 \ 32 end{bmatrix} $$

$$  begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} left( 2 begin{bmatrix} 1 \ 0 end{bmatrix} + 3 begin{bmatrix} 0 \ 1 end{bmatrix} right)  = begin{bmatrix} 12 \ 32 end{bmatrix} $$

$$ 2 begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} begin{bmatrix} 1 \ 0 end{bmatrix} + 3 begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} begin{bmatrix} 0 \ 1 end{bmatrix} = begin{bmatrix} 12 \ 32 end{bmatrix} $$

$$ 2 begin{bmatrix} 2 \ 10 end{bmatrix} + 3 begin{bmatrix} 3 \ 1 end{bmatrix} = begin{bmatrix} 12 \ 32 end{bmatrix} $$

Иначе говоря, «новые», преобразованные векторы будут иметь те же координаты относительно нового базиса, что и исходный вектор, относительно исходного базиса (потому что $n$ и $m$ или 2 и 3 в примере выше не изменяются при преобразовании).

Свойства преобразований

Вначале дадим описательное определение линейной трансформации пространства.

При линейном преобразовании начало координат не смещается, а линии координатной сетки остаются параллельными и сохраняют исходное расстояние друг от друга (origin remains fixed, grid lines remain parallel and evenly spaced).

Более формально свойства трансформации ($T$), которую также можно назвать функцией (function) или отображением (mapping) относительно векторов $mathbf v$ и $mathbf w$ можно выразить через две заданные в линейном пространстве операции сложения и умножения на скаляр.

  1. $ T(mathbf v + mathbf w) = T(mathbf v) + T(mathbf w) $
  2. $ T(c mathbf v) = c T(mathbf v) $

Примечение. Несмещение начала координат можно рассматривать как частный случай свойства 2, так как преобразование нулевого вектора должно дать нулевой вектор $T(mathbf 0) = mathbf 0 $. Приведем пример линейного и нелинейного преобразований.

Пример 1. Проекция

Рассмотрим проекцию $T: mathbb R^2 rightarrow mathbb R^2 $.

пример линейного преобразования: проекция

Проверим приведенные выше свойства:

  • $ T(mathbf v + mathbf w) = T(mathbf v) + T(mathbf w) $
  • если, например, вектор $mathbf v$ увеличить в два раза, то и проекция увеличится в два раза
  • начало координат при проекции не смещается, то есть $T(mathbf 0) = mathbf 0 $

Пример 2. Нелинейное преобразование

Предположим, что мы хотим сместить каждый вектор проскости (в частности, вектор $ mathbf v $) на некоторый вектор $ mathbf d $.

пример нелинейного преобразования

Очевидно нарушается второе свойство, например, $ T(2 mathbf v) not= 2T(mathbf v) $. Более того, смещается начало координат, $T(mathbf 0) = mathbf d $.

Умножение матрицы на вектор

Важно, что умножение матрицы $A$ на векторы $mathbf v$ и $mathbf w$, т.е. $T(mathbf v) = A mathbf v$ и $T(mathbf w) = A mathbf w$ всегда линейно, так как

  • $ A(mathbf v + mathbf w) = A(mathbf v) + A(mathbf w) $
  • $ A(c mathbf v) = c A(mathbf v) $

Соответственно, задача линейного преобразования сводится к нахождению правильной трансформационной матрицы (причем в известной, заданной системе координат).

Например, если мы хотим перейти от трех измерений к двум, $T: mathbb R^3 rightarrow mathbb R^2$, то нам потребуется матрица $2 times 3$:

пример линейного преобразования: умножение матрицы на вектор

В общем случае матрица $A$ размерностью $m times n$ соответствует $ T: R^n rightarrow R^m $.

Смена базиса

Как уже было сказано, если линейное преобразование задано матрицей, то введена система координат (базис).

  • На вход матрица получает базис $ mathbf v_1,…, mathbf v_n in R^n $
  • На выходе выдает $ mathbf w_1,…, mathbf w_m in R^m $

Другими словами, при преобразовании линейной комбинации $mathbf v_1,…, mathbf v_n$ в линейную комбинацию $mathbf w_1,…, mathbf w_m$ происходит смена базиса. Например,

$$ mathbf v = c_1 mathbf v_1 + c_2 mathbf v_2 rightarrow T(mathbf v) = c_1 mathbf w_1 + c_2 mathbf w_2 $$

Пример 3. Производная как линейное преобразование

Интересно, что взятие производной линейно. Предположим, что у нас есть некоторая функция $ f(x) = c_1 + c_2 x + c_3 x^2 $. Ее базис: ${ 1, x, x^2 }$. Тогда производной будет $f'(x) = c_2 + 2 c_3 x $ с базисом ${ 1, x }$. Найти производную можно с помощью матрицы

$$ begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 2 end{bmatrix} begin{bmatrix} c_1 \ c_2 \ c_3 end{bmatrix} = begin{bmatrix} c_2 \ 2c_3 end{bmatrix} $$

Решение системы уравнений как преобразование

Теперь рассмотрим решение системы линейных уравнений (simultaneous equations) с точки зрения трансформации пространства.

$$ begin{bmatrix} 2 & 3 \ 10 & 1 end{bmatrix} begin{bmatrix} a \ b end{bmatrix} = begin{bmatrix} 8 \ 13 end{bmatrix}$$

По сути, нам нужно найти такой вектор $begin{bmatrix} a \ b end{bmatrix}$, при умножении матрицы на который мы окажемся в точке $ begin{bmatrix} 8 \ 13 end{bmatrix} $.

Виды преобразований

Можно выделить некоторые часто встречающиеся виды преобразований. Создадим вектор $mathbf x$.

Единичная матрица

Если умножить единичную матрицу (identity matrix) на вектор $mathbf x$, ничего не произойдет.

I = np.array([[1, 0],

              [0, 1]])

np.dot(I, x)

Обратите внимание, мы легко можем догадаться, что с вектором после преобразования ничего не произойдет, потому что столбцы трансформационной матрицы в точности повторяют векторы базиса $mathbf i$ и $mathbf j$.

Сжатие и растяжение

При сжатии или растяжении (scaling) координаты вектора соответственно уменьшаются или увеличиваются в размере. В случае базисных векторов, они не меняют направления. Приведем пример растяжения.

# столбцы – это тот же базис, но

# единицы увеличены в три и два раза соответственно

Scale = np.array([[3, 0],

                  [0, 2]])

np.dot(Scale, x)

Посмотрим, как это выглядит на графике.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ax = plt.axes()

plt.xlim([0.5, 9.5])

plt.ylim([0.5, 9.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, np.dot(Scale, i)[0], np.dot(Scale, i)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Scale, j)[0], np.dot(Scale, j)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), 3, 2, fill = False, edgecolor = ‘b’, lw = 2))

ax.arrow(0, 0, np.dot(Scale, x)[0], np.dot(Scale, x)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘r’, ec = ‘r’)

plt.show()

растяжение

Дадим некоторые пояснения. Преобразования пространства удобно описывать с помощью площади, образованной двумя (в пространстве $R^2$) векторами.

  • Зеленый квадрат: площадь базисных векторов
  • Синий квадрат: площадь масштабированных базисных векторов
  • Красный вектор: масштабированный вектор $mathbf x$

Обратите внимание, векторы базиса $mathbf i$ и $mathbf j$ после трансформации сохранили направление, вектор $ mathbf r $ сместился выше. Понимание того, что некоторые векторы сохраняют направление, а некоторые — нет, очень пригодится позднее.

Приведем пример сжатия. Для этого нужно, чтобы ненулевые координаты матрицы были меньше единицы.

Squish = np.array([[.5, 0],

                   [0, .5]])

np.dot(Squish, x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ax = plt.axes()

plt.xlim([0.5, 2.5])

plt.ylim([0.5, 2.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, np.dot(Squish, i)[0], np.dot(Squish, i)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Squish, j)[0], np.dot(Squish, j)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), .5, .5, fill = False, edgecolor = ‘b’, lw = 2))

ax.arrow(0, 0, np.dot(Squish, x)[0], np.dot(Squish, x)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘r’, ec = ‘r’)

plt.show()

сжатие

Отражение

Отражение (reflection) как бы «перекидывает» вектор на другую сторону от осей координат. Посмотрим на отражение относительно оси y (то есть «перекидывать» мы будем вектор $mathbf i$). Для этого в первом столбце трансформационной матрицы 1 меняется на $-1$.

Reflect_y = np.array([[1, 0],

                      [0, 2]])

# посмотрим, где окажется вектор x

np.dot(Reflect_y, x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ax = plt.axes()

plt.xlim([1.5, 1.5])

plt.ylim([0.2, 2.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# отражается относительно оси y

ax.arrow(0, 0, np.dot(Reflect_y, i)[0], np.dot(Reflect_y, i)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

# вектор j мы растягиваем

ax.arrow(0, 0, np.dot(Reflect_y, j)[0], np.dot(Reflect_y, j)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), 1, 2, fill = False, edgecolor = ‘b’, lw = 2))

plt.show()

отражение относительно оси y

Выполним отражение относительно обеих осей.

Invert = np.array([[1, 0],

                   [0, 1]])

np.dot(Invert, x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ax = plt.axes()

plt.xlim([1.5, 1.5])

plt.ylim([1.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# отражается относительно оси y

ax.arrow(0, 0, np.dot(Invert, i)[0], np.dot(Invert, i)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

# отражается относительно оси x

ax.arrow(0, 0, np.dot(Invert, j)[0], np.dot(Invert, j)[1], width = 0.02, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘b’, lw = 2))

plt.show()

отражение относительно обеих осей

Матрица перестановки

Матрица перестановки (permutation matrix) позволяет поменять векторы $mathbf i$ и $mathbf j$ местами.

P = np.array([[0, 1],

              [1, 0]])

# посмотрим, где окажется вектор x

np.dot(P, x)

# а также базисные векторы

np.dot(P, i), np.dot(P, j)

(array([0, 1]), array([1, 0]))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

ax = plt.axes()

plt.xlim([0.5, 1.5])

plt.ylim([0.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# i и j меняются местами

ax.arrow(0, 0, np.dot(P, i)[0], np.dot(P, i)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(P, j)[0], np.dot(P, j)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘b’, lw = 1))

plt.show()

матрица перестановки

Сдвиг (трансвекция)

Сдвиг или трансвекция (shear) предполагает, что один из базисных векторов остается на месте, второй сдвигается.

# вектор i остается на месте, j сдвигается

Shear = np.array([[1, 1],

                  [0, 1]])

np.dot(Shear, x)

ax = plt.axes()

plt.xlim([0.5, 2.5])

plt.ylim([0.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, np.dot(Shear, i)[0], np.dot(Shear, i)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Shear, j)[0], np.dot(Shear, j)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Polygon([[0, 0], [1, 0], [2, 1], [1, 1]], fill = False, edgecolor = ‘b’, lw = 2))

plt.show()

сдвиг

Вращение

Посмотрим, как можно повернуть (rotate) базисные векторы на 90 градусов против часовой стрелки.

# поворот на 90 градусов против часовой стрелки

Rotate = np.array([[0, 1],

                   [1, 0]])

np.dot(Rotate, x)

ax = plt.axes()

plt.xlim([1.5, 1.5])

plt.ylim([0.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, np.dot(Rotate, i)[0], np.dot(Rotate, i)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Rotate, j)[0], np.dot(Rotate, j)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘g’, lw = 2))

ax.add_patch(Rectangle((0, 0), 1, 1, fill = False, edgecolor = ‘b’, lw = 2))

plt.show()

поворот на 90 градусов

Поворот на определенный угол против часовой стрелки.

theta = np.radians(90)

Rotate = np.array([[np.cos(theta), np.sin(theta)],

                   [np.sin(theta), np.cos(theta)]])

np.dot(Rotate, x)

Смысл такой трансформации представлен на схеме ниже. Для поворота на 90 градусов против часовой стрелки вспомним, что

  • для вектора $mathbf i quad cos(90^{circ}) = 0, quad -sin(90^{circ}) = -1$
  • для вектора $mathbf j quad sin(90^{circ}) = 1, quad cos(90^{circ}) = 0$

матрица вращения

Видео про линейные преобразования⧉.

Композиция преобразований

Посмотрим, что произойдет, если применить сначала поворот на 90 градусов по часовой стрелке, затем отражение относительно оси y.

Так как матрица преобразования стоит слева от преобразуемого вектора, то для применения двух преобразований, матрица второго преобразования будет стоять слева от матрицы первого.

$$ Reflect_y cdot (Rotate cdot mathbf x ) $$

Подготовим матрицы.

# поворот по часовой стрелки

theta = np.radians(90)

Rotate = np.array([[np.cos(theta), np.sin(theta)],

                   [np.sin(theta), np.cos(theta)]]).round()

Rotate

array([[ 0.,  1.],

       [-1.,  0.]])

# отражение относительно оси y

Reflect_y = np.array([[1, 0],

                      [0, 1]])

Reflect_y

array([[-1,  0],

       [ 0,  1]])

Выполним преобразование.

np.dot(Reflect_y, np.dot(Rotate, i)), np.dot(Reflect_y, np.dot(Rotate, j))

(array([ 0., -1.]), array([-1.,  0.]))

Посмотрим на этот процесс графически. Вначале первое преобразование (вращение).

ax = plt.axes()

plt.xlim([1.5, 1.5])

plt.ylim([1.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# поворот по часовой стрелке

ax.arrow(0, 0, np.dot(Rotate, i)[0], np.dot(Rotate, i)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Rotate, j)[0], np.dot(Rotate, j)[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

plt.show()

композиция преобразований: вращение

Теперь применим второе преобразование (отражение) к результату первого.

ax = plt.axes()

plt.xlim([1.5, 1.5])

plt.ylim([1.5, 1.5])

plt.grid()

ax.arrow(0, 0, i[0], i[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

ax.arrow(0, 0, j[0], j[1], width = 0.03, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘g’, ec = ‘g’)

# отображение относительно оси y

ax.arrow(0, 0, np.dot(Reflect_y, np.dot(Rotate, i))[0], np.dot(Reflect_y, np.dot(Rotate, i))[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

ax.arrow(0, 0, np.dot(Reflect_y, np.dot(Rotate, j))[0], np.dot(Reflect_y, np.dot(Rotate, j))[1], width = 0.01, head_width = 0.1, head_length = 0.2, length_includes_head = True, fc = ‘b’, ec = ‘b’)

plt.show()

композиция преобразований: отражение

Запишем, где оказались векторы $mathbf i$ и $mathbf j$ после второго преобразования и соединим эти координаты в матрицу. Затем умножим на исходные векторы $mathbf i$ и $mathbf j$.

Composition = np.array([[0, 1],

                        [1, 0]])

np.dot(Composition, i), np.dot(Composition, j)

(array([ 0, -1]), array([-1,  0]))

Результат аналогичен последовательному применению предыдущих преобразований.

# то же самое мы получим, перемножив матрицы преобразований

np.dot(Reflect_y, Rotate)

array([[ 0., -1.],

       [-1.,  0.]])

Обратите внимание, что порядок операций важен. Поменяв матрицы преобразований местами, мы получим другой результат.

# выполнив отражение, а затем поворот,

# мы вернем векторы в исходное положение

np.dot(Rotate, np.dot(Reflect_y, i)), np.dot(Rotate, np.dot(Reflect_y, j))

(array([0., 1.]), array([1., 0.]))

Это еще раз демонстрирует некоммутативность, но ассоциативность умножения матриц.

Приведем ссылки на видео:

  • Умножение матриц как последовательность преобразований⧉
  • Линейные преобразования в трехмерном пространстве⧉

Подведем итог

Мы посмотрели, как матрицы преобразовывают пространство и на примерах изучили, чем линейные преобразования отличаются от нелинейных. Кроме того, мы познакомились с основными видами линейных преобразований.

Рассмотрим системы линейных уравнений.

Матрица перехода

3 июля 2022

Матрица перехода — это просто квадратная матрица, в столбцах которой записаны координаты новых базисных векторов. У такой матрицы много важных свойств, которые сформулированы и доказаны в первой части урока — теоретической. Этой теории хватит для любого экзамена или коллоквиума.

Вторая часть урока — практическая. В ней разобраны все типовые задачи, которые встречаются на контрольных, зачётах и экзаменах.

Содержание

  1. Определение матрицы перехода
  2. Свойства матрицы перехода
  3. Теорема о замене координат
  4. Задача 1. Базисы трёхмерного пространства
  5. Задача 2. Базисы в поле вычетов
  6. Задача 3. Пространство многочленов
  7. Задача 4. Матрица перехода при симметрии
  8. Задача 5. Матрица поворота

Если вы учитесь в серьёзном университете (МГУ, Бауманка и т.д.), то обязательно изучите первые три пункта. А если вам нужны только задачи, сразу переходите к пункта 4—6.

1. Определение матрицы перехода

Пусть дано $n$-мерное линейное пространство $L$. Пусть также $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — два базиса в $L$.

Определение. Матрица перехода ${{T}_{eto f}}$ от базиса $e=left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ к базису $f=left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — это квадратная матрица порядка $n$, где по столбцам записаны координаты нового базиса $f$ в старом базисе $e$:

[{{T}_{eto f}}=left[ begin{array}{c|c|c|c}{{t}_{1,1}} & {{t}_{2,1}} & cdots & {{t}_{n,1}} \{{t}_{1,2}} & {{t}_{2,2}} & cdots & {{t}_{n,1}} \cdots & cdots & cdots & cdots \{{t}_{1,n}} & {{t}_{2,n}} & cdots & {{t}_{n,n}} \end{array} right]]

Обратите внимание на нумерацию элементов ${{t}_{i,j}}$: первый индекс обозначает номер столбца, т.е. номер нового базисного вектора, а второй отвечает за координаты этого вектора в старом базисе. Так, во втором столбце записаны координаты вектора ${{f}_{2}}$:

[{{f}_{2}}={{left[ {{t}_{2,1}},{{t}_{2,2}},ldots ,{{t}_{2,n}} right]}^{T}}]

Или, что то же самое, разложение вектора ${{f}_{2}}$ по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[{{f}_{2}}={{t}_{2,1}}{{e}_{1}}+{{t}_{2,2}}{{e}_{2}}+ldots +{{t}_{2,n}}{{e}_{n}}]

Да, такая нумерация не является обязательной. Но она очень распространена именно в записи матриц перехода: первый индекс отвечает за номер базисного вектора, второй — за номер координаты этого вектора.

Пример 1. В некотором базисе $e=left{ {{e}_{1}},{{e}_{2}},{{e}_{3}} right}$ векторного пространства ${{mathbb{R}}^{3}}$ даны три вектора:

[{{f}_{1}}={{left( 1,0,1 right)}^{T}},quad {{f}_{2}}={{left( 2,1,0 right)}^{T}},quad {{f}_{3}}={{left( 0,3,1 right)}^{T}}]

[begin{align}{{f}_{1}} &={{left( 1,0,1 right)}^{T}}, \ {{f}_{2}} &={{left( 2,1,0 right)}^{T}}, \ {{f}_{3}} &={{left( 0,3,1 right)}^{T}} \ end{align}]

Убедитесь, что система векторов $f=left{ {{f}_{1}},{{f}_{2}},{{f}_{3}} right}$ образует базис в ${{mathbb{R}}^{3}}$, найдите матрицу перехода ${{T}_{eto f}}$.

Решение. Система векторов будет базисом, если эти векторы линейно независимы, а их количество совпадает с размерностью пространства. Поскольку у нас три вектора и $dim{{mathbb{R}}^{3}}=3$, осталось проверить линейную независимость. Составим матрицу из столбцов с координатами векторов ${{f}_{1}}$, ${{f}_{2}}$ и ${{f}_{3}}$:

[left[ begin{matrix}1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]]

Вообще-то это и есть матрица перехода ${{T}_{eto f}}$, но сначала надо установить линейную независимость. Поэтому выполним элементарные преобразования строк:

[left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]begin{matrix} \ \ -1cdot left[ 1 right] \ end{matrix}sim left[ begin{array}{crc} 1 & 2 & 0 \ 0 & 1 & 3 \ 0 & -2 & 1 \ end{array} right]begin{matrix} -2cdot left[ 2 right] \ \ +2cdot left[ 2 right] \ end{matrix}sim left[ begin{array}{ccr} 1 & 0 & -6 \ 0 & 1 & 3 \ 0 & 0 & 7 \ end{array} right]]

[begin{align} & left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]begin{matrix} \ \ -1cdot left[ 1 right] \ end{matrix} \ & left[ begin{array}{crc} 1 & 2 & 0 \ 0 & 1 & 3 \ 0 & -2 & 1 \ end{array} right]begin{matrix} -2cdot left[ 2 right] \ \ +2cdot left[ 2 right] \ end{matrix} \ & left[ begin{array}{ccr} 1 & 0 & -6 \ 0 & 1 & 3 \ 0 & 0 & 7 \ end{array} right] \ end{align}]

Получили верхнетреугольную матрицу без нулей на главной диагонали. Ранг такой матрицы равен 3, поэтому система $left{ {{f}_{1}},{{f}_{2}},{{f}_{3}} right}$ линейно независима и образует базис. Матрица перехода от базиса $e$ к базису $f$ уже известна:

[{{T}_{eto f}}=left[ begin{matrix} 1 & 2 & 0 \ 0 & 1 & 3 \ 1 & 0 & 1 \ end{matrix} right]]

1.1. Зачем нужна матрица перехода

Матрица перехода нужна для того, чтобы компактно и наглядно выражать новый базис через старый. В самом деле, разложим векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ нового базиса по старому базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[begin{align}{{f}_{1}} &={{x}_{1,1}}{{e}_{1}}+{{x}_{2,1}}{{e}_{2}}+ldots +{{x}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{x}_{1,2}}{{e}_{1}}+{{x}_{2,2}}{{e}_{2}}+ldots +{{x}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}} &={{x}_{1,n}}{{e}_{1}}+{{x}_{2,n}}{{e}_{2}}+ldots +{{x}_{n,n}}{{e}_{n}} \ end{align}]

Получили систему из $n$ уравнений, которые в матричном виде можно представить так:

[left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1,1}} & cdots & {{x}_{1,n}} \ cdots & cdots & cdots \ {{x}_{n,1}} & cdots & {{x}_{n,n}} \ end{matrix} right]]

[left[ {{f}_{1}} cdots {{f}_{n}} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1,1}} & cdots & {{x}_{1,n}} \ cdots & cdots & cdots \ {{x}_{n,1}} & cdots & {{x}_{n,n}} \ end{matrix} right]]

Обратите внимание: ${{f}_{1}},ldots ,{{f}_{n}}$ и ${{e}_{1}},ldots ,{{e}_{n}}$ — это именно векторы, а не числа. Такие наборы принято записывать строками — в отличие от вектор-столбцов, элементами которых как раз выступают обычные числа.

Последний множитель — это и есть матрица перехода ${{T}_{eto f}}$, поэтому всё произведение можно записать более компактно:

[left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}]

2. Свойства матрицы перехода

Мы разберём три простых свойства, а далее отдельным разделом будет ещё одно — уже более серьёзное.

2.1. Переход от базиса к этому же базису

Свойство 1. При переходе от базиса $e$ к этому же базису $e$ матрица перехода ${{T}_{eto e}}=E$.

Для доказательства достаточно рассмотреть формулы

[begin{align}{{f}_{1}} &={{x}_{1,1}}{{e}_{1}}+{{x}_{2,1}}{{e}_{2}}+ldots +{{x}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{x}_{1,2}}{{e}_{1}}+{{x}_{2,2}}{{e}_{2}}+ldots +{{x}_{n,2}}{{e}_{n}} \ &cdots \ {{f}_{n}} &={{x}_{1,n}}{{e}_{1}}+{{x}_{2,n}}{{e}_{2}}+ldots +{{x}_{n,n}}{{e}_{n}} \ end{align}]

А затем положить ${{f}_{1}}={{e}_{1}}$, ${{f}_{2}}={{e}_{2}}$, …, ${{f}_{n}}={{e}_{n}}$. Тогда:

[begin{align} {{f}_{1}} &={{e}_{1}}=1cdot {{e}_{1}}+0cdot {{e}_{2}}+ldots +0cdot {{e}_{n}} \ {{f}_{2}} &={{e}_{2}}=0cdot {{e}_{1}}+1cdot {{e}_{2}}+ldots +0cdot {{e}_{n}} \ &cdots \ {{f}_{n}} &={{e}_{n}}=0cdot {{e}_{1}}+0cdot {{e}_{2}}+ldots +1cdot {{e}_{n}} \ end{align}]

Указанное выражение однозначно, поскольку $e$ — базис. Следовательно, матрица перехода равна

[{{T}_{eto f}}=left[ begin{array}{c|c|c|c} 1 & 0 & cdots& 0 \ 0 & 1 & cdots& 0 \ cdots& cdots& cdots& cdots \ 0 & 0 & cdots& 1 \ end{array} right]=E]

Итак, ${{T}_{eto f}}=E$, что и требовалось доказать.

2.2. Обратный переход

Свойство 2. Если ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к базису $f$, то ${{T}_{fto e}}={{left( {{T}_{eto f}} right)}^{-1}}$ матрица обратного перехода, от базиса $f$ к базису $e$.

В самом деле, базисы $e$ и $f$ связаны с матрицей перехода по формуле

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}]

Поскольку матрица ${{T}_{eto f}}$ невырожденная, существует обратная к ней матрица ${{left( {{T}_{eto f}} right)}^{-1}}$. Домножим на эту матрицу обе части формулы, связывающей базисы $e$ и $f$:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{left( {{T}_{eto f}} right)}^{-1}}=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}cdot {{left( {{T}_{eto f}} right)}^{-1}}]

[begin{align}left[ {{f}_{1}},ldots ,{{f}_{n}} right] &cdot {{left( {{T}_{eto f}} right)}^{-1}}= \ &=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}cdot {{left( {{T}_{eto f}} right)}^{-1}} \ end{align}]

Упрощаем эту формулу и получаем

[left[ {{e}_{1}},ldots ,{{e}_{n}} right]=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{left( {{T}_{eto f}} right)}^{-1}}]

Итак, мы получили формулу перехода от базиса $f$ к базису $e$. Следовательно, ${{left( {{T}_{eto f}} right)}^{-1}}$ — матрица такого перехода, что и требовалось доказать.

2.3. Переход через транзитный базис

Пусть ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к базису $f$ линейного пространства $L$, а ${{T}_{fto g}}$ — матрица перехода от базиса $f$ к базису $g$ того же линейного пространства $L$.

Тогда матрица перехода ${{T}_{eto g}}$ от базиса $e$ к базису $g$ находится по формуле

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}]

Для доказательства достаточно записать формулы для выражения базисов $f$ и $g$, а затем подставить одну формулу в другую. По условию теоремы, базис $f$ выражается через базис $e$ по формуле

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}}]

Кроме того, базис $g$ выражается через базис $f$ по формуле

[left[ {{g}_{1}},ldots ,{{g}_{n}} right]=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}]

Подставим первое выражение во второе и получим

[begin{align}left[ {{g}_{1}},ldots ,{{g}_{n}} right] &=left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}= \ &=left( left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}} right)cdot {{T}_{fto g}}= \ & =left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot left( {{T}_{eto f}}cdot {{T}_{fto g}} right) end{align}]

[begin{align}& left[ {{g}_{1}},ldots ,{{g}_{n}} right]= \ =& left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot {{T}_{fto g}}= \ =& left( left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot {{T}_{eto f}} right)cdot {{T}_{fto g}}= \ =& left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot left( {{T}_{eto f}}cdot {{T}_{fto g}} right) end{align}]

Мы получили прямое выражение базиса $g$ через базис $e$, причём матрица перехода равна

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}]

Это именно та формула, которую и требовалось доказать.

2.4. Невырожденные матрицы

И ещё одно важное свойство:

Свойство 4. Пусть дана произвольная квадратная невырожденная матрица

[T=left[ begin{matrix}{{a}_{1,1}} & {{a}_{1,2}} & cdots & {{a}_{1,n}} \ {{a}_{2,1}} & {{a}_{2,2}} & cdots & {{a}_{2,n}} \ cdots & cdots & cdots & cdots \ {{a}_{n,1}} & {{a}_{n,2}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Пусть $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ — произвольный базис линейного пространства $L$. Тогда система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$, полученных по формуле

[begin{align}{{f}_{1}}&={{a}_{1,1}}{{e}_{1}}+{{a}_{2,1}}{{e}_{2}}+ldots +{{a}_{n,1}}{{e}_{n}} \ {{f}_{2}}&={{a}_{1,2}}{{e}_{1}}+{{a}_{2,2}}{{e}_{2}}+ldots +{{a}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}}&={{a}_{1,n}}{{e}_{1}}+{{a}_{2,n}}{{e}_{2}}+ldots +{{a}_{n,n}}{{e}_{n}} \ end{align}]

тоже будет базисом $L$.

Иначе говоря, всякая квадратная невырожденная матрица $T$ является матрицей перехода от данного базиса $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ к некоторому новому базису $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ линейного пространства $L$.

Обратите внимание: поскольку изначально мы не знаем, что $T$ — матрица перехода, её элементы пронумерованы стандартным образом: первый индекс отвечает за строку, а второй — за столбец. Однако это нисколько не помешает нам доказать теорему.

Для доказательства того, что $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — базис линейного пространства $L$, нужно доказать два утверждения:

  • 1.Система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — линейно независима.
  • 2.Ранг этой системы векторов совпадает с размерностью пространства $L$.

Поскольку количество векторов в системе $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ совпадает с количеством базисных векторов $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$, т.е. равно $n=dim L$, достаточно лишь проверить линейную независимость.

Рассмотрим линейную комбинацию векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ и предположим, что она равна нулю:

[{{lambda }_{1}}{{f}_{1}}+{{lambda }_{2}}{{f}_{2}}+ldots +{{lambda }_{n}}{{f}_{n}}=0]

В матричном виде это выглядит так:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]cdot left[ begin{align}& {{lambda }_{1}} \ & cdots\ & {{lambda }_{n}} \ end{align} right]=0]

По условию теоремы векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ раскладываются по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ с коэффициентами, записанными в столбцах матрицы $T$. В матричном виде это выглядит так:

[left[ {{f}_{1}},ldots ,{{f}_{n}} right]=left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot T]

Подставляем полученное выражение для $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ в предыдущее матричное уравнение и получаем

[left[ {{e}_{1}},ldots ,{{e}_{n}} right]cdot Tcdot left[ begin{align}& {{lambda }_{1}} \ & cdots \ & {{lambda }_{n}} \ end{align} right]=0]

Поскольку $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ — базис линейного пространства $L$, такое равенство возможно лишь при условии

[Tcdot left[ begin{matrix} {{lambda }_{1}} \ cdots \ {{lambda }_{n}} \ end{matrix} right]=left[ begin{matrix} 0 \ cdots \ 0 \ end{matrix} right]]

Это матричное уравнение можно рассматривать как систему из $n$ однородных уравнений относительно переменных ${{lambda }_{1}},ldots ,{{lambda }_{n}}$. И поскольку по условию теоремы матрица $T$ невырожденная, это СЛАУ имеет лишь одно решение — тривиальное:

[{{lambda }_{1}}={{lambda }_{2}}=ldots ={{lambda }_{n}}=0]

Получаем, что система векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ линейно независима, а количество векторов совпадает с размерностью линейного пространства $L$. Следовательно, эта система — базис, что и требовалось доказать.

3. Замена координат в новом базисе

До сих пор мы рассуждали лишь о том, как координаты новых базисных векторов $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ выражаются через координаты старых базисных векторов $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$. Но что будет с координатами одного и того же вектора линейного пространства $L$ при переходе от одного базиса к другому?

Ответ даёт следующая теорема.

3.1. Формулировка теоремы

Теорема. Пусть $e=left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $f=left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ — базисы линейного пространства $L$ над полем $K$. Пусть ${{T}_{eto f}}$ — матрица перехода от базиса $e$ к $f$:

[{{T}_{eto f}}=left[ begin{matrix}{{a}_{1,1}} & cdots& {{a}_{1,n}} \ cdots& cdots& cdots \ {{a}_{n,1}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Тогда координаты произвольного вектора $hin L$ пересчитываются по формуле

[{{left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]}_{e}}={{T}_{eto f}}cdot {{left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]}_{f}}]

Ещё раз: если произвольный вектор $hin L$ в новом базисе $f$ имеет координаты

[{{left[ h right]}_{f}}=left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

то в старом базисе $e$ этот же вектор $hin L$ имеет координаты

[{{left[ h right]}_{e}}=left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]={{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Т.е. для векторов всё наоборот: не новые координаты выражаются через старые, а старые — через новые. Впрочем, никто не мешает найти матрицу $T_{eto f}^{-1}$ и записать

[left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]=T_{eto f}^{-1}cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]]

Но такая запись предполагает дополнительное действие — нахождение обратной матрицы.

3.2. Доказательство

Сначала «соберём» матрицу ${{T}_{eto f}}$. Для этого разложим векторы $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$ по базису $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$:

[left{ begin{align}{{f}_{1}} &={{a}_{1,1}}{{e}_{1}}+{{a}_{2,1}}{{e}_{2}}+ldots +{{a}_{n,1}}{{e}_{n}} \ {{f}_{2}} &={{a}_{1,2}}{{e}_{1}}+{{a}_{2,2}}{{e}_{2}}+ldots +{{a}_{n,2}}{{e}_{n}} \ & cdots \ {{f}_{n}} &={{a}_{1,n}}{{e}_{1}} +{{a}_{2,n}}{{e}_{2}}+ldots +{{a}_{n,n}}{{e}_{n}} \ end{align} right.]

В матричной форме эту систему линейных уравнений можно записать так:

[left[ begin{matrix} {{f}_{1}} \ {{f}_{2}} \ cdots \ {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{a}_{1,1}} & {{a}_{2,1}} & cdots & {{a}_{n,1}} \ {{a}_{1,2}} & {{a}_{2,2}} & cdots & {{a}_{n,2}} \ cdots & cdots & cdots & cdots \ {{a}_{1,n}} & {{a}_{2,n}} & cdots & {{a}_{n,n}} \ end{matrix} right]cdot left[ begin{matrix} {{e}_{1}} \ {{e}_{2}} \ cdots \ {{e}_{n}} \ end{matrix} right]]

Транспонируем обе стороны равенства, учитывая, что произведение справа транспонируется по правилу ${{left( Acdot B right)}^{T}}={{B}^{T}}cdot {{A}^{T}}$:

[left[ begin{matrix}{{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{a}_{1,1}} & {{a}_{1,2}} & cdots & {{a}_{1,n}} \ {{a}_{2,1}} & {{a}_{2,2}} & cdots & {{a}_{2,n}} \ cdots & cdots & cdots & cdots \ {{a}_{n,1}} & {{a}_{n,2}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

[left[ {{f}_{1}} cdots {{f}_{n}} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{a}_{1,1}} & cdots & {{a}_{1,n}} \ cdots & cdots & cdots \ {{a}_{n,1}} & cdots & {{a}_{n,n}} \ end{matrix} right]]

Квадратная матрица справа — это и есть матрица перехода ${{T}_{eto f}}$. Поэтому матричное уравнение можно переписать так:

[left[ begin{matrix}{{f}_{1}} & cdots& {{f}_{n}} \ end{matrix} right]=left[ begin{matrix}{{e}_{1}} & cdots& {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}]

Теперь возьмём произвольный вектор $hin L$ и разложим его по базисам $left{ {{e}_{1}},ldots ,{{e}_{n}} right}$ и $left{ {{f}_{1}},ldots ,{{f}_{n}} right}$:

[begin{align}h &={{x}_{1}}{{e}_{1}}+{{x}_{2}}{{e}_{2}}+ldots +{{x}_{n}}{{e}_{n}}= \ &={{y}_{1}}{{f}_{1}}+{{y}_{2}}{{f}_{2}}+ldots +{{y}_{n}}{{f}_{n}} end{align}]

Вновь перейдём к матричной форме. Сначала учтём, что координаты векторов принято записывать в виде вектор-столбцов:

[{{left[ h right]}_{e}}=left[ begin{matrix} {{x}_{1}} \ {{x}_{2}} \ cdots \ {{x}_{n}} \ end{matrix} right]quad {{left[ h right]}_{f}}=left[ begin{matrix} {{y}_{1}} \ {{y}_{2}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Тогда левую и правую часть уравнения можно представить как произведение строк с базисными векторами и указанных вектор-столбцов с координатами:

[left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ begin{matrix} {{f}_{1}} & cdots & {{f}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

[left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ {{f}_{1}} cdots {{f}_{n}} right]cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Но выше мы выражали строку векторов $left[ {{f}_{1}},ldots ,{{f}_{n}} right]$ через строку $left[ {{e}_{1}},ldots ,{{e}_{n}} right]$ и матрицу перехода ${{T}_{eto f}}$. Подставим это выражение в наше матричное уравнение:

[left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ begin{matrix} {{e}_{1}} & cdots & {{e}_{n}} \ end{matrix} right]cdot {{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

[left[ {{e}_{1}} cdots {{e}_{n}} right]cdot left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]=left[ {{e}_{1}} cdots {{e}_{n}} right]cdot {{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Уберём слева и справа первый множитель — строку $left[ {{e}_{1}},ldots ,{{e}_{n}} right]$. Получим уравнение, связывающее координаты вектора в разных базисах:

[left[ begin{matrix} {{x}_{1}} \ cdots \ {{x}_{n}} \ end{matrix} right]={{T}_{eto f}}cdot left[ begin{matrix} {{y}_{1}} \ cdots \ {{y}_{n}} \ end{matrix} right]]

Это именно та формула, которую и требовалось доказать.

Задача 1. Базисы трёхмерного пространства

Задача. Убедитесь, что системы векторов

[{{a}_{1}}={{left( 1,2,1 right)}^{T}},quad {{a}_{2}}={{left( 2,3,2 right)}^{T}},quad {{a}_{3}}={{left( 1,-1,2 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 1,2,1 right)}^{T}}, \ {{a}_{2}} &={{left( 2,3,2 right)}^{T}}, \ {{a}_{3}} &={{left( 1,-1,2 right)}^{T}} \ end{align}]

и

[{{b}_{1}}={{left( 1,3,1 right)}^{T}},quad {{b}_{2}}={{left( 1,-1,3 right)}^{T}},quad {{b}_{3}}={{left( 2,2,1 right)}^{T}}]

[begin{align}{{b}_{1}} &={{left( 1,3,1 right)}^{T}}, \ {{b}_{2}} &={{left( 1,-1,3 right)}^{T}}, \ {{b}_{3}} &={{left( 2,2,1 right)}^{T}} \ end{align}]

являются базисами в векторном пространстве ${{mathbb{R}}^{3}}$. Найдите матрицу перехода ${{T}_{ato b}}$. Найдите координаты в базисе $a$ вектора $x$, который в базисе $b$ имеет координаты ${{left( 0,3,2 right)}^{T}}$.

Решение

Чтобы доказать, что система векторов образует базис, достаточно составить матрицу $A$ из координат этих векторов, а затем вычислить её определитель $det A$. И если $det Ane 0$, то векторы линейно независимы. А поскольку их количество совпадает с размерностью линейного пространства, такие векторы образуют базис.

Рассмотрим систему векторов $a=left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$. Составим из них матрицу, расположив координаты по столбцам. Получим матрицу перехода ${{T}_{eto a}}$ от некого исходного базиса $e$ (в котором как раз и даны координаты векторов ${{a}_{i}}$ и ${{b}_{i}}$ в условии задачи) к базису $a$:

[{{T}_{eto a}}=left[ begin{array}{ccr} 1 & 2 & 1 \ 2 & 3 & -1 \ 1 & 2 & 2 \ end{array} right]]

Определитель этой матрицы отличен от нуля:

[det {{T}_{eto a}}=-1ne 0]

Следовательно, $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ — базис пространства ${{mathbb{R}}^{3}}$.

Теперь составим матрицу из векторов $b=left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$. Получим матрицу перехода ${{T}_{eto b}}$:

[{{T}_{eto b}}=left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right]]

Определитель этой матрицы вновь отличен от нуля:

[det {{T}_{eto b}}=12ne 0]

Следовательно, $left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ — тоже базис пространства ${{mathbb{R}}^{3}}$.

Осталось найти матрицу перехода ${{T}_{ato b}}$. Заметим, что эту матрицу можно выразить так:

[begin{align}{{T}_{ato b}} &={{T}_{ato e}}cdot {{T}_{eto b}}= \ &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}end{align}]

Мы внедрили «транзитный» базис $e$ и вместо прямого перехода $ato b$ рассмотрели цепочку $ato eto b$. Это стандартный и очень распространённый приём, но из-за этого появился новый элемент $T_{eto a}^{-1}$ — матрица, обратная к ${{T}_{eto a}}$. Найдём $T_{eto a}^{-1}$ методом присоединённой матрицы:

[left[ {{T}_{eto a}}|E right]sim ldots sim left[ E|T_{eto a}^{-1} right]]

Напомню, что элементарные преобразования в присоединённых матрицах выполняются только над строками. Если вы забыли, как всё это работает, см. урок «Обратная матрица». В нашем случае получим:

[left[ begin{array}{ccr|ccc}1 & 2 & 1 & 1 & 0 & 0 \ 2 & 3 & -1 & 0 & 1 & 0 \ 1 & 2 & 2 & 0 & 0 & 1 \end{array} right]begin{matrix} , \ -2cdot left[ 1 right] \ -1cdot left[ 1 right] \ end{matrix}]

Мы «зачистили» первый столбец. Теперь «зачистим» последний:

[left[ begin{array}{crr|rcc} 1 & 2 & 1 & 1 & 0 & 0 \ 0 & -1 & -3 & -2 & 1 & 0 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]begin{matrix} -1cdot left[ 3 right] \ +3cdot left[ 3 right] \ , \ end{matrix}]

Остался лишь средний. Разберёмся и с ним:

[left[ begin{array}{crc|rcr} 1 & 2 & 0 & 2 & 0 & -1 \ 0 & -1 & 0 & -5 & 1 & 3 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]begin{matrix} +2cdot left[ 2 right] \ |cdot left( -1 right) \ , \ end{matrix}]

Получили единичную матрицу слева от вертикальной черты. Значит, справа стоит искомая матрица $T_{eto a}^{-1}$:

[left[ begin{array}{ccc|rrr} 1 & 0 & 0 & -8 & 2 & 5 \ 0 & 1 & 0 & 5 & -1 & -3 \ 0 & 0 & 1 & -1 & 0 & 1 \ end{array} right]]

Теперь у нас есть всё, чтобы найти матрицу перехода ${{T}_{ato b}}$:

[{{T}_{ato b}}={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}=left[ begin{array}{rrr} -8 & 2 & 5 \ 5 & -1 & -3 \ -1 & 0 & 1 \ end{array} right]cdot left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right]]

[begin{align}{{T}_{ato b}} &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}= \ &=left[ begin{array}{rrr} -8 & 2 & 5 \ 5 & -1 & -3 \ -1 & 0 & 1 \ end{array} right]cdot left[ begin{array}{crc} 1 & 1 & 2 \ 3 & -1 & 2 \ 1 & 3 & 1 \ end{array} right] end{align}]

После несложных вычислений получаем матрицу перехода от базиса $a$ к базису $b$:

[{{T}_{ato b}}=left[ begin{array}{rrr} 3 & 5 & -7 \ -1 & -3 & 5 \ 0 & 2 & -1 \ end{array} right]]

Осталось найти координаты вектора $x$, который в базисе $b$ имеет координаты ${{left( 0,3,2 right)}^{T}}$. Вспомним формулу, выражающую координаты в старом базисе через координаты в новом базисе:

[{{left[ x right]}_{a}}={{T}_{ato b}}cdot {{left[ x right]}_{b}}]

Подставляем в эту формулу матрицу ${{T}_{ato b}}$ и вектор-столбец ${{left[ x right]}_{b}}={{left[ 0,3,2 right]}^{T}}$:

[{{left[ x right]}_{a}}=left[ begin{array}{rrr} 3 & 5 & -7 \ -1 & -3 & 5 \ 0 & 2 & -1 \ end{array} right]cdot left[ begin{matrix} 0 \ 3 \ 2 \ end{matrix} right]=left[ begin{matrix} 1 \ 1 \ 4 \ end{matrix} right]]

Итак, вектор $x$ в базисе $a$ имеет координаты ${{left( 1,1,4 right)}^{T}}$. Задача решена.

Альтернативное решение

Можно найти матрицу ${{T}_{ato b}}$ заметно быстрее, если использовать алгоритм решения матричных уравнений. Заметим, что нам требуется найти произведение

[{{T}_{ato b}}={{A}^{-1}}cdot B]

С другой стороны, для нахождения такого произведения достаточно составить присоединённую матрицу вида $left[ A|B right]$ и цепочкой элементарных преобразований свести её к виду

[left[ A|B right]sim ldots sim left[ E|{{A}^{-1}}cdot B right]]

Другими словами, справа от вертикальной черты мы получим искомую матрицу перехода ${{T}_{ato b}}$!

На практике это выглядит так. Записываем присоединённую матрицу $left[ A|B right]$:

[left[ begin{array}{ccr|crc} 1 & 2 & 1 & 1 & 1 & 2 \ 2 & 3 & -1 & 3 & -1 & 2 \ 1 & 2 & 2 & 1 & 2 & 1 \ end{array} right]]

И после элементарных преобразований получим

[left[ begin{array}{ccc|rrr} 1 & 0 & 0 & 3 & 5 & -7 \ 0 & 1 & 0 & -1 & -3 & 5 \ 0 & 0 & 1 & 0 & 2 & -1 \ end{array} right]]

Для экономии места я пропустил промежуточные шаги. Попробуйте сделать их самостоятельно — это очень полезная практика.

Если же вы хотите разобраться, как это работает (и почему вдруг справа возникает матрица вида ${{A}^{-1}}cdot B$), см. урок «Матричные уравнения». А мы идём дальше.

Задача 2. Базисы в поле вычетов

Найдите матрицу перехода от базиса

[{{a}_{1}}={{left( 1,1,1 right)}^{T}},quad {{a}_{2}}={{left( 2,1,1 right)}^{T}},quad {{a}_{3}}={{left( 3,2,1 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 1,1,1 right)}^{T}}, \ {{a}_{2}} &={{left( 2,1,1 right)}^{T}}, \ {{a}_{3}} &={{left( 3,2,1 right)}^{T}} \ end{align}]

к базису

[{{b}_{1}}={{left( 0,4,3 right)}^{T}},quad {{b}_{2}}={{left( 3,3,2 right)}^{T}},quad {{b}_{3}}={{left( 2,2,1 right)}^{T}}]

[begin{align}{{b}_{1}} &={{left( 0,4,3 right)}^{T}}, \ {{b}_{2}} &={{left( 3,3,2 right)}^{T}}, \ {{b}_{3}} &={{left( 2,2,1 right)}^{T}} \ end{align}]

арифметического линейного пространства $mathbb{Z}_{5}^{3}$.

Решение

Эта задача проще предыдущей, поскольку поле вычетов ${{mathbb{Z}}_{5}}$ является конечным и состоит всего из пяти элементов — представителей смежных классов:

[{{mathbb{Z}}_{5}}=left{ 0,1,2,3,4 right}]

Как и в предыдущей задаче, рассмотрим систему векторов $a=left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ и составим из них матрицу ${{T}_{eto a}}$:

[{{T}_{eto a}}=left[ begin{matrix} 1 & 2 & 3 \ 1 & 1 & 2 \ 1 & 1 & 1 \ end{matrix} right]]

Определитель $det {{T}_{eto a}}=1ne 0$, поэтому $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ — базис.

Аналогично, рассмотрим систему $b=left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ и составим матрицу ${{T}_{eto b}}$:

[{{T}_{eto b}}=left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]]

Определитель $det {{T}_{eto b}}=4ne 0$, поэтому $left{ {{b}_{1}},{{b}_{2}},{{b}_{3}} right}$ — базис.

Выразим искомую матрицу ${{T}_{ato b}}$ через «транзитный» базис $e$:

[begin{align}{{T}_{ato b}} &={{T}_{ato e}}cdot {{T}_{eto b}}= \ &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}} end{align}]

Найдём $T_{eto a}^{-1}$ через присоединённую матрицу:

[left[ begin{array}{ccc|ccc} 1 & 2 & 3 & 1 & 0 & 0 \ 1 & 1 & 2 & 0 & 1 & 0 \ 1 & 1 & 1 & 0 & 0 & 1 \ end{array} right]]

После цепочки элементарных преобразований над строками (попробуйте выполнить их самостоятельно!) получим

[left[ begin{array}{ccc|ccc} 1 & 0 & 0 & 4 & 1 & 1 \ 0 & 1 & 0 & 1 & 3 & 1 \ 0 & 0 & 1 & 0 & 1 & 4 \ end{array} right]]

Итак, мы нашли матрицу $T_{eto a}^{-1}$:

[T_{eto a}^{-1}=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]]

Осталось вычислить искомую матрицу перехода ${{T}_{ato b}}$:

[{{T}_{ato b}}={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]cdot left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]=left[ begin{matrix} 2 & 2 & 1 \ 0 & 4 & 4 \ 1 & 1 & 1 \ end{matrix} right]]

[begin{align}{{T}_{ato b}} &={{left( {{T}_{eto a}} right)}^{-1}}cdot {{T}_{eto b}}= \ &=left[ begin{matrix} 4 & 1 & 1 \ 1 & 3 & 1 \ 0 & 1 & 4 \ end{matrix} right]cdot left[ begin{matrix} 0 & 3 & 2 \ 4 & 3 & 2 \ 3 & 2 & 1 \ end{matrix} right]= \ &=left[ begin{matrix} 2 & 2 & 1 \ 0 & 4 & 4 \ 1 & 1 & 1 \ end{matrix} right] end{align}]

По аналогии с предыдущей задачей, матрицу ${{T}_{ato b}}$ можно найти и через элементарные преобразования присоединённой матрицы $left[ A|B right]$. Результат будет точно такой же, но мы сэкономим пару строк вычислений и несколько минут времени.

Задача 3. Пространство многочленов

Убедитесь, что системы многочленов

[begin{align}e &=left{ 1,t-1,{{left( t-1 right)}^{2}} right} \ f &=left( 1,t+1,{{left( t+1 right)}^{2}} right) \ end{align}]

являются базисами в пространстве ${{P}_{3}}$ многочленов степени не выше 2. Найдите матрицу перехода ${{T}_{eto f}}$. Разложите по степеням $left( t-1 right)$ многочлен ${{left( t+1 right)}^{2}}+left( t+1 right)+1$.

Решение

Стандартным базисом в пространстве многочленов является система многочленов $p=left{ {{p}_{1}},{{p}_{2}},{{p}_{3}} right}$, где

[{{p}_{1}}=1quad {{p}_{2}}=tquad {{p}_{3}}={{t}^{2}}]

Выразим через базис $p$ многочлены из системы $e$:

[begin{align} & {{e}_{1}}=1={{p}_{1}} \ & {{e}_{2}}=t-1={{p}_{2}}-{{p}_{1}} \ & {{e}_{3}}={{left( t-1 right)}^{2}}={{t}^{2}}-2t+1={{p}_{3}}-2{{p}_{2}}+{{p}_{1}} end{align}]

[begin{align}{{e}_{1}} &=1={{p}_{1}} \ {{e}_{2}} &=t-1={{p}_{2}}-{{p}_{1}} \ {{e}_{3}} &={{left( t-1 right)}^{2}}= \ &={{t}^{2}}-2t+1= \ &={{p}_{3}}-2{{p}_{2}}+{{p}_{1}} end{align}]

Следовательно, матрица перехода ${{T}_{pto e}}$ выглядит так:

[{{T}_{pto e}}=left[ begin{array}{crr} 1 & -1 & 1 \ 0 & 1 & -2 \ 0 & 0 & 1 \ end{array} right]]

Аналогично, выразим через базис $p$ многочлены из системы $f$:

[begin{align} & {{f}_{1}}=1={{p}_{1}} \ & {{f}_{2}}=t+1={{p}_{2}}+{{p}_{1}} \ & {{f}_{3}}={{left( t+1 right)}^{2}}={{t}^{2}}+2t+1={{p}_{3}}+2{{p}_{2}}+{{p}_{1}} end{align}]

[begin{align}{{f}_{1}} &=1={{p}_{1}} \ {{f}_{2}} &=t+1={{p}_{2}}+{{p}_{1}} \ {{f}_{3}} &={{left( t+1 right)}^{2}}= \ &={{t}^{2}}+2t+1= \ &={{p}_{3}}+2{{p}_{2}}+{{p}_{1}} end{align}]

Получим матрицу перехода ${{T}_{pto f}}$:

[{{T}_{pto f}}=left[ begin{matrix} 1 & 1 & 1 \ 0 & 1 & 2 \ 0 & 0 & 1 \ end{matrix} right]]

Обе матрицы оказались верхнетреугольными, их определители отличны от нуля:

[begin{align} det {{T}_{pto e}} &=1cdot 1cdot 1=1 \ det {{T}_{pto f}} &=1cdot 1cdot 1=1 \ end{align}]

Следовательно системы многочленов $e$ и $f$ действительно являются базисами пространства ${{P}_{3}}$.

Теперь найдём матрицу перехода ${{T}_{eto f}}$. Для этого нам даже не потребуется искать обратную матрицу. Достаточно заметить, что векторы ${{f}_{1}}$ и ${{f}_{2}}$ легко раскладываются по базису $e$:

[begin{align}{{f}_{1}} &=1={{e}_{1}} \ {{f}_{2}} &=t+1=left( t-1 right)+2={{e}_{2}}+2{{e}_{1}} \ end{align}]

С вектором ${{f}_{3}}$ вычислений будет чуть больше:

[begin{align}{{f}_{3}} &={{left( t+1 right)}^{2}}= \ &={{left( t-1 right)}^{2}}+4t= \ &={{left( t-1 right)}^{2}}+4left( t-1 right)+4= \ &={{e}_{3}}+4{{e}_{2}}+4{{e}_{1}} end{align}]

Итого матрица перехода ${{T}_{eto f}}$ примет вид

[{{T}_{eto f}}=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]]

Теперь разложим многочлен ${{left( t+1 right)}^{2}}+left( t+1 right)+1$ по базису $e$. Сначала перепишем этот многочлен так:

[begin{align}hleft( t right) &=1+left( t+1 right)+{{left( t+1 right)}^{2}}= \ &={{f}_{1}}+{{f}_{2}}+{{f}_{3}} end{align}]

Следовательно, в базисе $f$ многочлен $hleft( t right)$ имеет координаты ${{left( 1,1,1 right)}^{T}}$. Но тогда по теореме о замене координат этот же многочлен в базисе $e$ имеет координаты

[{{left[ h right]}_{e}}={{T}_{eto f}}cdot {{left[ h right]}_{f}}=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]cdot left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{matrix} 7 \ 5 \ 1 \ end{matrix} right]]

[begin{align}{{left[ h right]}_{e}} &={{T}_{eto f}}cdot {{left[ h right]}_{f}}= \ &=left[ begin{matrix} 1 & 2 & 4 \ 0 & 1 & 4 \ 0 & 0 & 1 \ end{matrix} right]cdot left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{matrix} 7 \ 5 \ 1 \ end{matrix} right] end{align}]

Другими словами, многочлен $hleft( t right)$ имеет вид

[hleft( t right)={{left( t-1 right)}^{2}}+5left( t-1 right)+7]

Это и есть искомое разложение многочлена ${{left( t+1 right)}^{2}}+left( t+1 right)+1$ по степеням $left( t-1 right)$.

Альтернативное решение

Искомое разложение можно получить и без привлечения матриц перехода. Достаточно применить схему Горнера или выделить нужные степени напрямую:

[begin{align}hleft( t right) &={{left( t+1 right)}^{2}}+left( t+1 right)+1= \ &={{left( t-1 right)}^{2}}+4t+t+1+1= \ &={{left( t-1 right)}^{2}}+5left( t-1 right)+5+2= \ &={{left( t-1 right)}^{2}}+5left( t-1 right)+7 end{align}]

Как видим, результат получился тем же самым, а времени потрачено меньше. Однако уже в пространстве ${{P}_{4}}$ многочленов степени не выше 4 сложность решения через матрицы и через выделение степеней будет сопоставимой. А дальше матрицы начнут выигрывать.

Смысл линейной алгебры — дать универсальные алгоритмы, которые работают с объектами любой природы, если эти объекты подчиняются аксиомам линейного пространства.

Задача 4. Матрица перехода при симметрии

Базис $b$получается из базиса

[{{a}_{1}}={{left( 2,1,3 right)}^{T}},quad {{a}_{2}}={{left( 1,1,-1 right)}^{T}},quad {{a}_{3}}={{left( 2,-1,-1 right)}^{T}}]

[begin{align}{{a}_{1}} &={{left( 2,1,3 right)}^{T}}, \ {{a}_{2}} &={{left( 1,1,-1 right)}^{T}}, \ {{a}_{3}} &={{left( 2,-1,-1 right)}^{T}} \ end{align}]

пространства ${{V}_{3}}$ симметрией относительно плоскости $2x+y+3z=0$. Найти матрицу перехода ${{T}_{ato b}}$.

Решение

Из курса аналитической геометрии мы знаем, что если плоскость задана уравнением

[ax+by+cz+d=0]

то вектор-нормаль $n$ имеет координаты

[n=left( a,b,c right)]

Тогда для плоскости $2x+y+3z=0$ нормаль имеет координаты $n=left( 2,1,3 right)$, что в точности совпадает с вектором ${{a}_{1}}$. Следовательно, при симметрии относительно плоскости этот вектор просто перейдёт в противоположный: ${{b}_{1}}=-{{a}_{1}}$.

Далее заметим, что векторы ${{a}_{2}}$ и ${{a}_{3}}$ лежат в плоскости симметрии, поскольку при подстановке их координат уравнение плоскости обращается в верное числовое равенство:

[begin{align}{{a}_{2}}={{left( 1,1,-1 right)}^{T}} &Rightarrow 2cdot 1+1+3cdot left( -1 right)=0 \ {{a}_{3}}={{left( 2,-1,-1 right)}^{T}} &Rightarrow 2cdot 2-1+3cdot left( -1 right)=0 \ end{align}]

[begin{align}{{a}_{2}}=&{{left( 1,1,-1 right)}^{T}}Rightarrow \ & Rightarrow 2cdot 1+1+3cdot left( -1 right)=0 \ {{a}_{3}}=&{{left( 2,-1,-1 right)}^{T}}Rightarrow \ & Rightarrow 2cdot 2-1+3cdot left( -1 right)=0 \ end{align}]

Следовательно, при симметрии эти векторы переходят сами в себя: ${{b}_{2}}={{a}_{2}}$, ${{b}_{3}}={{a}_{3}}$. Матрица перехода имеет вид

[{{T}_{ato b}}=left[ begin{array}{rcc} -1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ end{array} right]]

Важное замечание. симметрия предполагает использование проекций и углов, что в конечном счёте сводится к скалярному произведению. Однако мы пока не знаем, что такое скалярное произведение в линейном пространстве.

Полноценное определение скалярного произведения будет намного позже — см. урок «Евклидово пространство». А пока будем считать, что скалярное произведение векторов $a$ и $b$ определено стандартным образом:

[left( a,b right)=left| a right|cdot left| b right|cdot cos alpha ]

Геометрическая интерпретация

Симметрию на плоскости и в пространстве удобно представлять графически. Пусть $alpha $ — плоскость, относительно которой выполняется симметрия. Тогда векторы $left{ {{a}_{1}},{{a}_{2}},{{a}_{3}} right}$ будут выглядеть так:

Матрица перехода при симметрии

Из приведённого рисунка сразу видно, что при симметрии вектор ${{a}_{1}}$ перейдёт в противоположный, а векторы ${{a}_{2}}$ и ${{a}_{3}}$ останутся на месте.

Задача 5. Матрица поворота

Базис $e=left{ i,j,k right}$ пространства ${{V}_{3}}$ поворачивается на 180° вокруг прямой $l$, заданной системой

[left{ begin{align}x-y &=0 \ z &=0 \ end{align} right.]

Затем полученный базис $f$ поворачивается на 90° в отрицательном направлении вокруг нового положения вектора $j$. В результате получается базис $g=left{ {{i}_{2}},{{j}_{2}},{{k}_{2}} right}$.

Найдите матрицу перехода ${{T}_{eto g}}$. Найдите в базисе $e$ координаты вектора $h$, который в новом базисе $g$ имеет координаты $left( 1,1,1 right)$.

Решение

Вращение базиса и матрица поворота — это очень важная тема, по которой есть отдельный урок — «Матрица поворота». Но сейчас вращение совсем простое, поэтому обойдёмся без специальных матриц.

Вновь обратимся к геометрической интерпретации. Рассмотрим исходный базис $e=left{ i,j,k right}$ трёхмерного пространства:

Матрица перехода при повороте

Также на этом рисунке изображена прямая $l$, которая задаётся требованиями $z=0$ и $x=y$. Эта лежит в плоскости $Oxy$ и является биссектрисой первой координатной четверти.

Очевидно, что при повороте пространства на 180° относительно прямой $l$ базисные векторы $i$ и $j$ просто поменяются местами, а вектор $k$ перейдёт в противоположный:

Промежуточный базис

Другими словами, ${{i}_{1}}=j$, ${{j}_{1}}=i$, ${{k}_{1}}=-k$, поэтому матрица перехода от базиса $e=left{ i,j,k right}$ к базису $f=left{ {{i}_{1}},{{j}_{1}},{{k}_{1}} right}$ примет вид

[{{T}_{eto f}}=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]]

Далее поворот осуществляется вокруг нового положения вектора $j$, т.е. вокруг вектора ${{j}_{1}}$. Вновь обратимся к чертежу. В этот раз нам уже не нужны координатные оси — нас интересуют лишь векторы ${{i}_{1}}$, ${{j}_{1}}$ и ${{k}_{1}}$, а также ось вращения:

Положиельное и отрицательное направление вращения

Обратите внимание: в задаче сказано, что базис вращается на 90° в отрицательном направлении. Если мы смотрим на плоскость, образованную векторами ${{i}_{1}}$ и ${{k}_{1}}$, с вершины вектора ${{j}_{1}}$ (как на картинке), то отрицательное направление — это по часовой стрелке (отмечено зелёным), а положительное —против часовой стрелки (отмечено красным).

Все эти тонкости (положительное и отрицательное направление, правые и левые тройки векторов) детально описаны в уроке про матрицы поворота. Сейчас не будем подробно разбираться в них, а просто нарисуем результат:

Окончательное положение базисных векторов

Итак, ${{i}_{2}}={{k}_{1}}$, ${{j}_{2}}={{j}_{1}}$ и ${{k}_{2}}=-{{i}_{1}}$, поэтому матрица перехода от базиса $f=left{ {{i}_{1}},{{j}_{1}},{{k}_{1}} right}$ к базису $g=left{ {{i}_{2}},{{j}_{2}},{{k}_{2}} right}$ имеет вид

[{{T}_{fto g}}=left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]]

Теперь мы можем найти матрицу ${{T}_{eto g}}$ через транзитный базис $f$:

[{{T}_{eto g}}={{T}_{eto f}}cdot {{T}_{fto g}}=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]cdot left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right]]

[begin{align}{{T}_{eto g}} &={{T}_{eto f}}cdot {{T}_{fto g}}= \ &=left[ begin{array}{ccr} 0 & 1 & 0 \ 1 & 0 & 0 \ 0 & 0 & -1 \ end{array} right]cdot left[ begin{array}{ccr} 0 & 0 & -1 \ 0 & 1 & 0 \ 1 & 0 & 0 \ end{array} right]= \ &=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right] end{align}]

Кроме того, нам известны координаты вектора $h$ в базисе $g$:

[h={{left( 1,1,1 right)}^{T}}]

Тогда в базисе $e$ координаты этого же вектора равны

[{{left[ h right]}_{e}}={{T}_{eto g}}cdot {{left[ h right]}_{g}}=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right].left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{array}{r} 1 \ -1 \ -1 \ end{array} right]]

[begin{align}{{left[ h right]}_{e}} &={{T}_{eto g}}cdot {{left[ h right]}_{g}}= \ &=left[ begin{array}{rcr} 0 & 1 & 0 \ 0 & 0 & -1 \ -1 & 0 & 0 \ end{array} right].left[ begin{matrix} 1 \ 1 \ 1 \ end{matrix} right]=left[ begin{array}{r} 1 \ -1 \ -1 \ end{array} right] end{align}]

Итак, мы нашли матрицу перехода ${{T}_{eto g}}$ и координаты вектора $h$ в исходном базисе. Задача решена.

Смотрите также:

  1. Критерий Сильвестра для квадратичных функций
  2. Работа с формулами в задаче B12
  3. Тест к уроку «Площади многоугольников на координатной сетке» (легкий)
  4. Показательные функции в задаче B15
  5. Задача B5: площадь кольца
  6. Случай четырехугольной пирамиды

Будем рассматривать двумерный случай.

Матрица преобразования – это некоторая матрица . Мы будем рассматривать матрицы вида

Допустим есть какое-то преобразование , и (к точке применили преобразование и получили точку ).

Тогда матрица преобразования , умноженная на однородные координаты , даёт однородные координаты .

В каком-то смысле, любое линейное преобразование одновременно является матрицей, так же как точка — это набор координат.

Посмотрим как меняются координаты при преобразовании.

.

То есть новые координаты как-то линейно зависят от старых.

Рассмотрим частные случаи преобразований.

Содержание

  • 1 Базовые преобразования
    • 1.1 Параллельный перенос
    • 1.2 Масштабирование вдоль осей
    • 1.3 Поворот относительно начала координат
    • 1.4 Тождественное преобразование
  • 2 Композиция преобразований

Базовые преобразования

Параллельный перенос

Задаёт преобразование .

Обозначается , где — вектор параллельного переноса.

Пример
Задача: Найдите новые координаты точки после параллельного переноса плоскости на вектор .

Решение:

Вполне ожидаемый ответ.

Масштабирование вдоль осей

Задаёт преобразование .

Будем обозначать как . Числа и называются коэффициентами масштабирования.

Пример

Задача: Найдите новые координаты точки после масштабирования по оси с коэффициентом 2 (по оси масштаб остаётся таким же).

Решение:

Поворот относительно начала координат

Обозначается , где — угол поворота.
Как обычно, при повороте против часовой стрелки, и при повороте по часовой стрелке.

Пример
Задача: Найдите новые координаты точки после поворота плоскости на °.

Решение:

Замечание

, то есть центральная симметрия относительно начала координат меняет координаты точки на противоположные.

Тождественное преобразование

Это преобразование, оставляющее все точки неподвижными.

Его матрица:

Композиция преобразований

Задача: к точке применили осевую симметрию относительно , и затем применили параллельный перенос на . Какие новые координаты у точки?

Решение: обозначим нашу точку за , новую точку за

Посчитаем двумя способами.

1)

2) Воспользуемся ассоциативностью умножения матриц (сочетательный закон)

Заметим, что — тоже какая-то матрица преобразования, в данном случае “осевая симметрия относительно , с последующим параллельным переносом на ”

Действительно,

Тогда матрица для будет .

Получается, при композиции преобразований их матрицы перемножаются.

Содержание:

  1. Линейные преобразования. Собственные векторы и собственные числа линейного оператора
  2. Собственные векторы и собственные числа линейного оператора: определение, свойства
  3. Нахождение собственных чисел и собственных векторов
  4. Базис пространства из собственных векторов линейного оператора
  5. Линейная модель обмена (модель международной торговли)

Линейные преобразования. Собственные векторы и собственные числа линейного оператора

Линейные преобразования (линейные операторы). Матрица линейного преобразования Линейные преобразования

Пусть задано Линейные преобразования-мерный пространство Линейные преобразования. Если каждому вектору Линейные преобразования поставлено в соответствие единственный вектор

Линейные преобразования

этого же пространства, говорится, что в векторном пространстве Линейные преобразования задано преобразование Линейные преобразования, или оператор Линейные преобразования.

Вектор Линейные преобразования – результат линейного преобразования – называют образом вектора Линейные преобразования, а выходной вектор Линейные преобразования – прообразом вектора Линейные преобразования.

Преобразование Линейные преобразования называется линейным преобразованием, или линейным оператором, если для произвольных векторов Линейные преобразования и произвольного действительного скаляра Линейные преобразования выполняются условия:

Линейные преобразования

То есть линейный оператор преобразует пространство Линейные преобразования в то самое пространство. Это записывается следующим образом:

Линейные преобразования

Примерами простейших линейных преобразований являются:
тождественное преобразование: Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в самого себя, то есть остается без изменения;

нулевой оператор Линейные преобразования, когда каждый Линейные преобразования-мерный вектор пространства превращается в ноль-вектор этого же пространства, то есть Линейные преобразования

Линейное преобразование Линейные преобразования, с помощью которого осуществляется восстановление вектора Линейные преобразования по его образу Линейные преобразования, называется обратным к Линейные преобразования линейным преобразованием. В отличие от матрицы оператор записывают Линейные преобразованиякаллиграфическимЛинейные преобразования шрифтом.

Рассмотрим задачу об отыскании координат образа вектора Линейные преобразования.

Пусть в пространстве Линейные преобразования выбрано базис Линейные преобразования (не обязательно ортонормированный) и Линейные преобразования есть координатами вектора Линейные преобразования в этом базисе. Обозначим через Линейные преобразования координаты вектора Линейные преобразования в выбранном базисе. по условию Линейные преобразования, тогда согласно линейностью оператора Линейные преобразования получим :

Линейные преобразования

Но образы Линейные преобразования тоже являются векторами с Линейные преобразования, поэтому иx можно разложить по тому же базисом. Пусть

Линейные преобразования

где Линейные преобразования коэффициенты разложения вектора Линейные преобразования по базису Линейные преобразования 

С учетом (5.5) соотношение (5.4) принимает вид:

Линейные преобразования

Группируя члены правой части относительно векторов базиса, имеем:

Линейные преобразования

С другой стороны, если Линейные преобразования являются координатами вектора Линейные преобразования в базисе Линейные преобразования то его можно представить следующим образом:

Линейные преобразования

Сопоставляем (5.8) из (5.7) и получаем координаты вектора Линейные преобразования:

Линейные преобразования

Следовательно, при линейном преобразовании:

Линейные преобразования

координаты образа вектора являются линейными комбинациями координат прообраза, коэффициенты при которых составляют матрицу Линейные преобразования-го порядка (обозначим ее через Линейные преобразования):

Линейные преобразования

Матрица Линейные преобразования, которая в произведении (слева) с вектором с Линейные преобразования определяет координаты его образа при линейном преобразовании Линейные преобразования, Называется матрицей линейного преобразования Линейные преобразования в базисе Линейные преобразования и пишут:

Линейные преобразования

Каждый – Линейные преобразования-й – столбец матрицы Линейные преобразования составляют коэффициенты разложения вектора Линейные преобразования по базису Линейные преобразования каждая – Линейные преобразования-я – строка определяет коэффициенты разложения координат вектора Линейные преобразования по координатам вектора Линейные преобразования.

Обратите внимание, что Линейные преобразования – нераздельный символ (обозначение вектораобраза), а Линейные преобразования – произведение матрицы с вектором (прообразом).

Каждому линейном оператору Линейные преобразования-мерного пространства отвечает матрица Линейные преобразования-го порядка в данном базисе. И наоборот, каждой матрицы Линейные преобразования-го порядка отвечает линейный оператор Линейные преобразования-мерного пространства с определенным базисом.

Например, с помощью оператора линейных преобразований можно описать поворот произвольного вектора с пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования против часовой стрелки. Формулы поворота осей координат (формулы перехода от исходных координат Линейные преобразования и Линейные преобразования к новым Линейные преобразования и Линейные преобразования, и наоборот ) определяют алгебраическую форму изображения линейного оператора поворота осей:

Линейные преобразования

где Линейные преобразования оператор перехода от исходных (новых) координат к новым (исходных);

Линейные преобразования векторы, началом которых является точка Линейные преобразования, а концами –
точки Линейные преобразования и Линейные преобразования, соответственно.

По соотношению (5.12) матрица линейного преобразования} Линейные преобразования, Описывающий поворот произвольного вектора из пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования против часовой стрелки, имеет вид:

Линейные преобразования

а матрица обратного линейного преобразования Линейные преобразования, то есть такого, что описывает поворот произвольного вектора из пространства Линейные преобразования вокруг начала координат на угол Линейные преобразования по часовой стрелке, имеет вид:

Линейные преобразования

Теорема 5.1 (о связи между матрицами оператора в различных базисах).

Матрицы Линейные преобразования и Линейные преобразования линейного оператора Линейные преобразования в разных базисах Линейные преобразования и Линейные преобразования связаны между собой соотношением:

Линейные преобразования

где Линейные преобразования матрица перехода от исходного к новому базису.

Доказательство. Пусть линейный оператор Линейные преобразования превращает вектор Линейные преобразования пространства Линейные преобразования в вектор Линейные преобразования того самого пространства. Тогда в матричной форме связь между вектором Линейные преобразования и его образом Линейные преобразования в исходном базисе можно записать как Линейные преобразования, а в новом – как Линейные преобразования . Поскольку Линейные преобразования является матрицей перехода от исходного базиса к новому, то в соответствии с (4.18) имеем:

Линейные преобразования

Умножим равенство (5.14) слева на матрицу Линейные преобразования и получим Линейные преобразования. Отсюда по определению линейного оператора имеем: Линейные преобразования. С учетом (5.15):

Линейные преобразования

Сравнив соотношение Линейные преобразования и Линейные преобразования, получаем Линейные преобразования

Две квадратные матрицы Линейные преобразования и Линейные преобразования называются подобными, если существует такая невырожденная матрица Линейные преобразования, матрицы Линейные преобразования и Линейные преобразования связанные соотношениями:

Линейные преобразования

Соответствующие линейные операторы называются преобразованиями сходства.

Подобные матрицы описывают то же линейное преобразование, но в разных базисах, а матрица Линейные преобразования является матрицей перехода от одного базиса к другому.

Подобные матрицы имеют те же ранги, суммы элементов главной диагонали и определители.

В базисе Линейные преобразования и Линейные преобразования задана матрица линейного оператора Линейные преобразования:

Линейные преобразования

Определим матрицу Линейные преобразования, которая отвечает том же оператору в базисе векторов Линейные преобразования и Линейные преобразования есть матрица Линейные преобразования подобна матрице Линейные преобразования.

Предоставим расписание векторов нового базиса по векторам исходного базиса: Линейные преобразования. Соответственно, матрица перехода от исходного к новому базису имеет вид:

Линейные преобразования

Ее определитель Линейные преобразования, то есть матрица Линейные преобразования невырожденная и имеет обратную: 

Линейные преобразования

По теореме 5.1 определяем матрицу оператора Линейные преобразования в новом базисе:

Линейные преобразования

Обратите внимание, что в новом базисе матрица оператора Линейные преобразования оказалась диагональной.

Собственные векторы и собственные числа линейного оператора: определение, свойства

Рассмотрим Линейные преобразования-мерных линейный пространство Линейные преобразования с определенным базисом и матрицу Линейные преобразования, некоторого линейного оператора Линейные преобразования пространства.

Ненулевой вектор Линейные преобразования называют собственным, или характеристическим вектором линейного оператора Линейные преобразования (или матрицы Линейные преобразования), если существует такое действительное число Линейные преобразования, имеет место равенство:

Линейные преобразования

Скаляр Линейные преобразования называется собственным, или характеристическим, числом матрицы Линейные преобразования, или ее собственным значением, соответствует собственному вектору Линейные преобразования:

Согласно определениями собственного числа и собственного вектора имеем:

1) Если Линейные преобразования, то каждый ненулевой вектор из Линейные преобразования является собственным вектором матрицы Линейные преобразования, при этом Линейные преобразования, ведь по свойству единичной матрицы имеем Линейные преобразования;
2) любой ненулевой Линейные преобразования-мерный вектор является собственным вектором нулевой матрицы Линейные преобразования, при этом Линейные преобразования, так как Линейные преобразования.

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы Линейные преобразования

Поставим задачу нахождения собственных чисел и собственных векторов заданной матрицы

Линейные преобразования

Линейные преобразования

Линейные преобразования

Запишем матричное уравнение (5.17) в развернутом виде:Линейные преобразования

Таким образом, задача сводится к решению однородной системы Линейные преобразования линейных уравнений с Линейные преобразования неизвестными. Нас интересуют (по определению собственного вектора) только ненулевые векторы, то есть нетривиальные решения системы, поэтому определитель системы (5.18) должен быть равен нулю:

Линейные преобразования

Раскрытие определителя в соотношении (5.19) дает многочлен степени Линейные преобразования относительно Линейные преобразования, который называется характеристическим многочленом матрицы Линейные преобразования, а соотношение (5.19), которое можно представить в виде Линейные преобразования, определяет уравнение для нахождения собственных чисел, которое называют характеристическим уравнением матрицы Линейные преобразования.

По основной теореме алгебры уравнения Линейные преобразования любой матрицы Линейные преобразования имеет Линейные преобразования корней, если каждый из них считать столько раз, какова его кратность. Характеристическое уравнение матрицы может иметь только действительные, но и комплексные корни, то есть числа вида Линейные преобразования где Линейные преобразования действительные числа, Линейные преобразования мнимая единица.

Множество всех собственных чисел матрицы называют спектром матрицы. Если в спектре матрицы то же собственное число повторяется Линейные преобразования раз, то говорят, что кратность этого собственного числа равна Линейные преобразования.

Теорема 5.2 (о единственности собственного чucлa, что соответствует собственному вектору). Если Линейные преобразования – собственный вектор матрицы Линейные преобразования, то существует единственный скаляр Линейные преобразования, который удовлетворяет условие Линейные преобразования.

Доказательство. Предположим, что кроме собственного числа Линейные преобразования существует еще один
скаляр Линейные преобразования, такой, что Линейные преобразования. Тогда должно выполняться равенство Линейные преобразования. Поскольку по определению собственный вектор является ненулевым, то есть Линейные преобразования, получим Линейные преобразования.

Согласно теореме 5.2 говорят, что собственный вектор Линейные преобразования из матрицы Линейные преобразования принадлежит собственному числу Линейные преобразования

Теорема 5.3 (о множестве собственных векторов, принадлежащих собственному числу). Если матрица имеет собственный вектор, принадлежащий собственному числу Линейные преобразования, то таких векторов бесконечно много.

Доказательство базируется на определении собственного вектора и свойствах ассоциативности и коммутативности операции умножения матрицы на скаляр.

Действительно, пусть Линейные преобразования собственный вектор матрицы Линейные преобразования, тогда Линейные преобразования. Привлечем к рассмотрению вектор Линейные преобразования, коллинеарный вектору Линейные преобразования, то есть Линейные преобразования,  где Линейные преобразования, и покажем, что в также является собственным вектором матрицы Линейные преобразования:

Линейные преобразования

Поскольку равенство (5.19) выполняется для произвольного Линейные преобразования, то существует множество собственных векторов, принадлежащих данному собственному числу.

Теорема 5.4 (критерий существования собственного вектора Линейные преобразования, соответствующего собственному числу Линейные преобразования). Вектор Линейные преобразования тогда и только тогда является собственным вектором матрицы Линейные преобразования, соответствующим собственному числу Линейные преобразования, когда его координаты Линейные преобразования образуют ненулевое решение однородной квадратной системы линейных алгебраических уравнений Линейные преобразования

Линейные преобразования или Линейные преобразования

Доказательство сводится к тождественных преобразований матричных уравнений.

Необходимость уже доказано переходом от соотношения Линейные преобразования, к однородной системе линейных уравнений Линейные преобразования, представленной в развернутом виде (5 18).

Достаточность. На основании свойств действий над матрицами с учетом условия Линейные преобразования, осуществит переход от однородной системы уравнений в матричной форме с соотношением Линейные преобразования:

Линейные преобразования

Теорема 5.5 (пpo линейную независимость собственных векторов). Собственные векторы, принадлежащие различным собственным числам, является линейно независимыми.

Доказательство проведем методом от противного. Пусть Линейные преобразования два произвольные собственные векторы, принадлежащие соответственно собственным числам Линейные преобразования и Линейные преобразования Линейные преобразования. Необходимо показать, что линейная комбинация этих собственных векторов Линейные преобразования ноль-вектор только тогда, когда Линейные преобразования, то есть

Линейные преобразования

Предположим обратное. Пусть (5.23) выполняется при условии, что одно из чисел Линейные преобразования не является нулем, например, Линейные преобразования

Умножим левую и правую части (5.23) на собственное число Линейные преобразования. Тогда

Линейные преобразования

Левую и правую части равенства (5.23) умножим на матрицу Линейные преобразования слева, и, учитывая свойства операций над матрицами, получим:

Линейные преобразования

Сравним (5.25) и (5.24). Получаем:

Линейные преобразования

По условию теоремы Линейные преобразования. По определению вектор Линейные преобразования является ненулевым, поэтому равенство (5.26) возможно только при Линейные преобразования, то есть предположение о линейной зависимости векторов Линейные преобразования и Линейные преобразования ошибочно.

Если есть более двух собственных векторов, принадлежащих попарно различным собственным числам, доведение аналогичное (с использованием метода математической индукции).

Заметим, что собственные векторы, принадлежащих различным собственным числам, можно использовать как базисные векторы пространства Линейные преобразования.

Теорема 5.6 (пpo сумму и произведение собственных чисел). Если Линейные преобразования собственные числа матрицы Линейные преобразования, то:
1) сумма собственных чисел равна сумме элементов главной диагонали матрицы Линейные преобразования:

Линейные преобразования

2) произведение собственных чисел равна определителю матрицы Линейные преобразования:

Линейные преобразования

Доказательство основывается на формулах Виета, которые описывают соотношение между корнями и коэффициентами многочлена Линейные преобразования-гo степени в случае, когда его старший коэффициент равен единице.

Рассмотрим простейший случай Линейные преобразования. Запишем характеристическое уравнение в развернутом виде:

Линейные преобразования

С (5.29) по теореме Виета (для квадратного уравнения) имеем:

Линейные преобразования

Сумму всех диагональных элементов матрицы называют следом (от нем. spur – след) этой матрицы и обозначают Линейные преобразования.

Для квадратной матрицы произвольного порядка Линейные преобразования теорему 5.6 в символьном виде можно записать так:

Линейные преобразования

при этом собственное число Линейные преобразования берем столько раз, какова его кратность как корня характеристического уравнения (5.29).

Нахождение собственных чисел и собственных векторов

Рассмотрим алгоритм нахождения собственных чисел матрицы Линейные преобразования и собственных векторов, которые им принадлежат.
Согласно соотношениями (5.18) и (5.19) имеем такой порядок отыскания собственных чисел и собственных векторов матрицы.
1. Составляем по исходной матрицей Линейные преобразования характеристическое уравнение (5.18) и решаем его, то есть находим спектр собственных чисел.
2. Подставляем поочередно каждое собственное число в систему (5.18) и находим все ее нетривиальные решения, что и дает множество собственных векторов, принадлежащих соответствующему собственному числу.

Замечания. Множество всех собственных векторов, принадлежащих определенному собственному числу, можно представить как линейную комбинацию фундаментальных решений однородной системы уравнений согласно (4.19), гл. 4.

Найдем собственные числа и собственные векторы матрицы

Линейные преобразования

Характерным уравнением этой матрицы является квадратное уравнение:

Линейные преобразования

Решив его, получим собственные числа Линейные преобразования и Линейные преобразования

Теперь описываем множества Линейные преобразования и Линейные преобразования всех собственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразования вместо Линейные преобразования подставим поочередно значения собственных чисел, запишем соответствующую систему однородных линейных уравнений (5.18) и решим ее:

Линейные преобразования

Предоставляя параметру Линейные преобразования произвольных значений, для данного собственного числа Линейные преобразования получим совокупность коллинеарных между собой собственных векторов.

Теорема 5.7 (про собственные числа и собственные векторы симметричной матрицы).

Симметричная матрица Линейные преобразования имеет только действительные собственные числа. Собственные векторы, принадлежащие разным собственным числам, ортогональны и линейно независимы.

Теорема приводим без доказательства.
Проиллюстрируем прав выводов данной теоремы на примере.

Пусть имеем симметричную матрицу
Линейные преобразования

Найдем собственные числа и собственные векторы этой матрицы и докажем ортогональность собственных векторов, соответствующих различным собственным числам.

1. Составим характеристическое уравнение матрицы

Линейные преобразования

2. Найдем корни полученного кубического уравнения относительно Линейные преобразования. С элементарной алгебры известно, если многочлен со старшим коэффициентом, равным единице, имеет целые корни, то их следует искать среди делителей свободного члена. Перебирая делители числа 36, убеждаемся, что Линейные преобразования является корнем уравнения (5.30).

Нахождение других двух корней сводится к решению квадратного уравнения:

Линейные преобразования

3. Опишем множества Линейные преобразования и Линейные преобразования собственных векторов, принадлежащих найденным собственным числам.

Для этого в матрицу Линейные преобразования вместо Линейные преобразования подставляем поочередно значения собственных чисел, записываем соответствующую систему однородных линейных уравнений (5.17) и решаем ее методом Жордана-Гаусса:

Линейные преобразования

Аналогично находим собственные векторы Линейные преобразования и Линейные преобразования

Линейные преобразования

Система векторов Линейные преобразования и Линейные преобразования является линейно независимой, поскольку 

Линейные преобразования

Убеждаемся, что векторы Линейные преобразования и Линейные преобразования – попарно ортогональны.
Для этого определим их скалярные произведения:

Линейные преобразования

Поскольку скалярные произведения векторов равны нулю, то векторы попарно ортогональны.
Если в выражениях (5.31-5.33) положить Линейные преобразования, то получим систему векторов:

Линейные преобразования

которая использовалась как базис пространства Линейные преобразования в примере после теоремы Линейные преобразования Линейные преобразования и Линейные преобразования. В таком базисе, то есть базисе из собственных векторов, матрица оператора Линейные преобразования оказалась диагональной, ее ненулевыми элементами являются собственные числа матрицы Линейные преобразования.

Теорема 5.8 (о преобразовании матрицы к диагональному виду). Матрица линейного оператора Линейные преобразования в базисе Линейные преобразования имеет диагональный вид тогда и только тогда, когда все векторы базиса являются собственными векторами матрицы Линейные преобразования.
Теорему наводим  без доказательств

Заметим, что при нахождении собственных чисел для заданной матрицы самой задачей является решение алгебраического уравнения Линейные преобразования-й степени, что во многих случаях сделать невозможно без использования приближенных методов. Изучение приближенных методов выходит за пределы программы. Поэтому предлагаем воспользоваться известными программами MatLab, MathCad, Maple и др.

Следующий пример был решен в пакете MatLab, в котором конечный результат вычислений предоставляется без промежуточных выкладок.
Найдем собственные числа и соответствующие им собственные векторы матрицы

Линейные преобразования

Характерным уравнением для нахождения собственных чисел является уравнение

Линейные преобразования

корнями которого будут числа Линейные преобразования а соответствующие им собственные векторы имеют вид: 

Линейные преобразования

Собственные числа и собственные векторы матриц имеют широкий спектр использования, в частности, в аналитической геометрии (Раздел 2), в задачах различных отраслей естественных наук и эконометрики.

Базис пространства из собственных векторов линейного оператора

По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Возникает вопрос, при каких условиях существует базис линейного пространства Линейные преобразования, построенный из собственных векторов матрицы.
Лема. Если Линейные преобразования является собственным числом матрицы Линейные преобразования, то множество собственных векторов матрицы Линейные преобразования содержит Линейные преобразования линейно независимых векторов, где Линейные преобразования – ранг матрицы Линейные преобразования.

Доказательство. Согласно теореме 5.4 множество собственных векторов совпадает с множеством всех решений однородной системы линейных уравнений: 

Линейные преобразования

где Линейные преобразования – собственный вектор матрицы Линейные преобразования, что соответствует собственному числу Линейные преобразования. По теореме 4.4 такая система имеет фундаментальную систему решений, количество векторов которой равна Линейные преобразования, то есть содержит Линейные преобразования– линейно независимых векторов.

Теорема 5.9 (о существовании базиса из собственных векторов матрицы). Пусть числа Линейные преобразования образуют множество всех различных собственных чисел матрицы Линейные преобразования. Если сумма рангов матриц Линейные преобразования равна Линейные преобразования, то в пространстве Линейные преобразования существует базис из собственных векторов матрицы Линейные преобразования.

Доказательство. Согласно лемме каждое множество собственных векторов, соответствующих уравнению Линейные преобразования, содержит независимые векторы в количестве Линейные преобразования. По теореме 5.5 собственные векторы, принадлежащие разным собственным числам, являются линейно независимыми. Тогда для матрицы Линейные преобразования общее количество линейно независимых собственных векторов составляет:

Линейные преобразования

Поскольку собственные векторы матрицы Линейные преобразования в совокупности составляют систему Линейные преобразования линейно независимых векторов, то они образуют базис пространства Линейные преобразования.

Теорема 5.10 (о существовании базиса из собственных векторов симметричной матрицы). Если матрица Линейные преобразования линейного оператора симметрична, то в пространстве Линейные преобразования существует базис, образованный из собственных векторов матрицы Линейные преобразования.

Теорему принимаем без доказательств.
Построим ортонормированный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы

Линейные преобразования

линейного преобразования Линейные преобразования, и найдем матрицу Линейные преобразования заданного преобразования в этом базисе.

Согласно теореме 5.9 такой базис существует, поскольку матрица Линейные преобразования является симметричной матрицей. Составим характеристическое уравнение матрицы Линейные преобразования:

Линейные преобразования

и решим его: Линейные преобразования (собственное значение кратности Линейные преобразования) и Линейные преобразования

Для каждого из двух различных собственных чисел матрицы определим фундаментальную систему решений однородной системы уравнений: Линейные преобразования. При Линейные преобразования в результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последним шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Определяем фундаментальную систему решений однородной системы уравнений Линейные преобразования

Линейные преобразования

Собственные векторы Линейные преобразования и Линейные преобразования являются ортогональными, поскольку их скалярное произведение равно нулю: Линейные преобразования

При Линейные преобразования в результате элементарных преобразований основной матрицы системы получаем:

Линейные преобразования

По последнем шагом элементарных преобразований матрицы записываем общее решение системы:

Линейные преобразования

Возлагаем Линейные преобразования и получаем фундаментальный решение однородной системы уравнений Линейные преобразования

Линейные преобразования

Поскольку Линейные преобразования и Линейные преобразования, то все три вектора попарно ортогональны. Объединив полученные фундаментальные системы решений, иметь систему собственных векторов матрицы  Линейные преобразования. Они образуют ортогональный базис пространства Линейные преобразования. После нормирования векторы приобретают вид:

Линейные преобразования

Это и есть ортогональный базис пространства Линейные преобразования, состоящий из собственных векторов матрицы Линейные преобразования.

По соотношению (5.13) определим матрицу Линейные преобразования, что соответствует оператору Линейные преобразования в базисе из собственных векторов. Согласно теореме 5.8 эта матрица будет иметь диагональный вид, а элементами ее главной диагонали будут собственные числа этой матрицы. Заключим с собственными векторами Линейные преобразования, Линейные преобразования и Линейные преобразования матрицу Линейные преобразования перехода к новому базису и найдем обратную к ней матрицу Линейные преобразования:

Линейные преобразования

По матричным уравнением (5.13) находим матрицу Линейные преобразования, что соответствует оператору Линейные преобразования в базисе из собственных векторов:

Линейные преобразования

Следовательно, мы получили диагональную матрицу третьего порядка, элементами главной диагонали которой есть собственные числа матрицы Линейные преобразования.

Далее приведен пример применения собственных векторов и собственных чисел в одной из многих задач экономики.

Линейная модель обмена (модель международной торговли)

Практически все страны кроме внутреннего товарообмена осуществляют внешний товарообмен, то есть занимаются внешней торговлей. Торговля считается сбалансированной, или бездефицитной, если для каждой страны прибыль от торговли не меньше объем средств, которые она вкладывает в товарооборот (внутренний и внешний).

Постановка задачи. Несколько стран осуществляют взаимный товарообмен. Известную долю бюджетных средств, тратит каждая страна на закупку товаров у другой страны, учитывая и внутренний товарооборот. Определить, каким должно быть соотношение бюджетов партнеров для того, чтобы обеспечить бездефицитность торговли.  

Построение математической модели. Введем обозначения количественных характеристик, описывающих торговлю между странами, и определим связь между этими характеристиками. Пусть Линейные преобразования – страны, участвующие в международной торговле. Доли средств, которые тратит страна Линейные преобразования на закупку товаров в стране Линейные преобразования, учитывая и внутренний товарооборот Линейные преобразования, обозначим через Линейные преобразования. Понятно, что

Линейные преобразования

Матрицу Линейные преобразования, элементами которой являются числа Линейные преобразования, называют структурной матрицей торговли:

Линейные преобразования

Эта матрица описывает взаимодействие стран в процессе международной торговли. Соотношение (5.34) означает, что сумма элементов каждого столбца матрицы равна
1. Если объем средств, которые тратит каждая страна на торговлю, обозначить через Линейные преобразования, соответственно, то прибыль Линейные преобразования страны Линейные преобразования от внутренней и внешней торговли составит

Линейные преобразования

Чтобы торговля каждой страны была сбалансированной, по определению должно выполняться условие Линейные преобразования, и Линейные преобразования, то есть прибыль от торговли не должна быть меньше расходов. Однако соблюдение этого требования в виде неравенства невозможно для всех стран в совокупности. Действительно, добавим левые и правые части указанных неровностей, изменяя Линейные преобразования от единицы до Линейные преобразования:

Линейные преобразования

Группируя в левой части слагаемые, содержащие каждое из Линейные преобразования, получим:

Линейные преобразования

Учитывая соотношение (5.20), получим:

Линейные преобразования

Отсюда следует, что сбалансированная торговля возможна только в случае знака равенства. Это, полагаем, понятно не только на основании аналитических выкладок, но и с экономической точки зрения (и даже просто с точки зрения здравого смысла): все страны в совокупности не могут получить прибыль. Более того, для одной из стран не может выполняться знак строгого неравенства Линейные преобразования.

Итак, условием сбалансированной торговли является равенства Линейные преобразования, и Линейные преобразования, из которых получим:

Линейные преобразования

Введем в рассмотрение вектор (бюджетных) средств Линейные преобразования и подадим систему (5.39) в матричной форме:

Линейные преобразования

С (5.40) следует, что при условии сбалансированности торговли между странами вектор средств Линейные преобразования должен быть собственным вектором структурной матрицы торговли Линейные преобразования, который принадлежит собственному числу Линейные преобразования. Таким образом, решение задачи сводится к нахождению этого собственного вектора Линейные преобразования, компоненты которого устанавливают соотношение между бюджетами стран, участвующих в товарообмене.

Рассмотрим товарообмен между тремя странами. Пусть структурная матрица торговли стран Линейные преобразования, имеет вид:

Линейные преобразования

Найдем вектор средств, компонентами которого являются доли от общего объема торговли, должна вкладывать каждая из стран во внешней товарооборот для того, чтобы торговля была сбалансированной.

Искомый вектор средств является собственным вектором структурной матрицы, принадлежащий собственному значению Линейные преобразования. Его компоненты образуют ненулевое решение однородной СЛАУ:

Линейные преобразования

Поскольку система является однородной, то расширенная матрица эквивалентна основной матрицы системы. Осуществим элементарные преобразования основной матрицы этой системы уравнений:

Линейные преобразования

Находим общее решение системы, в котором Линейные преобразования – базисные переменные, Линейные преобразования – свободная переменная: 

Линейные преобразования

Отсюда следует, что для сбалансированности торговли необходимо, чтобы средства, которые вкладывает в внешний товарооборот каждая страна, соотносились как Линейные преобразования

Лекции:

  • Разложение в ряд Фурье четных и нечетных функций
  • Функции многих переменных
  • Наибольшее и наименьшее значение функции
  • Уравнение плоскости
  • Экстремум функции трёх переменных
  • Как найти вероятность: пример решения
  • Свойства определенного интеграла
  • Комбинаторика
  • Однородные дифференциальные уравнения
  • Простейшие задачи аналитической геометрии

Матрицы линейных преобразований

Пусть
в n-
мерном линейном пространстве с базисом
,,…,
задано линейное преобразование А. Тогда
векторы А,…,А
также векторы этого пространства и их
можно представить в виде линейной
комбинации векторов базиса:

A=
a11+
a21+…+
an1

A=
a12+
a22+…+
an2

……………………………….

A=
an1+
an2+…+
ann

Тогда
матрица А =

называется матрицей
линейного преобразования А
.

Если
в пространстве L
взять вектор
=
x1+
x2+…+
xn,
то A
L.

,
где

……………………………..

Эти
равенства можно назвать линейным
преобразованием в базисе
,,…,.

В
матричном виде:

,
А,

Пример.
Найти матрицу линейного преобразования,
заданного в виде:

x
= x + y

y
= y + z

z
= z + x

x
= 1x
+ 1y
+ 0z

y
= 0x
+ 1y
+ 1z

z
= 1x
+ 0y
+ 1z

A
=

На практике действия
над линейными преобразованиями сводятся
к действиям над их матрицами.

Определение:
Если вектор
переводится
в вектор

линейным преобразованием с матрицей
А, а вектор

в вектор

линейным преобразованием с матрицей
В, то последовательное применение этих
преобразований равносильно линейному
преобразованию, переводящему вектор

в вектор
(оно
называется произведением
составляющих преобразований
).

С
= ВА

Пример.
Задано линейное преобразование А,
переводящее вектор
в
вектор

и линейное преобразование В, переводящее
вектор

в вектор
.
Найти матрицу линейного преобразования,
переводящего вектор

в вектор
.

С
= ВА

Т.е.

Примечание:
Если А=
0, то преобразование вырожденное, т.е.,
например, плоскость преобразуется не
в целую плоскость, а в прямую.

Собственные значения и собственные векторы линейного преобразования

Определение:
Пусть L
– заданное n-
мерное линейное пространство. Ненулевой
вектор
L
называется собственным
вектором

линейного преобразования А, если
существует такое число ,
что выполняется равенство:

A.

При
этом число 
называется собственным
значением (характеристическим числом)

линейного преобразования А, соответствующего
вектору
.

Определение:
Если линейное преобразование А в
некотором базисе
,,…,
имеет матрицу А =
,
то собственные значения линейного
преобразования А можно найти как корни
1,
2,
… ,n
уравнения:

Это
уравнение называется характеристическим
уравнением,

а его левая часть- характеристическим
многочленом

линейного преобразования А.

Следует
отметить, что характеристический
многочлен линейного преобразования не
зависит от выбора базиса.

Рассмотрим
частный
случай
. Пусть
А – некоторое линейное преобразование
плоскости, матрица которого равна
.
Тогда преобразование А может быть задано
формулами:

;

в
некотором базисе
.

Если
преобразование А имеет собственный
вектор с собственным значением ,
то А.


или

Т.к.
собственный вектор
ненулевой,
то х1
и х2
не равны нулю одновременно. Т.к. данная
система однородна, то для того, чтобы
она имела нетривиальное решение,
определитель системы должен быть равен
нулю. В противном случае по правилу
Крамера система имеет единственное
решение – нулевое, что невозможно.

Полученное
уравнение является характеристическим
уравнением линейного преобразования
А
.

Таким
образом, можно найти собственный вектор
1,
х2)
линейного преобразования А с собственным
значением ,
где 
– корень характеристического уравнения,
а х1
и х2
– корни системы уравнений при подстановке
в нее значения .

Понятно,
что если характеристическое уравнение
не имеет действительных корней, то
линейное преобразование А не имеет
собственных векторов.

Следует
отметить, что если

собственный вектор преобразования А,
то и любой вектор ему коллинеарный –
тоже собственный с тем же самым собственным
значением .

Действительно,
.
Если учесть, что векторы имеют одно
начало, то эти векторы образуют так
называемое собственное
направление
или
собственную
прямую
.

Т.к.
характеристическое уравнение может
иметь два различных действительных
корня 1
и 2,
то в этом случае при подстановке их в
систему уравнений получим бесконечное
количество решений. (Т.к. уравнения
линейно зависимы). Это множество решений
определяет две собственные
прямые
.

Если
характеристическое уравнение имеет
два равных корня 1
= 2
= ,
то либо имеется лишь одна собственная
прямая, либо, если при подстановке в
систему она превращается в систему
вида:
.
Эта система удовлетворяет любым значениям
х1
и х2.
Тогда все векторы будут собственными,
и такое преобразование называется
преобразованием
подобия
.

Пример.
Найти характеристические числа и
собственные векторы линейного
преобразования с матрицей А =
.

Запишем
линейное преобразование в виде:

Составим
характеристическое уравнение:

2
– 8
+ 7 = 0;

Корни
характеристического уравнения: 1
= 7; 2
= 1;

Для
корня 1
= 7:

Из
системы получается зависимость: x1
– 2
x2
=
0. Собственные
векторы для первого корня характеристического
уравнения имеют координаты: (t;
0,5
t)
где t
параметр.

Для
корня 2
= 1:

Из
системы получается зависимость: x1
+
x2
=
0. Собственные
векторы для второго корня характеристического
уравнения имеют координаты: (t;
t)
где t
параметр.

Полученные
собственные векторы можно записать в
виде:

Пример.
Найти характеристические числа и
собственные векторы линейного
преобразования с матрицей А =
.

Запишем
линейное преобразование в виде:

Составим
характеристическое уравнение:

2
– 4
+ 4 = 0;

Корни
характеристического уравнения: 1
= 2
= 2;

Получаем:

Из
системы получается зависимость: x1
x2
=
0. Собственные
векторы для первого корня характеристического
уравнения имеют координаты: (t;
t)
где t
параметр.

Собственный
вектор можно записать:
.

Рассмотрим
другой частный
случай
. Если

собственный вектор линейного преобразования
А, заданного в трехмерном линейном
пространстве, а х1,
х2,
х3
– компоненты этого вектора в некотором
базисе
,
то

,

где 
– собственное значение (характеристическое
число) преобразования А.

Если
матрица линейного преобразования А
имеет вид:

,
то

Характеристическое
уравнение:

Раскрыв
определитель, получим кубическое
уравнение относительно .
Любое кубическое уравнение с действительными
коэффициентами имеет либо один, либо
три действительных корня.

Тогда
любое линейное преобразование в
трехмерном пространстве имеет собственные
векторы.

Пример.
Найти характеристические числа и
собственные векторы линейного
преобразования А, матрица линейного
преобразования А =
.

Составим
характеристическое уравнение:

(1
– )((5
– )(1
– )
– 1) – (1 – 
– 3) + 3(1 – 15 + 3)
= 0

(1
– )(5
– 5
– 
+ 2
– 1) + 2 + 
– 42 + 9
= 0

(1
– )(4
– 6
+ 2)
+ 10
– 40 = 0

4
– 6
+ 2
– 4
+ 62
– 3
+ 10
– 40 = 0

-3
+ 72
– 36 = 0

-3
+ 92
– 22
– 36 = 0

-2(
+ 2) + 9(2
– 4) = 0

(
+ 2)(-2
+ 9
– 18) = 0

Собственные
значения: 1
= -2; 2
= 3; 3
= 6;

1)
Для 1
= -2:

Если
принять х1
= 1, то

х2
= 0; x3
= -1;

Собственные
векторы:

2)
Для 2
= 3:

Если
принять х1
= 1, то

х2
= -1; x3
= 1;

Собственные
векторы:

3)
Для 3
= 6:

Если
принять х1
= 1, то

х2
= 2; x3
= 1;

Собственные
векторы:

Пример.
Найти характеристические числа и
собственные векторы линейного
преобразования А, матрица линейного
преобразования А =
.

Составим
характеристическое уравнение:

-(3
+ )((1
– )(2
– )
– 2) + 2(4 – 2
– 2) – 4(2 – 1 + )
= 0

-(3
+ )(2
– 
– 2
+ 2
– 2) + 2(2 – 2)
– 4(1 + )
= 0

-(3
+ )(2
– 3)
+ 4 – 4
– 4 – 4
= 0

-32
+ 9
– 3
+ 32
– 8
= 0

-3
+ 
= 0

1
= 0; 2
= 1; 3
= -1;

Для
1
= 0:

Если
принять х3
= 1, получаем х1
= 0, х2
= -2

Собственные
векторы
t,
где t
– параметр.

Для
самостоятельного решения:

Аналогично найти
и

для 2
и 3.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий