Загрузить PDF
Загрузить PDF
Среднее значение, медиана и мода — значения, которые часто используются в статистике и математике. Эти значения найти довольно легко, но их легко и перепутать. Мы расскажем, что они из себя представляют и как их найти.
-
1
Сложите все числа, которые вам даны. Допустим, вам даны числа 2, 3 и 4. Сложим их: 2 + 3 + 4 = 9.
-
2
Сосчитайте количество чисел. У нас есть три цифры.
-
3
Разделите сумму чисел на их количество. Берем 9, делим на 3. 9/3 = 3. Среднее значение в данном случае равно 3. Помните, что не всегда получается целое число.
Реклама
-
1
Запишите все числа, которые вам даны, в порядке возрастания. Например, нам даны числа: 4, 2, 8, 1, 15. Запишите их от меньшего к большему, вот так: 1, 2, 4, 8, 15.
-
2
Найдите два средних числа. Мы расскажем, как это сделать, если у вас имеется четное количество чисел, и как это сделать, если количество чисел нечетное:
- Если у вас нечетное количество чисел, вычеркните левое крайнее число, затем правое крайнее число и так далее. Один оставшийся номер и будет искомой медианой. Если вам дан ряд чисел 4, 7, 8, 11, 21, тогда 8 — медиана, так как 8 стоит посередине.
- Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы. Если вам дан ряд чисел 1, 2, 5, 3, 7, 10, то два средних числа — это 5 и 3. Сложим 5 и 3, получим 8, разделим на два, получим 4. Это и есть медиана.
Реклама
-
1
Запишите все числа в ряд. Например, вам даны числа 2, 4, 5, 5, 4 и 5. Запишите их в порядке возрастания.
-
2
Найдите число, которое чаще всего встречается. В данном случае это 5. Если два числа встречаются одинаково часто, то этот ряд двухвершинный или бимодальный, а если больше — то мультимодальный.
Реклама
Советы
- Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.
Реклама
Об этой статье
Эту страницу просматривали 353 377 раз.
Была ли эта статья полезной?
У этого термина существуют и другие значения, см. Медиана.
Медиа́на (от лат. mediāna «середина») или набора чисел — число, которое находится в середине этого набора, если его упорядочить по возрастанию, то есть такое число, что половина из элементов набора не меньше него, а другая половина не больше. Другое равносильное определение[1]: медиана набора чисел — это число, сумма расстояний (или, если более строго, модулей) от которого до всех чисел из набора минимальна. Это определение естественным образом обобщается на многомерные наборы данных и называется 1-медианой.
Например, медианой набора {11, 9, 3, 5, 5} является число 5, так как оно стоит в середине этого набора после его упорядочивания: {3, 5, 5, 9, 11}. Если в выборке чётное число элементов, медиана может быть не определена однозначно: тогда для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора {1, 3, 5, 7} принимают равной 4), подробнее см. ниже.
В математической статистике медиана может использоваться как одна из характеристик выборки или совокупности чисел.
Также определяется медиана случайной величины: в этом случае оно определяется как число, которое делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2), — более точное определение дано ниже.
Можно также сказать, что медиана является 50-м персентилем, 0,5-квантилем или вторым квартилем выборки или распределения.
Свойства медианы для случайных величин[править | править код]
Если распределение непрерывно, то медиана является одним из решений уравнения
- ,
где — функция распределения случайной величины , связанная с плотностью распределения как
- .
Если распределение является непрерывной строго возрастающей функцией, то решение уравнения однозначно. Если распределение имеет разрывы, то медиана может совпадать с минимальным или максимальным (крайним) возможным значением случайной величины, что противоречит «геометрическому» пониманию этого термина.
Медиана является важной характеристикой распределения случайной величины и, так же как математическое ожидание, может быть использована для центрирования распределения. Поскольку оценки медианы более робастны, её оценивание может быть более предпочтительным для распределений с т. н. тяжёлыми хвостами. Однако о преимуществах оценивания медианы по сравнению с математическим ожиданием можно говорить только в случае, если эти характеристики у распределения совпадают, в частности, для симметричных функций плотности распределения вероятностей.
Медиана определяется для всех распределений, а в случае неоднозначности, естественным образом доопределяется, в то время как математическое ожидание может быть не определено (например, у распределения Коши).
Пример использования[править | править код]
Рассмотрим финансовое состояние 19 малоимущих, у каждого из каких есть только 5 ₽, и одного миллионера, у которого буквально 1 млн ₽. Тогда в сумме у них получается 1 000 095 ₽. Если деньги равными долями разделить на 20 человек, получится 50 004,75 ₽. Это будет среднее арифметическое значение суммы денег, которая была у всех 20 человек в этой комнате.
Медиана же будет равна 5 ₽ (сумма «расстояния» от этой величины до состояния каждого из рассматриваемых людей минимальна). Это можно интерпретировать следующим образом: «разделив» всех рассматриваемых людей на две равные группы по 10 человек, мы получаем, что в первой группе у каждого не больше 5 ₽, во второй же — не меньше 5 ₽.
Из этого примера получается, что в качестве «серединного» состояния, грубо говоря, корректнее всего использовать именно медиану, а вот среднее арифметическое, наоборот, значительно превышает сумму наличных, имеющуюся у случайного человека из выборки.
Различны изменения в динамике и у средней арифметической с медианой, например в вышеприведённом примере, если у миллионера станет 1,5 млн. ₽ (+50 %), а у остальных станет 6 ₽ (+20 %), то средняя арифметическая выборки станет равна 75 005,70 ₽, то есть как бы у всех повысились равномерно на 50 %, при этом медиана станет равной 6 ₽ (+20 %).
Неуникальность значения[править | править код]
Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке {1, 3, 5, 7} медианой может служить любое число из интервала (3,5)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений (в примере выше это число (3+5)/2=4). Для выборок с чётным числом элементов можно также ввести понятие «нижней медианы» (элемент с номером n/2 в упорядоченном ряду из элементов; в примере выше это число 3) и «верхней медианы» (элемент с номером (n+2)/2; в примере выше это число 5)[2]. Эти понятия определены не только для числовых данных, но и для любой порядковой шкалы.
См. также[править | править код]
- Мода — значение во множестве наблюдений, которое встречается наиболее часто.
- Среднее арифметическое набора чисел — число, сумма квадратов расстояний от которого до всех чисел из набора минимальна[3].
Примечания[править | править код]
- ↑ Сущность медианы. Дата обращения: 9 мая 2021. Архивировано 9 мая 2021 года.
- ↑ Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест Рональ Л., Штайн, Клиффорд. Алгоритмы. Построение и анализ. — 2-е издание. — М.: Издательский дом «Вильямс», 2005. — С. 240. — 1296 с.
- ↑ Почему это равносильные определения среднего арифметического.
Литература[править | править код]
- Медиана // Маниковский — Меотида. — М. : Большая российская энциклопедия, 2012. — С. 479—480. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 19). — ISBN 978-5-85270-353-8.
- Медиана // Большая российская энциклопедия [Электронный ресурс]. — 2017.
В поисках средних значений: разбираемся со средним арифметическим, медианой и модой
В поисках средних значений: разбираемся со средним арифметическим, медианой и модой
Иногда при работе с данными нужно описать множество значений каким-то одним числом. Например, при исследовании эффективности сотрудников, уровня вовлеченности в аккаунте, KPI или времени ответа на сообщения клиентов. В таких случаях используют меры центральной тенденции. Их можно называть проще — средние значения.
Но в зависимости от вводных данных, находить среднее значение нужно по-разному. Основной набор задач закрывается с использованием среднего арифметического, медианы и моды. Но если выбрать неверный способ — выводы будут необъективны, а результаты исследования нельзя будет признать действительными. Чтобы не допустить ошибку, нужно понимать особенности разных способов нахождения средних значений.
Cтратег, аналитик и контент-продюсер. Работает с агентством «Палиндром».
Как считать среднее арифметическое
Использовать среднее арифметическое стоит тогда, когда множество значений распределяются нормально ― это значит, что значения расположены симметрично относительно центра. Как выглядит нормальное распределение на графике и в таблице, можно посмотреть на примере:
Если данные распределяются как в примерах — вам повезло. Можно без лишних заморочек считать среднее арифметическое и быть уверенным, что выводы будут объективны. Однако, нормальное распределение на практике встречается крайне редко, поэтому среднее арифметическое в большинстве случаев лучше не использовать.
Как рассчитать
Сумму значений нужно поделить на их количество. Например, вы хотите узнать средний ER за 4 дня при нормальном распределении значений и без аномальных выбросов. Для этого считаем среднее арифметическое: складываем ER всех дней и делим полученное число на количество дней.
Если хотите автоматизировать вычисления и узнать среднее арифметическое для большого числа показателей — используйте Google Таблицы:
- Заполните таблицу данными.
- Щелкните по пустой ячейке, в которую хотите записать среднее арифметическое.
- Введите «=AVERAGE(» и выделите ряд чисел, для которых нужно вычислить среднее арифметическое. Нажмите «Enter» после ввода формулы.
Когда можно не использовать
Если данные распределены ненормально, то наши расчеты не будут отражать реальную картину. На ненормальность распределения указывают:
- Отсутствие симметрии в расположении значений.
- Наличие ярко выраженных выбросов.
Как пример ненормального распределения (с выбросами) можно рассматривать среднее время ответа на комментарии по неделям:
Если посчитать среднее значение для такого набора данных с помощью среднего арифметического, то получится завышенное число. В итоге наши выводы будут более позитивными, чем реальное положение дел. Еще стоит учитывать, что выбросы могут не только завышать среднее значение, но и занижать его. В таком случае вы получите более скромный показатель, который не будет соответствовать реальности.
Например, в группе «Золотое Яблоко» во ВКонтакте иногда публикуют конкурсные посты. Они набирают более высокие показатели вовлеченности чем обычные публикации. Если посчитать средний ER с учетом конкурсов, мы получим 0,37%, а без учета конкурсов — только 0,29%. Аналогичная ситуация с числом комментариев. С конкурсами в среднем получаем 917 комментариев, а без конкурсов — всего лишь 503. Очевидно, что из-за розыгрышей средние показатели вовлеченности завышаются. В этом случае конкурсные посты следует исключить из анализа, чтобы объективно оценить эффективность контента в группе.
Еще часто бывает так, что данных очень много, заметны явные выбросы, но на их обработку и исключение аномальных значений не хватит ни времени, ни терпения. Тем более нет гарантий, что исключив выбросы, вы получите нормальное распределение. В таком случае лучше подсчитать средние значения, используя медиану.
Как найти медиану и когда ее применять
Если вы имеете дело с ненормальным распределением или замечаете значительные выбросы — используйте медиану. Так можно получить более адекватное среднее значение, чем при использовании среднего арифметического. Чтобы понять, как работать с медианой, рассмотрим аналогичный пример с ненормальным распределением времени ответов на комментарии.
Ниже в таблице уже введены данные из графика и рассчитано среднее время ответа с помощью среднего арифметического и медианы. Из расчетов видна наглядная разница между средним арифметическим и медианой ― она составляет 17 минут. Такое различие появляется из-за низкого темпа работы на выходных и в нестандартных ситуациях, когда к ответу на сообщения нужно относиться с особой ответственностью (события конца февраля). Подобные выбросы сильно завышают среднее арифметическое, а вот на медиану они практически не влияют. Поэтому если хотите посчитать среднее значение избегая влияния выбросов, — используйте медиану. Такие данные будут без искажений.
Как рассчитать
Разберем на примере. В аккаунте опубликовали семь постов и они набрали разное количество комментариев: 35, 105, 2, 15, 2, 31, 1. Чтобы вычислить медиану, нужно пройти два этапа:
- Расположите числа в порядке возрастания. Итоговый ряд будет выглядеть так: 1, 2, 2, 15, 31, 35, 105.
- Найдите середину сформированного ряда. В центре стоит число 15 — его и нужно считать медианой.
Немного сложнее найти медиану, если вы работаете с четным количеством чисел. Например, вы собрали количество лайков на последних шести постах: 32, 48, 36, 201, 52, 12. Чтобы найти медиану, выполните три действия:
- Расставьте числа по возрастанию: 12, 32, 36, 48, 52, 201.
- Возьмите два из них, наиболее близких к центру. В нашем случае — это 36 и 48.
- Сложите два этих числа и разделите на два: (36 + 48) / 2 = 42. Результат и есть медиана.
Чтобы вычислять медиану быстрее и обрабатывать большие объемы данных — используйте Google Таблицы:
- Внесите данные в таблицу.
- Щелкните по свободной ячейке, в которую хотите записать медиану.
- Введите формулу «=MEDIAN(» и выделите ряд чисел, для которых нужно рассчитать медиану. Нажмите «Enter», чтобы все посчиталось.
Когда можно не использовать
Если данные распределены нормально и вы не видите заметных выбросов — медиану можно не использовать. В этом случае значение среднего арифметического будет очень близким к медиане. Можете выбрать любой способ нахождения среднего, с которым вам работать проще. Результат от этого сильно не изменится.
Что такое мода и где ее использовать
Мода ― это самое популярное/часто встречающееся значение. Например, стоит задача узнать, сколько комментариев чаще всего набирают посты в аккаунте. В этом случае можно не высчитывать среднее арифметическое или медиану ― лучше и проще использовать моду.
Еще пример. Нужно узнать, в какое время аудитория чаще всего взаимодействует с публикациями. Для этого можно посчитать данные вручную или использовать готовую таблицу из LiveDune (вкладка «Вовлеченность» ― таблица «Лучшее время для поста»). По ее данным ― больше всего реакций пользователи оставляют в среду в 16 часов. Это время и есть мода. Таким образом, если вам нужно найти самое популярное значение, а не классическое среднее — проще использовать моду.
Как рассчитать
Чтобы найти наиболее часто встречающееся значение в наборе данных, нужно посмотреть, какое число встречается в ряду чаще всех. Например, для ряда 5, 4, 2, 4, 7 ― модой будет число 4.
Иногда в ряде значений встречается несколько мод. Например, ряду 7, 7, 21, 2, 5, 5 свойственны две моды — 7 и 5. В этом случае совокупность чисел называется мультимодальной. Также поиск моды можно упростить с помощью Google Таблиц:
- Внесите значения в таблицу.
- Щелкните по ячейке, в которую хотите записать моду.
- Введите формулу «=MODE(» и выделите ряд чисел, для которых нужно вычислить моду. Нажмите «Enter».
Однако важно иметь в виду, что табличная функция выдает только самую меньшую моду. Поэтому будьте внимательны — можно упустить из виду несколько мод.
Когда использовать не стоит
Моду нет смысла использовать, если вас не просят найти самое популярное значение. Там, где надо найти классическое среднее значение, про моду лучше забыть.
Памятка по использованию
Среднее арифметическое
Как находим: сумма чисел / количество чисел.
Используем: если данные распределены нормально и нет ярких выбросов.
Не используем: если видим явные выбросы или ненормальное распределение.
Медиана
Как находим: располагаем числа в порядке возрастания и находим середину сформированного ряда.
Используем: если работаем с ненормальным распределением или видим выбросы.
Не используем: если выбросов нет и распределение нормальное.
Мода
Как находим: определяем значение, которое чаще всего встречается в ряду чисел.
Используем: если нужно найти не среднее, а самое популярное значение.
Не используем: если нужно найти классическое среднее значение.
Только важные новости в ежемесячной рассылке
Нажимая на кнопку, вы даете согласие на обработку персональных данных.
Подписывайся сейчас и получи гайд аудита Instagram аккаунта
Маркетинговые продукты LiveDune — 7 дней бесплатно
Наши продукты помогают оптимизировать работу в соцсетях и улучшать аккаунты с помощью глубокой аналитики
Анализ своих и чужих аккаунтов по 50+ метрикам в 6 соцсетях.
Оптимизация обработки сообщений: операторы, статистика, теги и др.
Автоматические отчеты по 6 соцсетям. Выгрузка в PDF, Excel, Google Slides.
Контроль за прогрессом выполнения KPI для аккаунтов Инстаграм.
Аудит Инстаграм аккаунтов с понятными выводами и советами.
Поможем отобрать «чистых» блогеров для эффективного сотрудничества.
Формула для расчета медианы в статистике
Медианная формула в статистике относится к формуле, используемой для определения среднего числа в заданном наборе данных, расположенном в порядке возрастания. Согласно подсчету формулы количество элементов в наборе данных добавляется к единице. Таким образом, результаты будут разделены на два, чтобы получить место срединного значения, т. е. число, помещенное в идентифицированную позицию, будет средним значением.
Это инструмент для измерения центра набора числовых данных. Он суммирует большие объемы данных в одно значение. Его можно определить как среднее число группы чисел, отсортированных в порядке возрастания. Другими словами, медиана — это число, над которым и под ним будет одинаковое количество чисел в указанной группе данных. Это широко используемая мера наборов данных в статистике. В статистике статистика — это наука, стоящая за выявлением, сбором, организацией и обобщением, анализом, интерпретацией и, наконец, представлением таких данных, как качественных, так и количественных, что помогает принимать более эффективные и эффективные решения с уместностью. читать дальше и теория вероятностей.
Медиана = {(n+1)/2}-й
Где «n» — количество элементов в наборе данных, а «th» означает (n)-е число.
Оглавление
- Формула для расчета медианы в статистике
- Расчет медианы (шаг за шагом)
- Примеры формулы медианы в статистике
- Пример №1
- Пример #2
- Пример №3
- Актуальность и использование
- Медианная формула в статистике (с шаблоном Excel)
- Рекомендуемые статьи
Расчет медианы (шаг за шагом)
Выполните следующие шаги:
- Во-первых, отсортируйте числа в порядке возрастания. Числа располагаются по возрастанию при расположении от наименьшего к наибольшему порядку в этой группе.
- Метод нахождения медианы нечетных/четных чисел в группе приведен ниже.
- Если количество элементов в группе нечетное – Найдите {(n+1)/2}-й член. Значение, соответствующее этому термину, является медианой.
- Если количество элементов в группе четное — Найдите {(n+1)/2}-й член в этой группе. Средняя точка между числами по обе стороны от срединной позиции. Например, если имеется восемь наблюдений, медиана равна (8+1)/2-й позиции, то есть можно вычислить 4,5-ю медиану, добавив 4-й и 5-й члены в этой группе, которая затем делится на 2.
Примеры формулы медианы в статистике
.free_excel_div{фон:#d9d9d9;размер шрифта:16px;радиус границы:7px;позиция:относительная;margin:30px;padding:25px 25px 25px 45px}.free_excel_div:before{content:»»;фон:url(центр центр без повтора #207245;ширина:70px;высота:70px;позиция:абсолютная;верх:50%;margin-top:-35px;слева:-35px;граница:5px сплошная #fff;граница-радиус:50%} Вы можете скачать этот шаблон Excel с медианной формулой здесь – Шаблон медианной формулы Excel
Пример №1
Список чисел: 4, 10, 7, 15, 2. Вычислить медиану.
Решение: Расположим числа в порядке возрастания.
В порядке возрастания числа: 2,4,7,10,15.
Всего 5 номеров. Медиана равна (n+1)/2-му значению. Таким образом, медиана равна (5+1)/2-му значению.
Медиана = 3-е значение.
3-е значение в списке 2, 4, 710, 15 равно 7.
Таким образом, медиана равна 7.
Пример #2
Предположим, в организации 10 сотрудников, включая генерального директора. Генеральный директор Адам Смит считает, что зарплата сотрудников высока. Следовательно, он хочет оценить зарплату, получаемую группой, и, следовательно, принимать решения.
Ниже указана заработная плата сотрудников фирмы. Рассчитайте среднюю заработную плату. Заработная плата составляет 5 000 долларов, 6 000 долларов, 4 000 долларов, 7 000 долларов, 8 000 долларов, 7 500 долларов, 10 000 долларов, 12 000 долларов, 4 500 долларов, 10 00 000 долларов.
Решение:
Сначала расположим оклады в порядке возрастания. Заработная плата в порядке возрастания:
4000 долларов, 4500 долларов, 5000 долларов, 6000 долларов, 7000 долларов, 7500 долларов, 8000 долларов, 10000 долларов, 12000 долларов, 1000000 долларов
Таким образом, расчет медианы будет следующим:
Поскольку элементов 10, медиана равна (10+1)/2-му элементу. Медиана = 5,5-й пункт.
Таким образом, медиана — это среднее значение 5-го и 6-го пунктов. Например, 5-й и 6-й предметы стоят 7000 и 7500 долларов.
= (7000 долл. США + 7500 долл. США)/2 = 7250 долл. США.
Таким образом, средняя заработная плата 10 сотрудников составляет 7250 долларов.
Пример №3
Джеффу Смиту, генеральному директору производственной организации, необходимо заменить семь машин новыми. Однако он обеспокоен понесенными затратами и звонит финансовому директору фирмы, чтобы тот помог ему рассчитать медианную стоимость семи новых машин.
Финансовый менеджер предположил, что можно покупать новые машины, если средняя цена машин ниже 85 000 долларов. Затраты следующие: 75 000 долларов, 82 500 долларов, 60 000 долларов, 50 000 долларов, 1 00 000 долларов, 70 000 долларов, 90 000 долларов. Рассчитайте среднюю стоимость машин. Затраты следующие: 75 000 долларов, 82 500 долларов, 60 000 долларов, 50 000 долларов, 1 00 000 долларов, 70 000 долларов, 90 000 долларов.
Решение:
Расположите затраты в порядке возрастания: 50 000 долларов, 60 000 долларов, 70 000 долларов, 75 000 долларов, 82 500 долларов, 90 000 долларов, 1 00 000 долларов.
Таким образом, расчет медианы будет следующим:
Поскольку элементов 7, медиана равна (7+1)/2-й элемент, т. е. 4-й элемент. Следовательно, 4-й предмет стоит 75 000 долларов.
Поскольку медиана ниже 85 000 долларов, можно купить новые машины.
Актуальность и использование
Основное преимущество медианы перед средними заключается в том, что на нее не оказывают чрезмерного влияния крайние значения, которые могут быть очень высокими и очень низкими. Таким образом, это дает человеку лучшее представление о репрезентативной ценности. Например, если вес 5 человек в кг равен 50, 55, 55, 60 и 150. Среднее значение равно (50+55+55+60+150)/5 = 74 кг. Однако 74 кг не является истинным репрезентативным значением, поскольку большинство весов находится в диапазоне от 50 до 60. Вычислим медиану в таком случае. Это будет (5+1)/2-й член = 3-й член. Третий член — 55 кг, что является медианой. Поскольку большинство данных находится в диапазоне от 50 до 60, 55 кг являются истинным репрезентативным значением данных.
Мы должны быть осторожны в интерпретации того, что означает медиана. Например, когда мы говорим, что средний вес составляет 55 кг, не все люди весят 55 кг. Кто-то может весить больше, а кто-то меньше. Однако 55 кг – это хороший показатель веса 5 человек.
В реальном мире, чтобы понять наборы данных, такие как доход домохозяйства или активы домохозяйства, которые сильно различаются, среднее значение может быть искажено небольшим количеством очень больших значений или малых значений. Таким образом, медиана используется, чтобы предположить, каким должно быть типичное значение.
Медианная формула в статистике (с шаблоном Excel)
Билл — владелец обувного магазина. Он хочет знать, какой размер обуви ему следует заказать. Он спрашивает 9 покупателей, какой у них размер обуви. Результатами являются 7, 6, 8, 8, 10, 6, 7, 9 и 6. Вычислите медиану, чтобы помочь Биллу принять решение о заказе.
Решение: Сначала мы должны расположить размеры обуви в порядке возрастания.
Это: 6, 6, 6, 7, 7, 8, 8, 9, 10
Ниже приведены данные для расчета медианы обувного магазина.
Поэтому вычисление медианы в excelMedian In ExcelMEDIAN в Excel дает медиану заданного набора чисел. МЕДИАНА Определяет положение центра группы чисел в статистическом распределении. Подробнее будет следующим:
В Excel можно использовать встроенную формулу для медианы, чтобы вычислить медиану группы чисел. Выберите пустую ячейку и введите это = МЕДИАНА (B2: B10) (B2: B10 указывает диапазон, из которого вы хотите вычислить медиану).
Медиана обувного магазина будет –
Рекомендуемые статьи
Эта статья была руководством по медианной формуле в статистике. Здесь мы обсуждаем расчет медианы с использованием ее формулы и практических примеров в Excel и загружаемого шаблона Excel. Вы можете узнать больше об Excel из следующих статей: –
- ФормулаФормулаНормальное распределение – это симметричное распределение, т.е. положительные и отрицательные значения распределения можно разделить на равные половины, и поэтому среднее значение, медиана и мода будут равны. У него два хвоста, один известен как правый хвост, а другой известен как левый хвост. Узнайте больше о нормальном распределении нормального распределения. на равные половины и, следовательно, среднее значение, медиана и мода будут равны. У него два хвоста, один известен как правый хвост, а другой известен как левый хвост.Подробнее
- Вычислить стандартное нормальное распределениеВычислить стандартное нормальное распределениеСтандартное нормальное распределение — это симметричное распределение вероятностей относительно среднего или среднего значения, показывающее, что данные, близкие к среднему или среднему, встречаются чаще, чем данные, далекие от среднего или нормы. Таким образом, оценка называется «Z-оценка».Подробнее
- Формула МЕДИАНА в ExcelФормула МЕДИАНА в Excel Функция МЕДИАНА в Excel дает медиану заданного набора чисел. МЕДИАНА Определяет расположение центра группы чисел в статистическом распределении.Подробнее
- Вычислить среднее значение населенияВычислить среднее значение населенияСреднее значение населения представляет собой среднее значение всех значений в данной совокупности и рассчитывается как сумма всех значений в совокупности, обозначаемая суммой X, деленная на количество значений в совокупности, которое обозначается N. читать далее
28 октября 2021 г.
{(n ÷ 2)-е значение + [(n ÷ 2) + 1]th value} ÷ 2 = медиана
Статистики и аналитики данных используют множество вычислений для организации, контекстуализации и интерпретации информации в своей работе. Одним из важных значений, которое эти профессионалы обычно определяют, является медиана. Если вы работаете со статистикой или данными или используете метрики на работе, может быть полезно понять, как найти медианное число. В этой статье мы определяем медиану, описываем формулу ее расчета, сравниваем медиану со средним и приводим примеры расчета медианы.
Что такое медиана?
Медиана — это среднее значение набора данных, когда вы упорядочиваете значения. Наряду со средним значением и модой это одна из центральных тенденций в наборе данных или числа, которые наиболее репрезентативны для тенденций в данных. Медиану иногда называют позиционным средним значением, что означает, что 50 % данных находятся выше медианы, а 50 % — ниже нее.
Медиана, среднее и мода
Медиана, среднее значение и мода — три важных числа, которые могут помочь аналитикам данных и статистикам обобщить тенденции в наборе данных. В то время как медиана — это среднее число в наборе данных, среднее — это результат сложения всех значений в наборе данных и их деления на количество элементов, включенных в набор. Мода — еще одна распространенная мера, которая относится к наиболее распространенному значению в наборе данных.
Почему важна медиана?
Медиана набора данных важна, потому что она может суммировать данные в одно число для репрезентативных целей. Хотя многие аналитики используют среднее значение для выявления важных тенденций в данных, иногда среднее значение может быть более полезным. Поскольку среднее значение включает все значения в наборе данных, очень высокие или низкие значения могут искажать важные тенденции. В этих случаях многие профессионалы находят медиану, потому что на нее не влияют выбросы.
Вычисление медианы
Для нахождения медианы в нечетных и четных наборах чисел необходимы разные вычисления. Вы можете использовать эти вычисления, чтобы найти медиану в наборе данных:
Для нечетного набора чисел
Нечетное число — это число, которое нельзя разделить на два, например, пять, семь или 17. Если в наборе данных есть нечетное количество значений, вы можете сначала расположить значения в порядке возрастания или убывания и использовать эту формулу, чтобы найти положение среднего:
Медиана = (n + 1) ÷ 2
В этом уравнении n представляет количество значений в наборе данных. Чтобы найти положение медианы, вы можете добавить единицу к количеству значений в наборе и разделить результат на два. Например, если результат этой формулы равен восьми, медиана — это восьмое число в последовательности. Если у вас есть небольшое количество точек данных, вы можете просто расположить их в порядке возрастания или убывания и найти средний номер.
Для четного набора чисел
Четные числа — это числа, которые можно разделить на два. Если у вас есть набор данных с четным количеством точек данных, вы можете сначала расположить их в порядке возрастания или убывания. Поскольку среднего числа нет, вам потребуются два средних числа последовательности, которые вы можете найти с помощью этих уравнений, в которых n — количество точек данных в наборе:
п ÷ 2
(n ÷ 2) + 1
Результатом этих уравнений являются положения двух средних точек в наборе данных. Например, если результаты равны восьми и девяти, вы можете искать восьмое и девятое числа в упорядоченной последовательности. Чтобы найти медиану, вы можете сложить два средних числа и разделить результат на два. Вы можете представить всю формулу с помощью этого уравнения:
{(n ÷ 2)-е значение + [(n ÷ 2) + 1]th value} ÷ 2 = медиана
Чему равна медиана двух чисел?
Чтобы найти медиану двух чисел, вы можете сложить их вместе и разделить результат на два. Вы можете представить эту формулу следующим уравнением, в котором x представляет первое число, а y представляет второе число:
(x + y) ÷ 2 = медиана
Например, если вы хотите найти медиану четырех и пяти, вы можете использовать этот расчет:
4 + 5 = 9
9 ÷ 2 = 4,5
Это означает, что медиана четырех и пяти равна 4,5.
Примеры расчета медианы
Вот несколько примеров того, как можно вычислить медиану различных наборов данных:
Пример расчета медианы для нечетного набора чисел
Это пример того, как вы можете вычислить среднее значение нечетного набора чисел:
Карла хочет определить среднюю почасовую заработную плату в ресторанах своего района. После сбора информации о девяти ресторанах у нее есть набор данных, включающий 15, 13.50, 14, 17, 11.50, 12, 11, 12.75 и 14.50. Во-первых, она может расположить числа в порядке значимости от наименьшего к наибольшему:
11, 11.50, 12, 12.75, 13.50, 14, 14.50, 15, 17
Поскольку у нее девять чисел, она использует это уравнение, чтобы найти положение среднего значения:
(9 + 1) ÷ 2 = 5
Это означает, что медиана в ее наборе данных — это пятое значение, которое составляет 13,50 долларов в час.
Пример расчета медианы для четного набора чисел
Вот пример того, как можно вычислить медиану четного набора чисел:
.Джон хочет найти среднее число братьев и сестер среди его группы из восьми друзей. После сбора информации от них у него есть список чисел, который включает пять, два, восемь, один, три, один, четыре и шесть. Во-первых, он упорядочивает числа в порядке значимости от наименьшего к наибольшему:
1, 1, 2, 3, 4, 5, 6, 8
Поскольку в его последовательности восемь чисел, он может использовать это уравнение, чтобы найти положение двух средних значений:
8 ÷ 2 = 4
(8 ÷ 2) + 1 = 5
Это означает, что два средних значения — это четвертое и пятое числа, то есть три и четыре в последовательности. Затем он может использовать этот расчет, чтобы найти среднее значение:
(3 + 4) ÷ 2 = 3,5
Это означает, что медиана его набора данных составляет 3,5 брата и сестры.
Пример медианы по сравнению со средним и модой
Это пример того, как вы можете определить и сравнить среднее значение, медиану и моду набора данных:
Лили пытается найти основные тенденции набора данных, включающего следующие 11 чисел:
23, 33, 67, 11, 24, 88, 54, 32, 43, 15, 11
Чтобы найти медиану, она упорядочивает числа, чтобы получить следующую последовательность:
11, 11, 15, 23, 24, 32, 33, 43, 54, 67, 88
Затем она может использовать это уравнение, чтобы найти медиану:
(11 + 1) ÷ 2 = 6
Это означает, что медиана — это шестое число, или 32.
Чтобы найти среднее значение, она использует это уравнение:
(11 + 11 + 15 + 23 + 24 + 32 + 33 + 43 + 54 + 67 + 88) ÷ 11 = 36,45
Это означает, что среднее или среднее значение набора данных равно 36,45.
Чтобы найти моду, она может просто искать число, которое встречается чаще всего. Поскольку только 11 появляется дважды, это режим набора данных.