Помимо моды, среднего арифметического и размаха ряда чисел существует также такое понятие, как медиана. Ее используют для того, чтобы охарактеризовать какой-либо числовой ряд. Медианой называют среднее число в представленном ряду, то есть то, которое будет стоять в его середине.
Медиана — это число, стоящее посередине упорядоченного по возрастанию ряда чисел (в случае, если количество чисел нечетное), или же полусумма двух стоящих в середине чисел (если количество чисел в ряду четное).
На письме медиану обозначают как $Me$.
Стоит отметить, что медиана и среднее арифметическое — это не одно и то же. В первом случае мы будем брать число из середины ряда, а во втором — среднее значение.
Рассмотрим на примере. Нам дан определенный числовой ряд, состоящий из $13$ значений:
$$-3, 0, 0, 0, 3, 4, textcolor{blue}{8}, 8, 8, 8, 12, 15, 100$$
В данном ряду все числа расставлены по возрастанию, поэтому из $13$ позиций нам нужно найти ту, которая будет стоять в центре ряда. Ей станет позиция под номером $7$. Если мы посмотрим на числовой ряд, то можем увидеть, что на седьмом месте стоит число $textcolor{blue}{8}$. Таким образом, мы нашли медиану данного числового ряда, а в ответе можем записать, что $Me=8$.
Алгоритм нахождения медианы
Искать медиану в числовом ряде достаточно просто, для этого достаточно всего лишь придерживаться определенного алгоритма:
- Первым шагом будет нужно упорядочить числовой набор, выписав все числа последовательно в порядке возрастания.
- Затем, чтобы было удобнее находить медиану, следует поочередно зачеркивать одновременно самое большое и самое маленькое числа, то есть одно значение из начала числового ряда, а другое — из его конца. Это нужно делать до тех пор, пока в середине не останется одно (если ряд имеет нечетное количество чисел) или два (если ряд имеет четного количества чисел) значения.
- При условии, что в центре остается одно число, его и считают медианой, поэтому в таком случае задача уже будет решена.
- Если же в середине осталось два числа, то нужно найти их полусумму. Полученное значение и будет являться медианой числового ряда.
Попробуем применить данный алгоритм на примере. У нас имеется следующий ряд чисел:
$$19, 7, 21, 2, 15, 5$$
Прежде всего запишем все числа в порядке возрастания друг за другом:
$$2, 5, 7, 15, 19, 21$$
Теперь начнем убирать самое большое и самое маленькое значения. Сначала зачеркиваем числа $21$ и $2$, затем $19$ и $5$. Мы видим, что в середине осталось два числа, так как числовой ряд состоял из четного количества чисел.
$$textcolor{red}{2}, textcolor{red}{5}, 7, 15, textcolor{red}{19}, textcolor{red}{21}$$
Чтобы найти медиану, нам нужно сложить числа $7$ и $15$, после чего разделить их на два. Получается такой пример:
$$frac{7+15}{2}=frac{22}{2}=11$$
Значение $11$ и будет являться искомой медианой, поэтому в ответе мы можем записать, что $Me=11$.
Онлайн калькулятор для нахождения медианы ряда чисел. Медианой (серединой) набора чисел называется число стоящее посередине упорядоченного по возрастанию ряда чисел. Если количество чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
Применяется в математической статистике — число, характеризующее выборку (например, набор чисел), также используется для вычисления медианной зарплаты.
Формула медианы числового набора, пример вычисления медианы числового ряда: 3, 7, 1, 6, 9
Решение: упорядочиваем список чисел в порядке возрастания: 1, 3, 6, 7, 9. Поскольку количество чисел в ряду нечётное, то число 6 стоящее по середине и будет являться медианой данного ряда.
Пример нахождения медианы ряда чисел: 1, 5, 8, 4, 3, 9
Решение: записываем все числа ряда в порядке возрастания: 1, 3, 4 ,5, 8, 9. Поскольку чисел в ряду чётное, то медиана этого ряда будет равна полусумме двух средних чисел: (4+5)/2 = 4.5
Загрузить PDF
Загрузить PDF
Среднее значение, медиана и мода — значения, которые часто используются в статистике и математике. Эти значения найти довольно легко, но их легко и перепутать. Мы расскажем, что они из себя представляют и как их найти.
-
1
Сложите все числа, которые вам даны. Допустим, вам даны числа 2, 3 и 4. Сложим их: 2 + 3 + 4 = 9.
-
2
Сосчитайте количество чисел. У нас есть три цифры.
-
3
Разделите сумму чисел на их количество. Берем 9, делим на 3. 9/3 = 3. Среднее значение в данном случае равно 3. Помните, что не всегда получается целое число.
Реклама
-
1
Запишите все числа, которые вам даны, в порядке возрастания. Например, нам даны числа: 4, 2, 8, 1, 15. Запишите их от меньшего к большему, вот так: 1, 2, 4, 8, 15.
-
2
Найдите два средних числа. Мы расскажем, как это сделать, если у вас имеется четное количество чисел, и как это сделать, если количество чисел нечетное:
- Если у вас нечетное количество чисел, вычеркните левое крайнее число, затем правое крайнее число и так далее. Один оставшийся номер и будет искомой медианой. Если вам дан ряд чисел 4, 7, 8, 11, 21, тогда 8 — медиана, так как 8 стоит посередине.
- Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы. Если вам дан ряд чисел 1, 2, 5, 3, 7, 10, то два средних числа — это 5 и 3. Сложим 5 и 3, получим 8, разделим на два, получим 4. Это и есть медиана.
Реклама
-
1
Запишите все числа в ряд. Например, вам даны числа 2, 4, 5, 5, 4 и 5. Запишите их в порядке возрастания.
-
2
Найдите число, которое чаще всего встречается. В данном случае это 5. Если два числа встречаются одинаково часто, то этот ряд двухвершинный или бимодальный, а если больше — то мультимодальный.
Реклама
Советы
- Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.
Реклама
Об этой статье
Эту страницу просматривали 353 377 раз.
Была ли эта статья полезной?
У этого термина существуют и другие значения, см. Медиана.
Медиа́на (от лат. mediāna «середина») или набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Другое равносильное определение[1]: медиана набора чисел — это число, сумма расстояний (или, если более строго, модулей) от которого до всех чисел из набора минимальна. Это определение естественным образом обобщается на многомерные наборы данных и называется 1-медианой.
Например, медианой набора {11, 9, 3, 5, 5} является число 5, так как оно стоит в середине этого набора после его упорядочивания: {3, 5, 5, 9, 11}. Если в выборке чётное число элементов, медиана может быть не определена однозначно: тогда для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4), подробнее см. ниже.
В математической статистике медиана может использоваться как одна из характеристик выборки или совокупности чисел.
Также определяется медиана случайной величины: в этом случае оно определяется как число, которое делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2), — более точное определение дано ниже.
Можно также сказать, что медиана является 50-м персентилем, 0,5-квантилем или вторым квартилем выборки или распределения.
Свойства медианы для случайных величин[править | править код]
Если распределение непрерывно, то медиана является одним из решений уравнения
- ,
где — функция распределения случайной величины , связанная с плотностью распределения как
- .
Если распределение является непрерывной строго возрастающей функцией, то решение уравнения однозначно. Если распределение имеет разрывы, то медиана может совпадать с минимальным или максимальным (крайним) возможным значением случайной величины, что противоречит «геометрическому» пониманию этого термина.
Медиана является важной характеристикой распределения случайной величины и, так же как математическое ожидание, может быть использована для центрирования распределения. Поскольку оценки медианы более робастны, её оценивание может быть более предпочтительным для распределений с т. н. тяжёлыми хвостами. Однако о преимуществах оценивания медианы по сравнению с математическим ожиданием можно говорить только в случае, если эти характеристики у распределения совпадают, в частности, для симметричных функций плотности распределения вероятностей.
Медиана определяется для всех распределений, а в случае неоднозначности, естественным образом доопределяется, в то время как математическое ожидание может быть не определено (например, у распределения Коши).
Пример использования[править | править код]
Рассмотрим финансовое состояние 19 малоимущих, у каждого из каких есть только 5 ₽, и одного миллионера, у которого буквально 1 млн ₽. Тогда в сумме у них получается 1 000 095 ₽. Если деньги равными долями разделить на 20 человек, получится 50 004,75 ₽. Это будет среднее арифметическое значение суммы денег, которая была у всех 20 человек в этой комнате.
Медиана же будет равна 5 ₽ (сумма «расстояния» от этой величины до состояния каждого из рассматриваемых людей минимальна). Это можно интерпретировать следующим образом: «разделив» всех рассматриваемых людей на две равные группы по 10 человек, мы получаем, что в первой группе у каждого не больше 5 ₽, во второй же — не меньше 5 ₽.
Из этого примера получается, что в качестве «серединного» состояния, грубо говоря, корректнее всего использовать именно медиану, а вот среднее арифметическое, наоборот, значительно превышает сумму наличных, имеющуюся у случайного человека из выборки.
Различны изменения в динамике и у средней арифметической с медианой, например в вышеприведённом примере, если у миллионера станет 1,5 млн. ₽ (+50 %), а у остальных станет 6 ₽ (+20 %), то средняя арифметическая выборки станет равна 75 005,70 ₽, то есть как бы у всех повысились равномерно на 50 %, при этом медиана станет равной 6 ₽ (+20 %).
Неуникальность значения[править | править код]
Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке {1, 3, 5, 7} медианой может служить любое число из интервала (3,5)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений (в примере выше это число (3+5)/2=4). Для выборок с чётным числом элементов можно также ввести понятие «нижней медианы» (элемент с номером n/2 в упорядоченном ряду из элементов; в примере выше это число 3) и «верхней медианы» (элемент с номером (n+2)/2; в примере выше это число 5)[2]. Эти понятия определены не только для числовых данных, но и для любой порядковой шкалы.
См. также[править | править код]
- Мода — значение во множестве наблюдений, которое встречается наиболее часто.
- Среднее арифметическое набора чисел — число, сумма квадратов расстояний от которого до всех чисел из набора минимальна[3].
Примечания[править | править код]
- ↑ Сущность медианы. Дата обращения: 9 мая 2021. Архивировано 9 мая 2021 года.
- ↑ Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест Рональ Л., Штайн, Клиффорд. Алгоритмы. Построение и анализ. — 2-е издание. — М.: Издательский дом «Вильямс», 2005. — С. 240. — 1296 с.
- ↑ Почему это равносильные определения среднего арифметического.
Литература[править | править код]
- Медиана // Маниковский — Меотида. — М. : Большая российская энциклопедия, 2012. — С. 479—480. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 19). — ISBN 978-5-85270-353-8.
- Медиана // Большая российская энциклопедия [Электронный ресурс]. — 2017.
Нужно
запомнить, что медиана
в геометрии и алгебре,
это не одно и то же, и
такое понятие
имеет совсем разные значения.
В
алгебре медианой называется определенное
число, которое характеризует выборку,
чаще всего чисел, и разделяет их на
равные части. Ее еще можно назвать
серединой расчетов в статистике.
Например, если взять числа 6,7,8,9,10, то
здесь медианой данного ряду
будет число
8, что находится посередине.
В том случае, когда все элементы разные,
для нахождения медианы можно упорядочить
эти элементы по возрастанию
либо по убыванию чисел.
Наведем пример упорядоченного
ряда, есть такие числа 10,4,4,8,3, их нужно
поставить так 3,4,4,8,10, тогда медианой
является
число 4.
Когда
выборка имеет четное количество чисел,
тогда медианой является сумма двух
чисел,
которые стоят посередине
рядом, поделенная наполовину.
Медиану
используют для разных расчетов. Например,
когда есть определенное количество
людей,
которые
имеют разные суммы денег, находя медиану,
можно узнать среднее
арифметическое
всей суммы денег, которая была у всех
этих людей.