Готовое решение: ЗаказNo9386
Тип работы: Задача
Статус: Выполнен (Зачтена преподавателем ВУЗа)
Предмет: Экономика
Дата выполнения: 17.10.2020
Цена: 229 руб.
Чтобы получить решение, напишите мне в WhatsApp, оплатите, и я Вам вышлю файлы.
Кстати, если эта работа не по вашей теме или не по вашим данным, не расстраивайтесь, напишите мне в WhatsApp и закажите у меня новую работу, я смогу выполнить её в срок 1-3 дня!
Описание и исходные данные задания, 50% решения + фотография:
Задача 1.
2009 |
Рассчитать:
|
|
Все население, тыс. чел |
141904 |
|
в том числе в возрасте, лет: |
||
0-4 |
7692 |
|
5-9 |
6643 |
|
10-14 |
6757 |
|
15-19 |
9261 |
|
20-24 |
12573 |
|
25-29 |
11893 |
|
30-34 |
10680 |
|
35-39 |
9853 |
|
40-44 |
9401 |
|
45-49 |
11683 |
|
50-54 |
11197 |
|
55-59 |
9600 |
|
60-64 |
5773 |
|
65-69 |
5481 |
|
70 и более |
13417 |
Решение:
1) Определим средний возраст по формуле средней арифметической взвешенной:
у=X•ff
Составим таблицу с промежуточными расчетами:
Интервал, лет |
Середина интервала, Х |
Численность населения, f |
X•f |
f• |
0-4 |
2 |
7692 |
15384 |
7692 |
5-9 |
7 |
6643 |
46501 |
14335 |
10-14 |
12 |
6757 |
81084 |
21092 |
15-19 |
17 |
9261 |
157437 |
30353 |
20-24 |
22 |
12573 |
276606 |
42926 |
25-29 |
27 |
11893 |
321111 |
54819 |
30-34 |
32 |
10680 |
341760 |
65499 |
35-39 |
37 |
9853 |
364561 |
75352 |
40-44 |
42 |
9401 |
394842 |
84753 |
45-49 |
47 |
11683 |
549101 |
96436 |
50-54 |
52 |
11197 |
582244 |
107633 |
55-59 |
57 |
9600 |
547200 |
117233 |
60-64 |
62 |
5773 |
357926 |
123006 |
65-69 |
67 |
5481 |
367227 |
128487 |
70 и более |
72 |
13417 |
966024 |
141904 |
∑ |
– |
141904 |
5369008 |
у=5369008141904=37,84 г.
Таким образом, средний возраст населения составляет 37,84 года.
2) Определим моду. Из таблицы видно, что наибольшая частота соответствует интервалу, где варианта лежит в интервале 70 и более лет. Это и есть модальный интервал. Величина модального интервала равна 5 годам.
Формула расчета моды следующая:
- Задача 2. В 2006 г. численность населения РФ составляла 142754 тыс. человек. За период родилось – 1257,4 тыс. человек, умерло 4303,9 тыс. чел.
- Задача 3. Зависимость сокращения рабочих от места работы исследовалась в ходе социологического опроса 200 респондентов, результаты которого
- Задание 4 Имеются следующие данные о продаже и ценах на туры в одном из городов России за 2009 и 2010 гг.: Направление 2009 г. 2010 г. Вариант 18
- Задание 5 Установите направление и характер связи между среднегодовой стоимостью основных фондов и объемом продаж Вариант 18
В статистических исследованиях довольно широко применяются средние величины. Их нахождение позволяет выявить типичное значение признака исследуемой совокупности. Например, типичный уровень доходов покупателей или возраст большинства клиентов компании. При этом вычисление, к примеру, среднего арифметического не всегда уместно.
Представим такую ситуацию: мы опросили 10 человек на предмет их уровня доходов. У 9-х доходы оказались примерно одинаковыми и составили 10 тыс. руб. Что касается 10-ого опрошенного, то оказалось, что его доход равняется 410 тыс. руб. в месяц. Если мы вычислим простое среднее арифметическое, то типичный доход будет равняться 50 тыс. руб.! Но это явно не так. В таких ситуациях более объективную и правдоподобную картину дает вычисление моды или медианы, которые относятся к структурным средним показателям.
Понятие медианы
Медиана (Me) — значение признака в исследуемом ряду величин, которое делит этот ряд на две равные части.
То есть половина (50%) всех значений в исследуемом ряду будет меньше медианы, а другая половина — больше ее. Поэтому медиану еще называют 50-й перцентиль или квантиль 0,5.
Формула для расчета медианы
Если значений немного, то медиану можно определить «на глазок». Для этого достаточно расположить все значения в порядке возрастания и найти середину.
Если число случаев четное и в центре ряда находятся два разных числа, то медианой будет среднее между ними (даже если такого значения нет в самом ряду исследуемых случаев). Например, в ряду 1 2 3 4 5 6, медианой будет 3,5.
Для нахождения медианы в более сложных случаях (по интервальным рядам) используется специальная формула:
где: Me — медиана;
Xme — нижняя граница медианного интервала (того интервала, накопленная частота которого превышает полусумму всех частот);
ime — величина медианного интервала;
f — частота (сколько раз в ряду встречается то или иное значение);
Sme-1 — сумма частот интервалов предшествующих медианному интервалу;
fme — число значений в медианном интервале (его частота).
Пример вычисления медианы
Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.
Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).
Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.
Область применения медианы
При вычислении типичного признака неоднородных рядов, имеющих «выбросы» — значения во много раз отличающиеся от других значений ряда.
Особенности медианы
- Медиана обладает высокой робастностью, то есть нечувствительностью к неоднородностям и ошибкам выборки;
- Сумма разностей между членами ряда выборки и медианой меньше, чем сумма этих разностей с любой другой величиной. В том числе с арифметическим средним.
Источники
- Медиана // Википедия. URL: http://ru.wikipedia.org/wiki/Медиана_(статистика) (дата обращения: 23.10.2013)
- Минашкин В. Г. и др. Курс лекций по теории статистики. – М.: МЭСИ, 2001.
© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.
Нашли опечатку? Помогите сделать статью лучше! Выделите орфографическую ошибку мышью и нажмите Ctrl + Enter.
Библиографическая запись для цитирования статьи по ГОСТ Р 7.0.5-2008:
Галяутдинов Р.Р. Медиана // Сайт преподавателя экономики. [2013]. URL: https://galyautdinov.ru/post/mediana (дата обращения: 18.05.2023).
Центральную тенденцию данных можно рассматривать не только, как значение с нулевым суммарным отклонением (среднее арифметическое) или максимальную частоту (мода), но и как некоторую отметку (значение в совокупности), делящую ранжированные данные (отсортированные по возрастанию или убыванию) на две равные части. Половина исходных данных меньше этой отметки, а половина – больше. Это и есть медиана.
Итак, медиана в статистике – это уровень показателя, который делит набор данных на две равные половины. Значения в одной половине меньше, а в другой больше медианы. В качестве примера обратимся к набору нормально распределенных случайных чисел.
Очевидно, что при симметричном распределении середина, делящая совокупность пополам, будет находиться в самом центре – там же, где средняя арифметическая (и мода). Это, так сказать, идеальная ситуация, когда мода, медиана и средняя арифметическая совпадают и все их свойства приходятся на одну точку – максимальная частота, деление пополам, нулевая сумма отклонений – все в одном месте. Однако, жизнь не так симметрична, как нормальное распределение.
Допустим, мы имеем дело с техническими замерами отклонений от ожидаемой величины чего-нибудь (содержания элементов, расстояния, уровня, массы и т.д. и т.п.). Если все ОК, то отклонения, скорее всего, будут распределены по закону, близкому к нормальному, примерно, как на рисунке выше. Но если в процессе присутствует важный и неконтролируемый фактор, то могут появиться аномальные значения, которые в значительной мере повлияют на среднюю арифметическую, но при этом почти не затронут медиану.
Медиана выборки – это альтернатива средней арифметической, т.к. она устойчива к аномальным отклонениям (выбросам).
Математическим свойством медианы является то, что сумма абсолютных (по модулю) отклонений от медианного значения дает минимально возможное значение, если сравнивать с отклонениями от любой другой величины. Даже меньше, чем от средней арифметической, о как! Данный факт находит свое применение, например, при решении транспортных задач, когда нужно рассчитать место строительства объектов около дороги таким образом, чтобы суммарная длина рейсов до него из разных мест была минимальной (остановки, заправки, склады и т.д. и т.п.).
Формула медианы
Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.
Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:
где
№Me – номер значения, соответствующего медиане,
N – количество значений в совокупности данных.
Тогда медиана обозначается, как
Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:
В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.
Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.
Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.
Обратимся к наглядной схеме.
Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:
где xMe — нижняя граница медианного интервала;
iMe — ширина медианного интервала;
∑f/2 — количество всех значений, деленное на 2 (два);
S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;
fMe — число наблюдений в медианном интервале.
Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.
Для примера рассчитаем медиану по следующим данным.
Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.
По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.
То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.
Расчет медианы в Excel
Медиану для числовых данных легко найти, используя функцию Excel, которая так и называется — МЕДИАНА. Другое дело интервальные данные. Соответствующей функции в Excel нет. Поэтому нужно задействовать приведенную выше формулу. Что поделаешь? Но это не очень трагично, так как расчет медианы по интервальным данным – редкий случай. Можно и на калькуляторе разок посчитать.
Напоследок предлагаю задачку. Имеется набор данных. 15, 5, 20, 5, 10. Каково среднее значение? Четыре варианта:
а) 11;
б) 5;
в) 10;
г) 5, 10, 11.
Мода, медиана и среднее значение выборки – это разный способ определить центральную тенденцию в выборке.
Ниже видеоролик о том, как рассчитать медиану в Excel.
Поделиться в социальных сетях:
Содержание материала
- Формула медианы
- Видео
- Неуникальность значения
- Пример вычисления медианы
- Теорема о медиане и площади треугольника
- Формула длины медианы треугольника
- Что такое медиана и чем она лучше
- Неуникальность значения
Формула медианы
Формула медианы в статистике для дискретных данных чем-то напоминает формулу моды. А именно тем, что формулы как таковой нет. Медианное значение выбирают из имеющихся данных и только, если это невозможно, проводят несложный расчет.
Первым делом данные ранжируют (сортируют по убыванию). Далее есть два варианта. Если количество значений нечетно, то медиана будет соответствовать центральному значению ряда, номер которого можно определить по формуле:
где
№Me – номер значения, соответствующего медиане,
N – количество значений в совокупности данных.
Тогда медиана обозначается, как
Это первый вариант, когда в данных есть одно центральное значение. Второй вариант наступает тогда, когда количество данных четно, то есть вместо одного есть два центральных значения. Выход прост: берется средняя арифметическая из двух центральных значений:
В интервальных данных выбрать конкретное значение не представляется возможным. Медиану рассчитывают по определенному правилу.
Для начала (после ранжирования данных) находят медианный интервал. Это такой интервал, через который проходит искомое медианное значение. Определяется с помощью накопленной доли ранжированных интервалов. Где накопленная доля впервые перевалила через 50% всех значений, там и медианный интервал.
Не знаю, кто придумал формулу медианы, но исходили явно из того предположения, что распределение данных внутри медианного интервала равномерное (т.е. 30% ширины интервала – это 30% значений, 80% ширины – 80% значений и т.д.). Отсюда, зная количество значений от начала медианного интервала до 50% всех значений совокупности (разница между половиной количества всех значений и накопленной частотой предмедианного интервала), можно найти, какую долю они занимают во всем медианном интервале. Вот эта доля аккурат переносится на ширину медианного интервала, указывая на конкретное значение, именуемое впоследствии медианой.
Обратимся к наглядной схеме.
Немного громоздко получилось, но теперь, надеюсь, все наглядно и понятно. Чтобы при расчете каждый раз не рисовать такой график, можно воспользоваться готовой формулой. Формула медианы имеет следующий вид:
где xMe — нижняя граница медианного интервала;
iMe — ширина медианного интервала;
∑f/2 — количество всех значений, деленное на 2 (два);
S(Me-1)— суммарное количество наблюдений, которое было накоплено до начала медианного интервала, т.е. накопленная частота предмедианного интервала;
fMe — число наблюдений в медианном интервале.
Как нетрудно заметить, формула медианы состоит из двух слагаемых: 1 – значение начала медианного интервала и 2 – та самая часть, которая пропорциональна недостающей накопленной доли до 50%.
Для примера рассчитаем медиану по следующим данным.
Требуется найти медианную цену, то есть ту цену, дешевле и дороже которой по половине количества товаров. Для начала произведем вспомогательные расчеты накопленной частоты, накопленной доли, общего количества товаров.
По последней колонке «Накопленная доля» определяем медианный интервал – 300-400 руб (накопленная доля впервые более 50%). Ширина интервала – 100 руб. Теперь остается подставить данные в приведенную выше формулу и рассчитать медиану.
То есть у одной половины товаров цена ниже, чем 350 руб., у другой половины – выше. Все просто. Средняя арифметическая, рассчитанная по этим же данным, равна 355 руб. Отличие не значительное, но оно есть.
Неуникальность значения
Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке {1, 2, 3, 4} медианой, по определению, может служить любое число из интервала (2,3)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений.
Видео
Пример вычисления медианы
Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.
Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).
Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.
Теорема о медиане и площади треугольника
Медиана делит площадь треугольника пополам
Почему? А давай вспомним самую простую форму площади треугольника. ( S=frac{1}{2}a~cdot h).
И применим эту формулу аж два раза!
Посмотри, медиана ( displaystyle BM) разделила ( displaystyle triangle ABC) на два треугольника: ( displaystyle triangle ABM) и ( displaystyle triangle BMC).
Но! Высота-то у них одна и та же – ( displaystyle BH)!
Только в ( displaystyle triangle ABM) эта высота ( displaystyle BH) опускается на сторону ( displaystyle AM), а в ( displaystyle triangle BMC) – на продолжение стороны ( displaystyle CM).
Удивительно, но вот бывает и так: треугольники разные, а высота – одна. И вот, теперь-то и применим два раза формулу
( S=frac{1}{2}a~cdot h).
1) B ( displaystyle triangle ABM):
«( displaystyle a)» – это ( displaystyle AM)«( displaystyle h)» – это ( displaystyle BH) | ( displaystyle Rightarrow {{S}_{triangle ABM}}=frac{1}{2}~AM~cdot BH) |
2) B ( displaystyle triangle BMC):
«( displaystyle a)» – это ( displaystyle CM)«( displaystyle h)» – это опять ( displaystyle BH) | ( displaystyle Rightarrow {{S}_{triangle BMC}}=frac{1}{2}~CM~cdot BH) |
Запишем ещё раз:
Формула длины медианы треугольника
Как же найти длину медианы, если известны стороны? А ты уверен, что тебе это нужно?
Откроем страшную тайну: эта формула не очень полезная. Но всё-таки мы её напишем, а доказывать не будем.
Итак, ( displaystyle {{m}^{2}}=frac{1}{4}~left( 2{{a}^{2}}+2{{b}^{2}}-{{c}^{2}} right))
Что такое медиана и чем она лучше
Чтобы застраховаться от подобных ошибок, вместо среднего значения можно применять медианное.
Медиана поможет найти именно тот показатель, который ближе всего к истинно среднему. На неё не влияют выбивающиеся из общей массы числа, поэтому она считается одним из самых надёжных и устойчивых показателей. Так, для упомянутого выше ряда «1, 2, 1, 1, 3, 8, 10, 1, 587» медиана будет равна 2. Если вместо 587 поставить 87, она всё равно будет равна 2, если 7 — тоже 2. Среднее арифметическое же в аналогичных случаях будет меняться: 12,7 и 3,8 соответственно.
С помощью медианы можно получить более точные данные и правильнее интерпретировать статистику. Например, при расчёте средней заработной платы, когда 19 сотрудников получают по 20 тысяч рублей, а директор — миллион. Среднее арифметическое в этом случае будет равным 69 тысячам рублей, а медиана — 20. Поэтому последнюю и предпочитают люди, работающие с цифрами: от бухгалтеров до учёных.
Медианное значение рассчитывается из числа или пары чисел, которые больше одной половины показателей и меньше другой. Чтобы найти медиану, надо упорядочить набор чисел и просто найти в нём середину. Вот так: «1, 1, 1, 1, 2, 3, 8, 10, 587».
Если в ряде чётное количество показателей, как например в «1, 1, 1, 1, 2, 3, 8, 10», надо взять два средних числа. Это 1 и 2. Их нужно сложить, а сумму разделить пополам:
(1+2)/2=1,5
Неуникальность значения
Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке {1, 3, 5, 7} медианой может служить любое число из интервала (3,5)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений (в примере выше это число (3+5)/2=4). Для выборок с чётным числом элементов можно также ввести понятие «нижней медианы» (элемент с номером n/2 в упорядоченном ряду из элементов; в примере выше это число 3) и «верхней медианы» (элемент с номером (n+2)/2; в примере выше это число 5). Эти понятия определены не только для числовых данных, но и для любой порядковой шкалы.
Теги
Например, средняя арифметическая для интервального ряда
При расчете средней арифметической для
интервального вариационного ряда
сначала определяют среднюю для каждого
интервала, как полусумму верхней и
нижней границ, а затем — среднюю всего
ряда. В случае открытых интервалов
значение нижнего или верхнего интервала
определяется по величине интервалов,
примыкающих к ним.
Пример
3. Определить
средний возраст студентов вечернего
отделения.
Возраст |
Число |
Среднее |
Произведение |
до |
65 |
(18 + |
1235 |
20 — |
125 |
(20 + |
2625 |
22 — |
190 |
(22 + |
4560 |
26 — |
80 |
(26 + |
2240 |
30 и |
40 |
(30 + |
1280 |
Итого |
500 |
11940 |
Средние, вычисляемые из интервальных
рядов являются приближенными.
-
Структурные средние величины
Кроме степенных средних в статистике
для относительной характеристики
величины варьирующего признака и
характеристики рядов распределения
пользуются структурными средними: модой
и медианой.
Мода
Мода— это наиболее часто
встречающийся вариант ряда. Мода
применяется, например, при определении
размера одежды, обуви, пользующейся
наибольшим спросом у покупателей.
Модой для дискретного ряда является
варианта, обладающая наибольшей частотой.
При вычислении моды для интервального
вариационного ряда необходимо:
-
сначала определить модальный интервал
(по максимальной частоте), -
затем — значение модальной величины
признака по формуле:
где:
-
—
значение моды -
—
нижняя граница модального интервала -
i —
величина интервала -
—
частота модального интервала -
—
частота интервала, предшествующего
модальному -
—
частота интервала, следующего за
модальным
Определение моды графически:
Мода определяется по гистограмме
распределения. Для этого
правую вершину модального
прямоугольника соединяют с правым
верхним углом предыдущего прямоугольника
, а левую
вершину модального прямоугольника –
с левым верхним углом
последующего прямоугольника. Абсцисса
точки пересечения этих прямых и будет
модой распределения.
Медиана
Медиана — это значение признака,
который делит вариационный ряд на две
равные по численности части.
Медиана для дискретного ряда.
Для определения медианы в дискретном
рядус нечетнымколичеством
единиц наблюдения сначалапорядковый
номер медианыпо формуле: ,
а затем определяют, какое значение
варианта обладает накопленной частотой,
равной номеру медианы.
Если ряд содержит четное
число элементов, то
медиана будет равна средней из двух
значений признака, находящихся в
середине. Номер первого из этих признаков
определяется по формуле: ,
для второго – .
= n
(количество элементов в ряду).
Медиана для интервального ряда
При вычислении медианы для
интервального вариационного ряда сначала
определяют медианный интервал, в пределах
которого находится медиана.
Для этого:
-
определяется номер медианы
по формуле: ,
полученное значение округляется до
целого большего числа. -
затем по
накопленной частоте определяется
интервал, в который входит элемент с
таким номером, -
затем — значение медианы по формуле:
где:
-
—
искомая медиана -
—
нижняя граница интервала, который
содержит медиану -
i
— ширина интервала -
—
сумма частот или число членов ряда -
–
накопленная частота интервала,
предшествующего медианному -
—
частота медианного интервала
Пример.
Найти моду и медиану для интервального
ряда.
Возрастные |
Число |
Сумма |
До 20 |
346 |
346 |
20 — 25 |
872 |
1218 |
25 |
1054 |
2272 |
30 — 35 |
781 |
3053 |
35 — 40 |
212 |
3265 |
40 — 45 |
121 |
3386 |
45 лет |
76 |
3462 |
Итого |
3462 |
Решение:
-
Определим моду
В
данном примере модальный интервал
находится в пределах возрастной группы
25-30 лет, так как на этот интервал приходится
наибольшая частота (1054).
Рассчитаем
величину моды:
Это значит, что модальный
возраст студентов равен 27 годам.
-
Определим медиану.
Медианный интервал
находится в возрастной группе 25-30 лет,
так как в пределах этого интервала
расположена варианта, которая делит
совокупность на две равные части (Σfi/2
= 3462/2 = 1731). Далее подставляем в формулу
необходимые числовые данные и получаем
значение медианы:
Это значит, что одна половина студентов
имеет возраст до 27,4 года, а другая свыше
27,4 года.
Графически медиана
определяется по кумуляте. Для ее
определения высоту наибольшей ординаты,
которая соответствует сумме всех частот,
делят пополам. Через полученную точку
проводят прямую,
параллельную оси абсцисс,
до
пересечения ее с кумулятой. Абсцисса
точки пересечения является медианой.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #