Как найти матрицу свободных коэффициентов

Системы линейных алгебраических уравнений: основные понятия, виды

Определение СЛАУ

Системой линейных алгебраических уравнений (СЛАУ) называется система вида:

$$left<begin a_ <11>cdot x_<1>+a_ <12>cdot x_<2>+ldots+a_ <1 n>cdot x_=b_ <1>\ a_ <21>cdot x_<1>+a_ <22>cdot x_<2>+ldots+a_ <2 n>cdot x_=b_ <2>\ ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots ldots . . \ a_ cdot x_<1>+a_ cdot x_<2>+ldots+a_ cdot x_=b_ endright.$$

Упорядоченный набор значений $$left^<0>, x_<2>^<0>, ldots, x_^<0>right>$$ называется решением системы, если при подстановке в уравнения все уравнения превращаются в тождество.

Задание. Проверить, является ли набор $<0,3>$ решением системы $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$

Решение. Подставляем в каждое из уравнений системы $x=0$ и $y=3$:

$$5 x+y=3 Rightarrow 5 cdot 0+3=3 Rightarrow 3=3$$

Так как в результате подстановки получили верные равенства, то делаем вывод, что заданный набор является решением указанной СЛАУ.

Ответ. Набор $<0,3>$ является решением системы $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$

Виды систем

СЛАУ называется совместной, если она имеет, хотя бы одно решение.

В противном случае система называется несовместной.

Система $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$ является совместной, так как она имеет, по крайней мере, одно решение $x=0$, $y=3$

Система $left<begin 5 x+y=-6 \ 5 x+y=3 endright.$ является несовместной, так как выражения, стоящие в левых частях уравнений системы равны, но правые части не равны друг другу. Ни для каких наборов $$ это не выполняется.

Система называется определённой, если она совместна и имеет единственное решение.

В противном случае (т.е. если система совместна и имеет более одного решения) система называется неопределённой.

Система называется однородной, если все правые части уравнений, входящих в нее, равны нулю одновременно.

Система называется квадратной, если количество уравнений равно количеству неизвестных.

Система $left<begin 3 x-2 y=-6 \ 5 x+y=3 endright.$ квадратная, так как неизвестных две и это число равно количеству уравнений системы.

Матричная запись систем уравнений

Исходную СЛАУ можно записать в матричном виде:

Задание. Систему $left<begin x-y+z-4 t=0 \ 5 x+y+t=-11 endright.$ записать в матричной форме и выписать все матрицы, которые ей соответствуют.

Решение. Заданную СЛАУ записываем в матричной форме $A. X=B$ , где матрица системы:

$$A=left(begin 1 & -1 & 1 & -4 \ 5 & 1 & 0 & 1 endright)$$

то есть, запись СЛАУ в матричной форме:

$$left(begin 1 & -1 & 1 & -4 \ 5 & 1 & 0 & 1 endright)left(begin x \ y \ z \ t endright)=left(begin 0 \ -11 endright)$$

Расширенная матрица системы

Задание. Записать матрицу и расширенную матрицу системы $left<begin 2 x_<1>+x_<2>-x_<3>=4 \ x_<1>-x_<2>=5 endright.$

Решение. Матрица системы $A=left(begin 2 & 1 & -1 \ 1 & -1 & 0 endright)$ , тогда расширенная матрица $tilde=(A mid B)=left(begin 2 & 1 & -1 & 4 \ 1 & -1 & 0 & 5 endright)$

Методы решения систем линейных алгебраических уравнений (СЛАУ) с примерами

Содержание:

Методы решения систем линейных алгебраических уравнений (СЛАУ)

Метод Крамера

Определение: Системой линейных алгебраических уравнений (СЛАУ) называется выражение

Определение: Определитель, составленный из коэффициентов при неизвестных, называется главным определителем системы

Крамер предложил следующий метод решения СЛАУ: умножим главный определитель на для этого умножим все элементы первого столбца на эту неизвестную:

Второй столбец умножим на третий столбец – на -ый столбец – на и все эти произведения прибавим к первому столбцу, при этом произведение не изменится:

Согласно записи СЛАУ первый столбец получившегося определителя представляет собой столбец свободных коэффициентов, т.е.

Определение: Определитель называется первым вспомогательным определителем СЛАУ.

Поступая аналогично тому, как описано выше, найдем все вспомогательные определители СЛАУ:

31. Для того чтобы найти вспомогательный определитель i, надо в главном определителе СЛАУ заменить столбец i на столбец свободных коэффициентов.

Определение: Полученные выше соотношения называются формулами Крамера. Используя формулы Крамера, находят неизвестные величины Проанализируем полученные формулы:

Пример:

Решить СЛАУ методом Крамера

Решение:

Прежде всего, обращаем внимание на то, что в последнем уравнении переменные записаны в неправильном порядке, в этом случае говорят, что СЛАУ записана в ненормализованном виде. Нормализуем СЛАУ, для чего запишем неизвестные в последнем уравнении системы в правильном порядке, чтобы одноименные неизвестные были записаны друг под другом

Найдем главный определитель СЛАУ (раскрываем по первой строке)

Так как главный определитель системы отличен от нуля, то СЛАУ имеет единственное решение. Найдем три вспомогательных определителя

Воспользуемся формулами Крамера

Замечание: После нахождения решения СЛАУ надо обязательно провести проверку, для чего найденные числовые значения неизвестных подставляется в нормализованную систему линейных алгебраических уравнений.

Выполним проверку Отсюда видно, что СЛАУ решена верно.

Матричный способ решения СЛАУ

Для решения СЛАУ матричным способом введем в рассмотрение матрицу, составленную из коэффициентов при неизвестных матpицы-столбцы неизвестных и свободных коэффициентов

Тогда СЛАУ можно записать в матричном виде Матричный способ решения СЛАУ состоит в следующем: умножим слева матричное уравнение на обратную матрицу к матрице А, получим в силу того, что произведение найдем Таким образом, для нахождения неизвестных матричным способом, надо найти обратную к А матрицу после чего надо умножить эту матрицу на матрицу-столбец свободных коэффициентов.

Пример:

Решить СЛАУ матричным способом

Решение:

Введем в рассмотрение следующие матрицы

Найдем матрицу (см. Лекцию № 2): найдем детерминант матрицы А.

Пример:

Решение:

Найдем алгебраические дополнения всех элементов Запишем обратную матрицу (в правильности нахождения обратной матрицы убедиться самостоятельно). Подействуем пай денной матрицей на матрицу-столбец свободных коэффициентов В:

Отсюда находим, что х = 1; y = l; z = l.

Метод Гаусса

Метод Гаусса или метод исключения неизвестных состоит в том, чтобы за счет элементарных преобразований привести СЛАУ к треугольному виду. Покажем использование расширенной матрицы, составленной из коэффициентов при неизвестных и расширенной за счет столбца свободных коэффициентов, для приведения СЛАУ к треугольному виду на примере системы, рассматриваемой в этой лекции. Расширенная матрица для СЛАУ имеет вид:

Замечание: В методе Гаусса желательно, чтобы первая строка расширенной матрицы начиналась с единицы.

Обменяем в расширенной матрице первую и вторую строки местами, получим Приведем матрицу к треугольному виду, выполнив следующие преобразования: умножим элементы первой строки на (-2) и прибавим к соответствующим элементам второй строки Разделим все элементы второй строки на (-5), получим эквивалентную матрицу

Умножим элементы первой строки на (—1) и прибавим к соответствующим элементам третьей строки Разделим все элементы третьей строки на (-3), получим Таким образом, эквивалентная СЛАУ имеет вид (напомним, что первый столбец это коэффициенты при неизвестной х, второй – при неизвестной у, третий – при неизвестной z, а за вертикальной чертой находится столбец свободных коэффициентов):

Из первого уравнения находим, что х = 1.

Вывод: Из вышеизложенного материала следует, что вне зависимости от

способа решения СЛАУ всегда должен получаться один и тот же ответ.

Замечание: После нахождения решения СЛАУ надо обязательно выполнить проверку, то есть подставить полученные значения неизвестных в заданную СЛАУ и убедиться в тождественности левой части всех равенств системы соответствующим правым частям. Отметим, что задание СЛАУ всегда верно, то есть, если проверка показывает нарушение оговоренной тождественности, то надо искать ошибку в проведенных вычислениях.

Ранг матрицы. Теорема Кронекера-Капелли

Определение: Рангом матрицы называется наивысший порядок отличного от нуля минора этой матрицы.

Если то среди всевозможных миноров этой матрицы есть хотя бы один минор порядка r, который отличен от нулю, а все миноры порядков больших, чем r, равны нулю.

При вычислении ранга необходимо начинать вычислять миноры 2 порядка, затем миноры 3 порядка и так далее, пока не будут найдены миноры, обращающиеся в нуль. Если все миноры порядка p равны нулю, то и все миноры, порядок которых больше p, равны нулю.

Пример:

Найти ранг матрицы

Решение:

Очевидно, что среди миноров второго порядка есть миноры отличные от нуля, например, среди миноров третьего порядка также есть миноры, которые не равны нулю, например, Очевидно, что определитель четвертого порядка равен нулю, так как он будет содержать строку, состоящую из одних нулей (см. свойство для определителей). Следовательно, ранг матрицы А равен 3.

Теорема Кронекера-Капелли (критерий совместности СЛАУ). Для совместности системы линейных алгебраических уравнений (СЛАУ) необходимо и достаточно, чтобы ранг расширенной матрицы совпадал с рангом основной матрицы, составленной из коэффициентов при неизвестных величинах.

Следствия из теоремы Кронекера – Капелли

Следствие: Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение (то есть она определенная).

Следствие: Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений (т.е. она неопределенная).

В случае неопределенной системы решения ищут следующим образом: выбираются главные неизвестные, число которых равно рангу, а остальные неизвестные считаются свободными; далее главные неизвестные выражаются через свободные и получают множество решений, зависящих от свободных неизвестных. Это множество решений называется общим решением системы. Придавая свободным неизвестным различные произвольные значения, получим бесчисленное множество решений, каждое из которых называется частным решением системы.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Скалярное произведение и его свойства
  • Векторное и смешанное произведения векторов
  • Преобразования декартовой системы координат
  • Бесконечно малые и бесконечно большие функции
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Системы линейных алгебраических уравнений

Системой линейных алгебраических уравнений с неизвестными называется система уравнений вида

Числа называются коэффициентами системы ; — свободными членами , — неизвестными . Количество уравнений в системе может быть меньше, больше или равно числу неизвестных.

Решением системы называется упорядоченная совокупность чисел такая, что после замены неизвестных соответственно числами каждое уравнение системы превращается в верное числовое равенство. Система называется совместной , если она имеет хотя бы одно решение. Если система не имеет ни одного решения, то она называется несовместной .

Система (5.1) называется однородной , если все свободные члены равны нулю:

В отличие от однородной, систему общего вида (5.1) называют неоднородной .

Систему (5.1) принято записывать в матричной форме. Для этого из коэффициентов системы составляем матрицу системы

свободные члены записываем в столбец свободных членов

а неизвестные — в столбец неизвестных

Матричная запись неоднородной системы уравнений (5.1) имеет вид

Матричную запись (5.3) системы уравнений можно представить в эквивалентной форме

Тогда решение системы представляется столбцом и удовлетворяет равенству

т.е. столбец свободных членов является линейной комбинацией столбцов матрицы системы.

Относительно системы уравнений нас интересуют ответы на следующие вопросы:

1. Совместна система или нет?

2. Если система совместна, то имеет ли она единственное решение или нет?

3. Если решение единственное, то как его найти?

4. Если система имеет бесконечно много решений, то какова структура множества решений?

5. Как в бесконечном множестве решений системы определить одно решение, наилучшее с практической точки зрения?

6. Если система несовместна, то как определить ее приближенное решение?

Правило Крамера

Рассмотрим случай, когда число уравнений равно числу неизвестных , т.е. систему

где матрица системы — квадратная n-го порядка:

Ее определитель обозначим

Теорема 5.1 (правило Крамера). Если определитель матрицы системы линейных уравнений с неизвестными отличен от нуля, то система имеет единственное решение, которое находится по формулам

где — определитель матрицы, полученной из матрицы системы заменой i-го столбца столбцом свободных членов, т.е.

В самом деле, рассмотрим систему (5.6) как матричное уравнение . Так как определитель матрицы отличен от нуля, по теореме 4.2 заключаем, что матричное уравнение имеет единственное решение:

где — обратная матрица. Запишем i-й элемент столбца , учитывая, что в i-й строке присоединенной матрицы стоят алгебраические дополнения i-го столбца матрицы

Заметим, что в скобках записано разложение определителя по i-му столбцу, т.е. , что и требовалось доказать.

1. На практике при больших правило Крамера не применяется, так как вычисление определителя n-го порядка требует большого числа арифметических операций. Поэтому применяются более экономичные алгоритмы. Обычно, правило Крамера используется, когда нужно найти только несколько неизвестных (например, одну) среди многих. В теоретических исследованиях правило Крамера незаменимо и используется весьма продуктивно.

2. Если и хотя бы один определитель , то система несовместна. Если , то возможны два случая: либо система несовместна, либо имеет бесконечно много решений.

Пример 5.1. Решить систему линейных уравнений с помощью правила Крамера

Решение. Составим матрицу системы . Вычислим ее определитель

Так как определитель отличен от нуля, система имеет единственное решение (см. теорему 5.1). Находим определители и неизвестные

Условие совместности системы линейных уравнений

Рассмотрим систему (5.3) линейных уравнений с неизвестными. Составим блочную матрицу, приписав к матрице справа столбец свободных членов. Получим расширенную матрицу системы :

Эта матрица содержит всю информацию о системе уравнений, за исключением обозначений неизвестных.

Теорема 5.2 Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы: .

Необходимость следует из равенства (5.5) и следствия 1 теоремы 3.3. Если система имеет решение, то столбец свободных членов есть линейная комбинация столбцов матрицы системы. Поэтому при вычеркивании столбца Ь из расширенной матрицы ее ранг не изменяется. Следовательно, .

Для доказательства достаточности нужно использовать теорему о базисном миноре. Из равенства следует, что базисный минор матрицы является базисным минором расширенной матрицы . Поэтому столбец является линейной комбинацией столбцов базисного минора матрицы , а, значит, и всех столбцов матрицы . Следовательно, существуют числа , удовлетворяющие условию (5.5), т.е. система совместна.

Замечание 5.2. Теорема Кронекера-Капелли дает лишь критерий существования решения системы, но не указывает способа отыскания этого решения.

Пример 5.2. Определить, имеет ли система уравнений решения

Решение. Составим матрицу системы и расширенную матрицу системы

Ранг матрицы равен 2, так как она имеет не равные нулю миноры второго порядка и третья строка этой матрицы равна сумме первых двух строк. Следовательно, третью строку можно вычеркнуть, при этом ранг матрицы не изменится. Ранг расширенной матрицы равен трем, так как она имеет не равный нулю минор третьего порядка, например, минор, составленный из первого, второго и последнего столбцов расширенной матрицы

Следовательно, . Поэтому система несовместна (не имеет решений).

[spoiler title=”источники:”]

http://www.evkova.org/metodyi-resheniya-sistem-linejnyih-algebraicheskih-uravnenij-slau

http://mathhelpplanet.com/static.php?p=sistemy-linyeinykh-algebraicheskikh-uravnenii

[/spoiler]

Содержание:

  • Однородные СЛАУ
  • Фундаментальная система решений

Однородные СЛАУ

Определение

Однородной СЛАУ называется система, все правые части которой равны нулю одновременно.

Однородная СЛАУ, записанная в
матричном виде, $A X=Theta$ всегда совместна,
так как $X=Theta$ всегда является ее решением.

Заметим, что если $x_{1}, x_{2}$ – это два решения однородной
СЛАУ, то их линейная комбинация также будет решением однородной СЛАУ:

$$Y=lambda_{1} x_{1}+lambda_{2} x_{2}$$
$$A Y=Aleft(lambda_{1} x_{1}+lambda_{2} x_{2}right)=lambda_{1} A x_{1}+lambda_{2} A x_{2}=lambda_{1} Theta+lambda_{2} Theta=Theta$$

Теорема

Если однородная квадратная СЛАУ имеет ненулевое решение, то
определитель матрицы системы равен нулю.

Пример

Задание. Выяснить, имеет ли однородная СЛАУ
$left{begin{array}{l}
3 x-2 y=-1 \
x+3 y=7
end{array}right.$ ненулевые решения.

Решение. Вычислим определитель матрицы системы:

$$Delta=left|begin{array}{rr}
3 & -2 \
1 & 3
end{array}right|=9-(-2)=9+2=11 neq 0$$

Так как определитель не равен нулю, то система имеет только нулевое решение $x=y=0$

Ответ. Система имеет только нулевое решение.

Фундаментальная система решений

Рассмотрим множество всех столбцов, которые являются решениями исходной системы.

Определение

Фундаментальной системой решений (ФСР) однородной СЛАУ называется базис этой системы столбцов.

Количество элементов в ФСР равно количеству неизвестных системы минус ранг матрицы системы.
Любое решение исходной системы есть линейная комбинация решений ФСР.

Теорема

Общее решение неоднородной СЛАУ равно сумме частного решения неоднородной СЛАУ и
общего решения соответствующей однородной СЛАУ.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Найти общее решение и ФСР однородной системы
$left{begin{array}{l}
x_{1}+x_{2}-3 x_{4}-x_{5}=0 \
x_{1}-x_{2}+2 x_{3}-x_{4}=0 \
4 x_{1}-2 x_{2}+6 x_{3}+3 x_{4}-4 x_{5}=0 \
2 x_{1}+4 x_{2}-2 x_{3}+4 x_{4}-7 x_{5}=0
end{array}right.$

Решение. Приведем систему к ступенчатому виду с помощью
метода Гаусса. Для этого записываем
матрицу системы (в данном случае, так как система однородная, то ее правые части равны нулю, в этом случае столбец
свободных коэффициентов можно не выписывать, так как при любых элементарных преобразованиях в правых частях будут
получаться нули):

$$A=left(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
1 & -2 & 2 & -1 & 0 \
4 & -2 & 6 & 3 & -4 \
2 & 4 & -2 & 4 & -7
end{array}right)$$

с помощью элементарных преобразований приводим данную матрицу к ступенчатому виду. От второй строки отнимаем
первую, от третьей – четыре первых, от четвертой – две первых:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & -6 & 6 & 15 & 0 \
0 & 2 & -2 & 10 & -5
end{array}right)$$

Обнуляем элементы второго столбца, стоящие под главной диагональю, для этого от третьей строки отнимаем три
вторых, к четвертой прибавляем вторую:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 9 & -3 \
0 & 0 & 0 & 12 & -4
end{array}right)$$

От четвертой строки отнимем $frac{4}{3}$ третьей и третью
строку умножим на $frac{1}{3}$ :

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 3 & -1 \
0 & 0 & 0 & 0 & 0
end{array}right)$$

Нулевые строки можно далее не рассматривать, тогда получаем, что

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -3 & -1 \
0 & -2 & 2 & 2 & 1 \
0 & 0 & 0 & 3 & -1
end{array}right)$$

Далее делаем нули над главной диагональю, для этого от первой строки отнимаем третью, а
ко второй строке прибавляем третью:

$$A simleft(begin{array}{rrrrr}
1 & 1 & 0 & -6 & 0 \
0 & -2 & 2 & 5 & 0 \
0 & 0 & 0 & 3 & -1
end{array}right)$$

то есть получаем систему, соответствующую данной матрице:

$$left{begin{array}{l}
x_{1}+x_{2}-6 x_{4}=0 \
-2 x_{2}+2 x_{3}+5 x_{4}=0 \
3 x_{4}-x_{5}=0
end{array}right.$$

Или, выразив одни переменные через другие, будем иметь:

$$left{begin{array}{l}
x_{1}=-x_{2}+6 x_{4} \
x_{2}=x_{2} \
x_{3}=x_{2}-frac{5}{2} x_{4} \
x_{4}=x_{4} \
x_{5}=3 x_{4}
end{array}right.$$

Здесь $x_{2}, x_{4}$ – независимые (или свободные)
переменные (это те переменные, через которые мы выражаем остальные переменные), $x_{1}, x_{3}, x_{5}$ – зависимые (связанные) переменные
(то есть те, которые выражаются через свободные). Количество свободных переменных равно разности общего количества переменных $n$ (в рассматриваемом примере $n=5$ , так как система зависит от
пяти переменных) и ранга матрицы $r$ (в этом
случае получили, что $r=3$ – количество
ненулевых строк после приведения матрицы к ступенчатому виду):
$n-r=5-3=2$

Так как ранг матрицы $r=3$ , а количество неизвестных
системы $n=5$ , то тогда количество решений в ФСР
$n-r=5-3=2$ (для проверки, это число должно равняться количеству свободных переменных).

Для нахождения ФСР составляем таблицу, количество столбцов которой соответствует количеству неизвестных (то есть
для рассматриваемого примера равно 5), а количество строк равно количеству решений ФСР (то есть имеем две строки).
В заголовке таблицы выписываются переменные, свободные переменные отмечаются стрелкой. Далее свободным переменным
придаются любые, одновременно не равные нулю значений и из зависимости между свободными и связанными переменными
находятся значения остальных переменных. Для рассматриваемой задачи эта зависимость имеет вид:

$$left{begin{array}{l}
x_{1}=-x_{2}+6 x_{4} \
x_{3}=x_{2}-frac{5}{2} x_{4} \
x_{5}=3 x_{4}
end{array}right.$$

Тогда придавая в первом случае, например, независимым переменным значения
$x_{2}=1$ , $x_{4}=0$ получаем, что $left{begin{array}{l}
x_{1}=-1+6 cdot 0=-1 \
x_{3}=1-frac{5}{2} cdot 0=1 \
x_{5}=3 cdot 0=0
end{array}right.$ . Полученные значения записываем в первую
строку таблицы. Аналогично, беря $x_{2}=0$ , $x_{4}=2$, будем иметь, что
{x_{1}=12, x_{3}=-5, x_{5}=6} , что и определяет второе решение ФСР.
В итоге получаем следующую таблицу:

Эти две строчки и есть фундаментальным решением заданной однородной СЛАУ. Частное решение системы:

$$X_{1}=left(begin{array}{r}
-1 \
1 \
1 \
0 \
0
end{array}right), X_{2}=left(begin{array}{r}
12 \
0 \
-5 \
2 \
6
end{array}right)$$

Общее решение является линейной комбинацией частных решений:

$$X=C_{1} X_{1}+C_{2} X_{2}=C_{1}left(begin{array}{r}
-1 \
1 \
1 \
0 \
0
end{array}right)+C_{2}left(begin{array}{r}
12 \
0 \
-5 \
2 \
6
end{array}right)$$

где коэффициенты $C_{1}, C_{2}$ не равны нулю одновременно. Или запишем общее решение в таком виде:

$left{begin{array}{l}
x_{1}=-C_{1}+12 C_{2} \
x_{2}=C_{1} \
x_{3}=C_{1}-5 C_{2} \
x_{4}=2 C_{2} \
x_{5}=6 C_{2}
end{array}right.$
   $C_{1}, C_{2} neq 0$

Придавая константам $C_{1}, C_{2}$ определенные значения
и подставляя их в общее решение, можно будет находить частные решения однородной СЛАУ.

Читать дальше: примеры решения СЛАУ.

Базисные (основные) и свободные (неосновные) переменные. Общее и базисное решения системы линейных алгебраических уравнений. Первая часть.

В теме “Теорема Кронекера-Капелли” было указано, что если ранг расширеной матрицы системы $widetilde{A}$ и ранг матрицы системы $A$ равны между собой, то заданная система линейных алгебраических уравнений (СЛАУ) совместна, т.е. имеет решение. Вопрос о количестве этих решений разрешим с помощью следствия из теоремы Кронекера. Согласно ему, если $rang A=rangwidetilde{A} = n$ ($n$ – количество неизвестных), то СЛАУ имеет единственное решение. Если же $rang A=rangwidetilde{A} < n$, то количество решений заданной СЛАУ бесконечно.

Особый интерес представляет именно случай $rang A=rangwidetilde{A} < n$, которым и займёмся в этой теме. Так как $rang A=rangwidetilde{A}$, то обозначим эти ранги просто буквой $r$, т.е. $rang A=rangwidetilde{A}=r$. Итак, $r < n$ и система неопределена, т.е. имеет бесконечное количество решений.

Что означает фраза “ранг матрицы равен $r$”? Она означает, что есть хотя бы один минор $r$-го порядка, который не равен нулю. Напомню, что такой минор называется базисным. Базисных миноров может быть несколько. При этом все миноры, порядок которых выше $r$, равны нулю или не существуют.

Если коэффициенты при $r$ переменных совместной СЛАУ образуют базисный минор матрицы системы $A$, то эти $r$ переменных называют базисными или основными. Остальные $n-r$ переменных именуют свободными или неосновными.

Выбрать $r$ базисных переменных в общем случае можно различными способами. В примерах я покажу наиболее часто используемый способ выбора.

Решение СЛАУ, в котором все свободные переменные равны нулю, называется базисным.

Во всех изложенных ниже примерах матрицу системы будем обозначать буквой $A$, а расширенную матрицу системы – буквой $widetilde{A}$.

Пример №1

Решить СЛАУ $
left { begin{aligned}
& 3x_1-6x_2+9x_3+13x_4=9\
& -x_1+2x_2+x_3+x_4=-11;\
& x_1-2x_2+2x_3+3x_4=5.
end{aligned} right.$. Если система является неопределённой, указать базисное решение.

Решение

Итак, мы имеем СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:

$$
left( begin{array} {cccc|c}
3 & -6 & 9 & 13 & 9 \
-1 & 2 & 1 & 1 & -11 \
1 & -2 & 2 & 3 & 5 end{array} right) rightarrow
left|begin{aligned}
& text{поменяем местами первую и третью}\
& text{строки, чтобы первым элементом}\
& text{первой строки стала единица.}
end{aligned}right| rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
-1 & 2 & 1 & 1 & -11 \
3 & -6 & 9 & 13 & 9
end{array} right)
begin{array} {l} phantom{0} \ r_2+r_1\ r_3-3r_1 end{array} rightarrow

left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 3 & 4 & -6
end{array}right)
begin{array} {l} phantom{0} \ phantom{0}\r_3-r_2end{array} rightarrow \

rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 0 & 0 & 0
end{array}right)
$$

Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.

Матрицы

И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde{A} = 2$.

Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).

Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на “ступеньках”. Что это за “ступеньки” показано на рисунке:

Матрицы

На “ступеньках” стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.

В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.

Примечание. показатьскрыть

Базисные переменные выбраны: это $x_1$ и $x_3$. Остальные $n-r=2$ переменных (т.е. $x_2$ и $x_4$) являются свободными. Нам нужно выразить базисные переменные через свободные.

Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6 \
0 & 0 & 0 & 0 & 0
end{array}right)$ от нулевой строки:

$$
left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 5\
0 & 0 & 3 & 4 & -6
end{array}right)
$$

Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:

Матрицы

Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть

А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:

$$
left( begin{array} {cc|ccc}
1 & 2 & 5 & 2 & -3\
0 & 3 & -6 & 0 & -4
end{array}right)
begin{array} {l} phantom{0} \ 1/3cdot{r_2} end{array} rightarrow
left( begin{array} {cc|ccc}
1 & 2 & 5 & 2 & -3\
0 & 1 & -2 & 0 & -4/3
end{array}right)
begin{array} {l} r_1-2r_2 \ phantom{0} end{array} rightarrow \

rightarrow left(begin{array} {cc|ccc}
1 & 0 & 9 & 2 & -1/3\
0 & 1 & -2 & 0 & -4/3
end{array}right).
$$

Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Если вспомнить, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, то получим:

$$
left{begin{aligned}
& x_1=9+2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-2-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.
$$

Нами получено общее решение заданной СЛАУ. Чтобы найти базисное решение, нужно все свободные переменные приравнять к нулю. Т.е. полагая $x_2=0$ и $x_4=0$, будем иметь:

$$
left{begin{aligned}
& x_1=9;\
& x_2=0;\
& x_3=-2;\
& x_4=0.
end{aligned}right.
$$

Решение $x_1=9$, $x_2=0$, $x_3=-2$, $x_4=0$ и является базисным решением данной СЛАУ. В принципе, задавая свободным переменным иные значения, можно получить иные частные решения данной системы. Таких частных решений бесконечное количество. Например, принимая $x_2=-4$ и $x_4=1$, получим такое частное решение: $left{begin{aligned}
& x_1=frac{2}{3};\
& x_2=-4;\
& x_3=-frac{10}{3};\
& x_4=1.
end{aligned}right.$. Базисное решение, которые мы нашли ранее – лишь одно из бесконечного множества частных решений заданной СЛАУ.

Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=9+2x_2-frac{1}{3}x_4$ и $x_3=-2-frac{4}{3}x_4$ в левую часть первого уравнения, получим:

$$
3x_1-6x_2+9x_3+13x_4=3cdot left(9+2x_2-frac{1}{3}x_4right)-6x_2+9cdot left(-2-frac{4}{3}x_4right)+13x_4=9.
$$

Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.

Ответ: Общее решение: $left{begin{aligned}
& x_1=9+2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-2-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.$, базисное решение: $
left{begin{aligned}
& x_1=9;\
& x_2=0;\
& x_3=-2;\
& x_4=0.
end{aligned}right.$.

Пример №2

Решить СЛАУ

$$left{begin{aligned}
& x_1-2x_2+4x_3+2x_5=0;\
& 4x_1-11x_2+21x_3-2x_4+3x_5=-1; \
& -3x_1+5x_2-13x_3-4x_4+x_5=-2.
end{aligned}right.$$

Если система является неопределённой, указать базисное решение.

Решение

Похожий пример уже был решен в теме “метод Крамера” (пример №4). Переменные $x_4$ и $x_5$ были перенесены в правые части, а дальше применялись стандартные операции метода Крамера. Однако такой метод решения не гарантирует достижения результата. Например, мы переносим некие переменные в правую часть, а оставшийся определитель оказывается равным нулю, – что тогда? Решать перебором? 🙂 Поэтому гораздо удобнее применять преобразования метода Гаусса, как и в предыдущем примере.

$$
left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
4 & -11 & 21 & -2 & 3 & -1\
-3 & 5 & -13 & -4 & 1 & -2
end{array} right)
begin{array} {l} phantom{0} \r_2-4r_1\r_3+3r_1end{array} rightarrow

left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -3 & 5 & -2 & -5 & -1\
0 & -1 & -1 & -4 & 7 & -2
end{array} right) rightarrow \

rightarrow left|begin{aligned}
& text{поменяем местами вторую и третью}\
& text{строки, чтобы диагональным элементом}\
& text{второй строки стало число (-1).}
end{aligned}right|rightarrow

left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -1 & -1 & -4 & 7 & -2\
0 & -3 & 5 & -2 & -5 & -1
end{array} right)
begin{array} {l} phantom{0} \ phantom{0}\r_3-3r_1end{array} rightarrow \

rightarrow left( begin{array} {ccccc|c}
1 & -2 & 4 & 0 & 2 & 0\
0 & -1 & -1 & -4 & 7 & -2\
0 & 0 & 8 & 10 & -26 & 5
end{array} right).
$$

Матрица системы и расширенная матрица системы приведены к трапециевидной форме. Ранги этих матриц равны между собой и равны числу 3, т.е. $rang A=rangwidetilde{A} = 3$. Так как ранги равны между собой и меньше, чем количество переменных, то согласно следствию из теоремы Кронекера-Капелли данная система имеет бесконечное количество решений.

Количество неизвестных $n=5$, ранги обеих матриц $r=3$, поэтому нужно выбрать три базисных переменных и $n-r=2$ свободных переменных. Применяя тот же метод “ступенек”, что и в предыдущем примере, выберем в качестве базисных переменных $x_1$, $x_2$, $x_3$, а в качестве свободных переменных – $x_4$ и $x_5$.

Столбцы №4 и №5, которые соответствуют свободным переменным, перенесём за черту. После этого разделим третью строку на 8 и продолжим решение методом Гаусса:

$$
left( begin{array} {ccc|ccc}
1 & -2 & 4 & 0 & 0 & -2\
0 & -1 & -1 & -2 & 4 & -7\
0 & 0 & 8 & 5 & -10 & 26
end{array} right)
begin{array} {l} phantom{0} \ phantom{0}\1/8cdot{r_3}end{array} rightarrow

left( begin{array} {ccc|ccc}
1 & -2 & 4 & 0 & 0 & -2\
0 & -1 & -1 & -2 & 4 & -7\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l}r_1-4r_3 \r_2+r_3\ phantom{0}end{array} rightarrow \

left( begin{array} {ccc|ccc}
1 & -2 & 0 & -5/2 & 5 & -15\
0 & -1 & 0 & -11/8 & 11/4 & -15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l} phantom{0} \ -1cdot{r_2}\ phantom{0}end{array} rightarrow

left( begin{array} {ccc|ccc}
1 & -2 & 0 & -5/2 & 5 & -15\
0 & 1 & 0 & 11/8 & -11/4 & 15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
begin{array} {l}r_1+2r_2 \ phantom{0}\ phantom{0}end{array} rightarrow\

rightarrowleft( begin{array} {ccc|ccc}
1 & 0 & 0 & 1/4 & -1/2 & -15/2\
0 & 1 & 0 & 11/8 & -11/4 & 15/4\
0 & 0 & 1 & 5/8 & -5/4 & 13/4
end{array} right)
$$

Из последней матрицы имеем общее решение заданной СЛАУ: $left{begin{aligned}
& x_1=frac{1}{4}-frac{1}{2}x_4-frac{15}{2}x_5;\
& x_2=frac{11}{8}-frac{11}{4}x_4+frac{15}{4}x_5;\
& x_3=frac{5}{8}-frac{5}{4}x_4+frac{13}{4}x_5;\
& x_4 in R;\
& x_5 in R.
end{aligned}right.$. Базисное решение получим, если приравняем свободные переменные к нулю, т.е. $x_4=0$, $x_5=0$:

$$
left{begin{aligned}
& x_1=frac{1}{4};\
& x_2=frac{11}{8};\
& x_3=frac{5}{8};\
& x_4=0;\
& x_5=0.
end{aligned}right.
$$

Ответ: Общее решение: $left{begin{aligned}
& x_1=frac{1}{4}-frac{1}{2}x_4-frac{15}{2}x_5;\
& x_2=frac{11}{8}-frac{11}{4}x_4+frac{15}{4}x_5;\
& x_3=frac{5}{8}-frac{5}{4}x_4+frac{13}{4}x_5;\
& x_4 in R;\
& x_5 in R.
end{aligned}right.$, базисное решение: $left{begin{aligned}
& x_1=frac{1}{4};\
& x_2=frac{11}{8};\
& x_3=frac{5}{8};\
& x_4=0;\
& x_5=0.
end{aligned}right.$.

Продолжение этой темы рассмотрим во второй части, где разберём ещё два примера с нахождением общего решения.

Содержание:

Базисные и свободные переменные:

Пусть задана система

Метод Гаусса - определение и вычисление с примерами решения

Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:

  1. исключение из системы уравнения вида Метод Гаусса - определение и вычисление с примерами решения
  2. умножение обеих частей одного из уравнений системы на любое действительное число Метод Гаусса - определение и вычисление с примерами решения;
  3. перестановка местами уравнений системы;
  4. прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число не равное нулю.

Элементарные преобразования преобразуют данную систему уравнений в эквивалентную систему, т.е. в систему, которая имеет те же решения, что и исходная.

Для решения системы т линейных уравнений с т неизвестными удобно применять метод Гаусса, называемый методом последовательного исключения неизвестных, который основан на применении элементарных преобразований системы. Рассмотрим этот метод.

Предположим, что в системе (6.1.1)Метод Гаусса - определение и вычисление с примерами решения. Если это не так, то переставим уравнения системы так, чтобы Метод Гаусса - определение и вычисление с примерами решения .

На первом шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.1), начиная со второго. Для этого последовательно умножим первое уравнение системы на множители

Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из второго, третьего, …, последнего уравнения системы (6.1.1). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения (6.1.2)

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решения вычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения На втором шаге метода Гаусса исключим неизвестное Метод Гаусса - определение и вычисление с примерами решения из всех уравнений системы (6.1.2) начиная с третьего, предполагая, что Метод Гаусса - определение и вычисление с примерами решения (в противном случае, переставим уравнения системы (6.1.2)

чтобы это условие было выполнено). Для исключения неизвестного Метод Гаусса - определение и вычисление с примерами решения последовательно умножим второе уравнение системы (6.1.2) на множетели Метод Гаусса - определение и вычисление с примерами решения и вычтем последовательно преобразованные уравнения из третьего, четвёртого, последнего,…,уравнения системы (6.1.2). В результате получим эквивалентную систему:

Метод Гаусса - определение и вычисление с примерами решения

в которой коэффициенты Метод Гаусса - определение и вычисление с примерами решениявычислены по формулам:

Метод Гаусса - определение и вычисление с примерами решения

Продолжая аналогичные преобразования, систему (6.1.1) можно привести к одному из видов:

Метод Гаусса - определение и вычисление с примерами решения

или

Метод Гаусса - определение и вычисление с примерами решения

Совокупность элементарных преобразований, приводящих систему (6.1.1) к виду (6.1.4) или (6.1.5) называется прямым ходом метода Гаусса.

Отметим, что если на каком-то шаге прямого хода метода Гаусса получим уравнение вида:

Метод Гаусса - определение и вычисление с примерами решения, то это означает, что система (6.1.1) несовместна.

Итак, предположим, что в результате прямого хода метода Гаусса мы получили систему (6.1.4), которая называется системой треугольного вида. Тогда из последнего уравнения находим значение Метод Гаусса - определение и вычисление с примерами решения подставляем найденное значение Метод Гаусса - определение и вычисление с примерами решения в предпоследнее уравнение системы (6.1.4) и находим значение Метод Гаусса - определение и вычисление с примерами решения; и т.д. двигаясь снизу вверх в системе (6.1.4) находим единственные значения неизвестных Метод Гаусса - определение и вычисление с примерами решения которые и определяют единственное решение системы (6.1.1). Построение решения системы (6.1.4) называют обратным ходом метода Гаусса.

Если же в результате прямого хода метода Гаусса мы получим систему (6.1.5), которая называется системой ступенчатого вида, то из последнего уравнения этой системы находим значение неизвсстногоМетод Гаусса - определение и вычисление с примерами решения которое выражается через неизвестные Метод Гаусса - определение и вычисление с примерами решения. Найденное выражение подставляем в предпоследнее уравнение системы (6.1.5) и выражаем неизвестное Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решения и т.д. Двигаясь снизу вверх в системе (6.1.5) находим выражения неизвестных Метод Гаусса - определение и вычисление с примерами решения через неизвестные Метод Гаусса - определение и вычисление с примерами решенияПри этом неизвестные Метод Гаусса - определение и вычисление с примерами решения называются базисными неизвестными, а неизвестные Метод Гаусса - определение и вычисление с примерами решения – свободными. Так как свободным неизвестным можно придавать любые значения и получать соответствующие значения базисных неизвестных, то система (6.1.5), а, следовательно, и система (6.1.1) в этом случае имеет бесконечное множество решений. Полученные выражения базисных неизвестных через свободные неизвестные называются общим решением системы уравнений (6.1.1).

Таким образом, если система (6.1.1) путём элементарных преобразований приводится к треугольному виду (6.1.4), то она имеет единственное решение, если же она приводится к системе ступенчатого вида (6.1.5), то она имеет бесконечное множество решений. При этом неизвестные Метод Гаусса - определение и вычисление с примерами решения, начинающие уравнения ступенчатой системы, называются базисными, а остальные неизвестные – свободными.

Практически удобнее преобразовывать не саму систему уравнений (6.1.1), а расширенную матрицу системы, соединяя последовательно получающиеся матрицы знаком эквивалентностиМетод Гаусса - определение и вычисление с примерами решения.

Формализовать метод Гаусса можно при помощи следующего алгоритма.

Алгоритм решения системы m линейных уравнений с n неизвестными методом Гаусса

1. Составьте расширенную матрицу коэффициентов системы уравнений так, чтобы Метод Гаусса - определение и вычисление с примерами решения было не равно нулю:

Метод Гаусса - определение и вычисление с примерами решения

2. Выполните первый шаг метода Гаусса: в первом столбце начиная со второй строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

Матрица после первого шага примет вид

Метод Гаусса - определение и вычисление с примерами решения

3. Выполните второй шаг метода Гаусса, предполагая, что Метод Гаусса - определение и вычисление с примерами решения : во втором столбце начиная с третьей строки, запишите нули, а все другие элементы вычислите по формуле

Метод Гаусса - определение и вычисление с примерами решения

После второго шага матрица примет вид Метод Гаусса - определение и вычисление с примерами решения

4. Продолжая аналогичные преобразования, придёте к одному из двух случаев:

а) либо в ходе преобразований получим уравнение вида Метод Гаусса - определение и вычисление с примерами решения

тогда данная система несовместна;

б) либо придём к матрице вида:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения. Возможное уменьшение числа строк Метод Гаусса - определение и вычисление с примерами решения

связано с тем, что в процессе преобразований матрицы исключаются строки, состоящие из нулей.

5. Использовав конечную матрицу, составьте систему, при этом возможны два случая:

5.1. r=n:

Метод Гаусса - определение и вычисление с примерами решения

Система имеет единственное,решение Метод Гаусса - определение и вычисление с примерами решения, которое находим из системы обратным ходом метода Гаусса. Из последнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения затем из третьего от конца – Метод Гаусса - определение и вычисление с примерами решения и т.д., двигаясь снизу вверх, найдём все неизвестные Метод Гаусса - определение и вычисление с примерами решения.

5.2. Метод Гаусса - определение и вычисление с примерами решения:

Метод Гаусса - определение и вычисление с примерами решения

Тогда r неизвестных будут базисными, а остальные (n-r) – свободными. Из последнего уравнения выражаете неизвестное Метод Гаусса - определение и вычисление с примерами решениячерез Метод Гаусса - определение и вычисление с примерами решения. Из предпоследнего уравнения находите Метод Гаусса - определение и вычисление с примерами решения и т.д.

Система имеет в этом случае бесконечное множество решений.

Приведенный алгоритм можно несколько видоизменить и получить алгоритм полного исключения, состоящий в выполнении следующих шагов. На первом шаге:

  1. составляется расширенная матрица;
  2. выбирается разрешающий элемент расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения (если Метод Гаусса - определение и вычисление с примерами решения, строки матрицы можно переставить так, чтобы выполнялось условие Метод Гаусса - определение и вычисление с примерами решения);
  3. элементы разрешающей строки (строки, содержащей разрешающий элемент) оставляем без изменения; элементы разрешающего столбца (столбца, содержащего разрешающий элемент), кроме разрешающего элемента, заменяем нулями;
  4. все другие элементы вычисляем по правилу прямоугольника: преобразуемый элемент равен разности произведений элементов главной диагонали (главную диагональ образует разрешающий элемент и преобразуемый) и побочной диагонали (побочную диагональ образуют элементы, стоящие в разрешающей строке и разрешающем столбце): Метод Гаусса - определение и вычисление с примерами решения – разрешающий элемент (см. схему).

Последующие шаги выполняем по правилам:

1) выбирается разрешающий элемент Метод Гаусса - определение и вычисление с примерами решения (диагональный элемент матрицы);

2) элементы разрешающей строки оставляем без изменения;

Метод Гаусса - определение и вычисление с примерами решения

3) все элементы разрешающего столбца, кроме разрешающего элемента, заменяем нулями; • •

4) все другие элементы матрицы пересчитываем по правилу прямоугольника.

На последнем шаге делим элементы строк на диагональные элементы матрицы, записанные слева от вертикальной черты, и получаем решение системы.

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы находим следующее решение системы

уравнении: Метод Гаусса - определение и вычисление с примерами решения

Ответ: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом Метод Гаусса - определение и вычисление с примерами решенияМетод Гаусса - определение и вычисление с примерами решения

Система привелась к ступенчатому виду (трапециевидной форме):

Метод Гаусса - определение и вычисление с примерами решения

в которой неизвестные Метод Гаусса - определение и вычисление с примерами решения – базисные, а Метод Гаусса - определение и вычисление с примерами решения – свободные. Из второго уравнения системы (6.1.6) находим выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения. Из первого уравнений найдём выражение Метод Гаусса - определение и вычисление с примерами решения через Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения . Система имеет бесконечное множество решений. Общее решение системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения принимают любые значения из множества действительных чисел.

Если в общем решении положить Метод Гаусса - определение и вычисление с примерами решения, то получим решение Метод Гаусса - определение и вычисление с примерами решения, которое называется частным решением заданной системы.

Ответ: система имеет бесконечное множество решений, общее решение которой записывается в виде: Метод Гаусса - определение и вычисление с примерами решения

Пример:

Решить систему уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символомМетод Гаусса - определение и вычисление с примерами решения Метод Гаусса - определение и вычисление с примерами решения В последней матрице мы получили четвёртую строку, которая равносильна уравнению Метод Гаусса - определение и вычисление с примерами решения. Это означает, что заданная система не имеет решений.

Ответ: система несовместна.

Замечание 1. Если дана система уравнений (6.1.1), в которой число уравнений m равно числу неизвестных n (m=n) и определитель этой системы Метод Гаусса - определение и вычисление с примерами решения не равен нулю Метод Гаусса - определение и вычисление с примерами решения, то система имеет единственное решение, которое можно найти по формулам Крамера: Метод Гаусса - определение и вычисление с примерами решения, где определитель Метод Гаусса - определение и вычисление с примерами решения получен из определи-теля Метод Гаусса - определение и вычисление с примерами решения заменой j-ro столбца столбцом свободных членов.

Если же такую систему (m-n) записать в матричной форме AX=F, то её решение можно найти по формуле Метод Гаусса - определение и вычисление с примерами решения и оно является единственным.

Замечание 2. Используя метод Гаусса, тем самым и алгоритм полного исключения, можно находить обратную матрицу. Для этого составляется расширенная матрица, в которой слева от вертикальной черты записана матрица А, а справа – единичная матрица. Реализовав алгоритм полного исключения, справа от вертикальной черты получаем обратную матрицу, а слева – единичную.

Пример:

Найти обратную матрицу для матрицы: Метод Гаусса - определение и вычисление с примерами решения

Решение:

Так как

Метод Гаусса - определение и вычисление с примерами решения

то обратная матрицаМетод Гаусса - определение и вычисление с примерами решения существует. Составим расширенную мат-рицу и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения

тогда

Метод Гаусса - определение и вычисление с примерами решения

Покажем, что Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения

ответ Метод Гаусса - определение и вычисление с примерами решения

Исследование совместности и определённости системы. Теорема Кронекера-Капелли

Рассмотрим систему (6.1.1) m линейных уравнений с n неизвестными при любых m и n (случай m=n не исключается). Вопрос о совместности системы решается следующим критерием.

Теорема 6.2.1. (критерий Кронкера-Капелли). Для того, чтобы система линейных уравнений(6.1.1) была совместна, необходимо и достаточно, чтобы ранг матрицы А системы был равен рангу расширенной матрицы Метод Гаусса - определение и вычисление с примерами решения.

Доказательство и Необходимость:

Предположим, что система (6.1.1) совместна и Метод Гаусса - определение и вычисление с примерами решения – какое-либо её решение (возможно единственное). По определению решения системы получаем:

Метод Гаусса - определение и вычисление с примерами решения

Из этих равенств следует, что последний столбец матрицыМетод Гаусса - определение и вычисление с примерами решения есть линейная комбинация остальных ее столбцов с коэффициентами Метод Гаусса - определение и вычисление с примерами решения, то есть система вектор-столбцов матрицы Метод Гаусса - определение и вычисление с примерами решения линейно зависима (свойство 3 п.2.5) и значит последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения не изменяет ранга матрицы А, т.е.

Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Пусть Метод Гаусса - определение и вычисление с примерами решения. Рассмотрим r базисных

столбцов матрицы А, которые одновременно будут базисными столбцами и матрицы Метод Гаусса - определение и вычисление с примерами решения. В этом случае последний столбец матрицы Метод Гаусса - определение и вычисление с примерами решения можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, то есть

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения – коэффициенты линейных комбинаций. А это означает, что Метод Гаусса - определение и вычисление с примерами решения– решение системы (6.1.1), следовательно,

эта система совместна.

Совместная система линейных уравнений (6.1.1) может быть либо определенной, либо неопределенной.

Следующая теорема даст критерий определенности.

Теорема 6.2.2. Совместная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг матрицы А системы равен числу п ее неизвестных.

Таким образом, если число уравнений m системы (6.1.1) меньше числа ее неизвестных n и система совместна, то ранг матрицы системы Метод Гаусса - определение и вычисление с примерами решения. Значит система неопределенная.

В случае Метод Гаусса - определение и вычисление с примерами решения по теореме 6.2.2 получаем, что система имеет единственное решение. Так как Метод Гаусса - определение и вычисление с примерами решения, то определительМетод Гаусса - определение и вычисление с примерами решения и квадратная матрица А имеет обратную x матрицу Метод Гаусса - определение и вычисление с примерами решения и её решение можно найти по формуле: Метод Гаусса - определение и вычисление с примерами решения, где Х- столбец неизвестных, F— столбец свободных членов, или по формулам Крамера.

Следует отметить, что, решая систему (6.1.1) методом Гаусса, мы определяем и совместность, и определённость системы.

Пример:

Исследовать на совместность и определённость следующую систему линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу заданной системы. Определяя её ранг, находим тем самым и ранг матрицы системы. Для нахождения ранга матрицы применим алгоритм метода Гаусса. Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что ранг расширенной матрицы Метод Гаусса - определение и вычисление с примерами решенияне может быть больше ранга матрицы А системы. Так как

Метод Гаусса - определение и вычисление с примерами решения, то заданная система совместная и неопределённая.

  • Заказать решение задач по высшей математике

Однородные системы линейных уравнений

Система линейных уравнений (6.1.1) называется однородной, если все свободные члены Метод Гаусса - определение и вычисление с примерами решения равны нулю, то есть система имеет следующий вид:

Метод Гаусса - определение и вычисление с примерами решения

Эта система всегда совместна, так как очевидно, что она имеет нулевое решение

Метод Гаусса - определение и вычисление с примерами решения

Для однородной системы важно установить, имеет ли она ненулевые решения. Этот факт устанавливается следующей теоремой.

Теорема 6.3.1. Для того, чтобы однородная система имела ненулевые решения, необходимо и достаточно, чтобы ранг г матрицы А системы был меньше числа неизвестных n (rМетод Гаусса - определение и вычисление с примерами решенияn). 

Доказательство. Необходимость. Пусть система (6.3.1) имеет ненулевое решение. Тогда она неопределённая, т.к. имеет еще и нулевое решение. В силу теоремы 6.2.2 ранг матрицы неопределённой системы не может равняться n потому что при r(А)=n система определённая. Следовательно, Метод Гаусса - определение и вычисление с примерами решения и так как он не может быль больше n то Метод Гаусса - определение и вычисление с примерами решения.

Достаточность. Если Метод Гаусса - определение и вычисление с примерами решения, то в силу теоремы 6.2.2 система (6.3.1) имеет бесчисленное множество решений. А так как только одно решение является нулевым, то все остальные решения ненулевые. Метод Гаусса - определение и вычисление с примерами решения

Следствие 1. Если число неизвестных в однородной системе больше числа уравнений, то однородная система имеет ненулевые решения.

Доказательство. Действительно, ранг матрицы системы (6.3.1) не может превышать m. Но так как по условиюМетод Гаусса - определение и вычисление с примерами решения, то и Метод Гаусса - определение и вычисление с примерами решения. Следовательно, в силу теоремы 6.3.1 система имеет ненулевые решения.

Следствие 2. Для того, чтобы однородная система с квадрат-ной матрицей имела ненулевые решения, необходимо и достаточно, чтобы её определитель Метод Гаусса - определение и вычисление с примерами решения равнялся нулю.

Доказательство. Рассмотрим однородную систему с квадратной матрицей:

Метод Гаусса - определение и вычисление с примерами решения (6.3.2)

Если определитель матрицы системы Метод Гаусса - определение и вычисление с примерами решения, то ранг матрицы Метод Гаусса - определение и вычисление с примерами решения, тогда в силу теоремы 6.3.1 система (6.3.2) имеет ненулевое решение, так как условие Метод Гаусса - определение и вычисление с примерами решения является необходимым и достаточным условием для существования ненулевого решения. Заметим, что если определитель матрицы системы (6.3.2) не равен нулю, то Метод Гаусса - определение и вычисление с примерами решения в силу теоремы 6.3.1 она имеет только нулевое решение.

Пример:

Решить систему однородных линейных уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матицу системы и применим алгоритм полного исключения:Метод Гаусса - определение и вычисление с примерами решения

Из последней матрицы следует, что Метод Гаусса - определение и вычисление с примерами решения и система имеет бесчисленное множество решений.

Используя последнюю матрицу, последовательно находим общее решение: Метод Гаусса - определение и вычисление с примерами решения

Неизвестные Метод Гаусса - определение и вычисление с примерами решения– базисные, Метод Гаусса - определение и вычисление с примерами решения– свободная неизвестная, Метод Гаусса - определение и вычисление с примерами решения.

Фундаментальная система решений. Общее решение неоднородной системы линейных уравнений

Рассмотрим систему однородных линейных уравнений

Метод Гаусса - определение и вычисление с примерами решения (6.4.1)

Любое решение

Метод Гаусса - определение и вычисление с примерами решения

системы m линейных однородных уравнений с n неизвестными можно рассматривать как вектор-строкуМетод Гаусса - определение и вычисление с примерами решения или как вектор-столбец Метод Гаусса - определение и вычисление с примерами решения . Поэтому имеют смысл такие понятия, как сумма двух решений, произведение решения на число, линейная комбинация решений, линейная зависимость или независимость системы решений. Непосредственной подстановкой в систему (6.4.1) можно показать, что:

1) сумма двух решений также является решением системы, т.е.

еслиМетод Гаусса - определение и вычисление с примерами решения – решения системы

(6.4.1), то и Метод Гаусса - определение и вычисление с примерами решения – решение системы (6.4.1);

2) произведение решенийМетод Гаусса - определение и вычисление с примерами решенияна любое число Метод Гаусса - определение и вычисление с примерами решения есть решение системы, т.е. Метод Гаусса - определение и вычисление с примерами решения – решение системы.

Из приведенных свойств следует, что

3) линейная комбинация решений системы (6.4.1) является решением этой системы.

В частности, если однородная система (6.4.1) имеет хотя бы одно ненулевое решение, то из него умножением на произвольные числа, можно получить бесконечное множество решений.

Определение 6.4.1. Фундаментальной системой решений для системы однородных линейных уравнений (6.4.1) называется линейно независимая система решений, через которую линейно выражается любое решение системы (6.4.1).

Заметим, что если ранг матрицы системы (6.4.1) равен числу неизвестных n (r(А)=n), то эта система не имеет фундаментальной системы решений, так как единственным решением будет нулевое решение, составляющее линейно зависимую систему. Существование и число фундаментальных решений определяется следующей теоремой.

Теорема 6.4.1. Если ранг матрицы однородной системы уравнений (6.4.1) меньше числа неизвестных (r(А)Метод Гаусса - определение и вычисление с примерами решенияn), то система (6.4.1) имеет бесконечное множество фундаментальных систем решений, причём каждая из них состоит из n-r решений и любые n-r линейно независимые решения составляют фундаментальную систему.

Сформулируем алгоритм построения фундаментальной системы решений:

  1. Выбираем любой определитель Метод Гаусса - определение и вычисление с примерами решения порядка n-r, отличный от нуля, в частности, определитель порядка n-r, у которого элементы главной диагонали равны единице, а остальные – нули.
  2. Свободным неизвестным придаём поочерёдно значения, равные элементам первой, второй и т.д. строк определителяМетод Гаусса - определение и вычисление с примерами решения, и каждый раз из общего решения находим соответствующие значения базисных неизвестных.
  3. Из полученных n-r решений составляют фундаментальную систему решений.

Меняя произвольно определитель Метод Гаусса - определение и вычисление с примерами решения, можно получать всевозможные фундаментальные системы решений.

Пример:

Найти общее решение и фундаментальную систему решений для однородной системы уравнений:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим матрицу системы и применим алгоритм полного исключения.

Метод Гаусса - определение и вычисление с примерами решения

Для последней матрицы составляем систему:

Метод Гаусса - определение и вычисление с примерами решения,

, из которой находим общее решение:

Метод Гаусса - определение и вычисление с примерами решения

в котором Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения– свободные неизвестные.

Построим фундаментальную систему решений. Для этого выбираем определительМетод Гаусса - определение и вычисление с примерами решения и свободным неизвестным придаём поочерёдно значения, равные элементам первой, а затем второй строк, т.е. положим вначале Метод Гаусса - определение и вычисление с примерами решения и получим из общего решения Метод Гаусса - определение и вычисление с примерами решения; затем полагаем Метод Гаусса - определение и вычисление с примерами решения, из общего решения находим: Метод Гаусса - определение и вычисление с примерами решения.

Таким образом, построенные два решения (1; -1; 1; 0) и (-6; 4; 0; 1) составляют фундаментальную систему решений.

Если ранг матрицы системы однородных линейных уравнений (6.4.1) на единицу меньше числа неизвестных: Метод Гаусса - определение и вычисление с примерами решения то Метод Гаусса - определение и вычисление с примерами решения, и значит, фундаментальная система состоит из одного решения. Следовательно, любое ненулевое решение образует фундаментальную систему. В этом случае любые два решения различаются между собой лишь числовыми множителями.

Рассмотрим теперь неоднородную систему m линейных уравнений с n неизвестными (6.1.1). Если в системе (6.1.1) положить Метод Гаусса - определение и вычисление с примерами решения, то полученная однородная система называется приведенной для системы (6.1.1).

Решения системы (6.1.1) и её приведенной системы удовлетворяют свойствам:

  1. Сумма и разность любого решения системы (6.1.1) и любого решения её приведенной системы является решением неоднородной системы.
  2. Все решения неоднородной системы можно получить, прибавляя к одному (любому) её решению поочерёдно все решения её приведенной системы.

Из этих свойств следует теорема.

Теорема 6.4.2. Общее решение неоднородной системы (6.1.1.) определяется суммой любого частного решения этой системы и общего решения её приведенной системы.

Пример:

Найти общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Составим расширенную матрицу (A|F) заданной системы и применим алгоритм полного исключения:

Метод Гаусса - определение и вычисление с примерами решения,

Преобразованной матрице соответствует система уравнений:

Метод Гаусса - определение и вычисление с примерами решения

из которой находим общее решение системы:

Метод Гаусса - определение и вычисление с примерами решения

, где Метод Гаусса - определение и вычисление с примерами решения — базисные неизвестные, а Метод Гаусса - определение и вычисление с примерами решения– свободные неизвестные.

Покажем, что это общее решение определяется суммой любого частного решения заданной системы и общего решения приведенной системы.

Подставляя вместо свободных неизвестных Метод Гаусса - определение и вычисление с примерами решения в общее решение системы нули, получаем частное решение исходной системы: Метод Гаусса - определение и вычисление с примерами решения.

Очевидно, что общее решение приведенной системы имеет вид:

Метод Гаусса - определение и вычисление с примерами решения

Суммируя частное решение заданной системы и общее решение приведенной системы, получим общее решение (6.4.2) исходной системы.

Отметим, что общее решение системы (6.1.1) можно представить в векторном виде:

Метод Гаусса - определение и вычисление с примерами решения

где Метод Гаусса - определение и вычисление с примерами решения– • некоторое решение (вектор-строка) системы (6.1.1);

Метод Гаусса - определение и вычисление с примерами решения – фундаментальная система решений системы (6.4.1);

Метод Гаусса - определение и вычисление с примерами решения – любые действительные числа.

Формула (6.4.4) называется общим решением системы (6.1.1) в векторной форме.

Запишем общее решение системы примера 6.4.1 в векторной форме. Для этого определим фундаментальную систему решений приведенной системы. Возьмём определитель Метод Гаусса - определение и вычисление с примерами решения и придадим поочерёдно свободным неизвестным значения, равные элементам строк. Пусть Метод Гаусса - определение и вычисление с примерами решения тогда из общего решения (6.4.3) приведенной системы находим Метод Гаусса - определение и вычисление с примерами решения; если же Метод Гаусса - определение и вычисление с примерами решения, то Метод Гаусса - определение и вычисление с примерами решения. Следовательно, фундаментальную систему решений образуют решения: Метод Гаусса - определение и вычисление с примерами решения и Метод Гаусса - определение и вычисление с примерами решения. Тогда общее решение заданной системы в векторной форме имеет вид: Метод Гаусса - определение и вычисление с примерами решения, где Метод Гаусса - определение и вычисление с примерами решения – частное решение заданной системы; Метод Гаусса - определение и вычисление с примерами решения.

Определение метода Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

Пример:

Решить систему уравнений методом Гаусса:

Метод Гаусса - определение и вычисление с примерами решения

Решение:

Выпишем расширенную матрицу данной системы Метод Гаусса - определение и вычисление с примерами решения и произведем следующие элементарные преобразования над ее строками:

а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2: Метод Гаусса - определение и вычисление с примерами решения

б) третью строку умножим на (-5) и прибавим к ней вторую: Метод Гаусса - определение и вычисление с примерами решения

В результате всех этих преобразований данная система приводится к треугольному виду: Метод Гаусса - определение и вычисление с примерами решения

Из последнего уравнения находим Метод Гаусса - определение и вычисление с примерами решения Подставляя это значение во второе уравнение, имеем Метод Гаусса - определение и вычисление с примерами решения Далее из первого уравнения получим Метод Гаусса - определение и вычисление с примерами решения

Вычисление метода Гаусса

Этот метод основан на следующей теореме.

Теорема:

Элементарные преобразования не изменяют ранга матрицы.

К элементарным преобразованиям матрицы относят:

  1. перестановку двух параллельных рядов;
  2. умножение какого-нибудь ряда на число, отличное от нуля;
  3. прибавление к какому-либо ряду матрицы другого, параллельного ему ряда, умноженного на произвольное число.

Путем элементарных преобразований исходную матрицу можно привести к трапециевидной форме

Метод Гаусса - определение и вычисление с примерами решения

где все диагональные элементы Метод Гаусса - определение и вычисление с примерами решения отличны от нуля. Тогда ранг полученной матрицы равен рангу исходной матрицы и равен k.

Пример:

Найти ранг матрицы

Метод Гаусса - определение и вычисление с примерами решения

1) методом окаймляющих миноров;

2 ) методом Гаусса.

Указать один из базисных миноров.

Решение:

1. Найдем ранг матрицы методом окаймляющих миноров. Выберем минор второго порядка, отличный от нуля. Например,

Метод Гаусса - определение и вычисление с примерами решения Существуют два минора третьего порядка, окаймляющих минор Метод Гаусса - определение и вычисление с примерами решения

Метод Гаусса - определение и вычисление с примерами решения Т.к. миноры третьего порядка равны нулю, ранг матрицы равен двум. Базисным минором является, например, минор Метод Гаусса - определение и вычисление с примерами решения

2. Найдем ранг матрицы методом Гаусса. Производя последовательно элементарные преобразования, получим: Метод Гаусса - определение и вычисление с примерами решения

  1. переставили первую и третью строки;
  2. первую строку умножили на 2 и прибавили ко второй, первую строку умножили на 8 и прибавили к третьей;
  3. вторую строку умножили на -3 и прибавили к третьей.

Последняя матрица имеет трапециевидную форму и ее ранг равен двум. Следовательно, ранг исходной матрицы также равен двум.

  • Прямая линия на плоскости и в пространстве
  • Плоскость в трехмерном пространстве
  • Функция одной переменной
  • Производная функции одной переменной
  • Дифференциальные уравнения с примерами
  • Обратная матрица – определение и нахождение
  • Ранг матрицы – определение и вычисление
  • Определители второго и третьего порядков и их свойства

Рассмотрим
множество всех столбцов, которые являются
решениями исходной системы.

Определение

Фундаментальной
системой решений (ФСР)
 однородной
СЛАУ называется базис этой системы
столбцов.

Количество
элементов в ФСР равно количеству
неизвестных системы минус ранг
матрицы
 системы.
Любое решение исходной системы есть
линейная комбинация решений ФСР.

Теорема

Общее
решение неоднородной СЛАУ равно сумме
частного решения неоднородной СЛАУ и
общего решения соответствующей однородной
СЛАУ.

Пример

Задание. Найти
общее решение и ФСР однородной системы 

Решение. Приведем
систему к ступенчатому виду с помощью метода
Гаусса
.
Для этого записываем матрицу системы
(в данном случае, так как система
однородная, то ее правые части равны
нулю, в этом случае столбец свободных
коэффициентов можно не выписывать, так
как при любых элементарных преобразованиях
в правых частях будут получаться нули):

с
помощью элементарных
преобразований
 приводим
данную матрицу к ступенчатому виду. От
второй строки отнимаем первую, от третьей
– четыре первых, от четвертой – две первых:

Обнуляем
элементы второго столбца, стоящие под
главной диагональю, для этого от третьей
строки отнимаем три вторых, к четвертой
прибавляем вторую:

От
четвертой строки отнимем  третьей
и третью строку умножим на  :

Нулевые
строки можно далее не рассматривать,
тогда получаем, что

Далее
делаем нули над главной диагональю, для
этого от первой строки отнимаем третью,
а ко второй строке прибавляем третью:

то есть
получаем систему, соответствующую
данной матрице:

Или,
выразив одни переменные через другие,
будем иметь:

Здесь  –
независимые (или свободные) переменные
(это те переменные, через которые мы
выражаем остальные переменные),  –
зависимые (связанные) переменные (то
есть те, которые выражаются через
свободные). Количество свободных
переменных равно разности общего
количества переменных  (в
рассматриваемом примере  ,
так как система зависит от пяти переменных)
и ранга матрицы  (в
этом случае получили, что  –
количество ненулевых строк после
приведения матрицы к ступенчатому
виду): 

Так
как ранг матрицы  ,
а количество неизвестных системы  ,
то тогда количество решений в ФСР  (для
проверки, это число должно равняться
количеству свободных переменных).

Для
нахождения ФСР составляем таблицу,
количество столбцов которой соответствует
количеству неизвестных (то есть для
рассматриваемого примера равно 5), а
количество строк равно количеству
решений ФСР (то есть имеем две строки).
В заголовке таблицы выписываются
переменные, свободные переменные
отмечаются стрелкой. Далее свободным
переменным придаются любые,
одновременно не равные нулю значений
и из зависимости между свободными и
связанными переменными находятся
значения остальных переменных. Для
рассматриваемой задачи эта зависимость
имеет вид:

Тогда
придавая в первом случае, например,
независимым переменным значения  , получаем,
что  .
Полученные значения записываем в первую
строку таблицы. Аналогично, беря  , ,
будем иметь, что  ,
что и определяет второе решение ФСР. В
итоге получаем следующую таблицу:

Эти
две строчки и есть фундаментальным
решением заданной однородной СЛАУ.
Частное решение системы:

Общее
решение является линейной комбинацией
частных решений:

где
коэффициенты  не
равны нулю одновременно. Или запишем
общее решение в таком виде:

    

Придавая
константам  определенные
значения и подставляя их в общее решение,
можно будет находить частные решения
однородной СЛАУ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий