Как найти медиану ряда если 10 чисел

Понятие медианы чисел широко используется в математической статистике. И хотя вычисление медианы не составляет большой сложности, мы сделали калькулятор, который поможет рассчитать медианное значение ряда чисел онлайн с подробным решением. Причем количество чисел не важно, он рассчитает медиану 3, 4, 5 чисел так же быстро, как и для 1000 чисел.

Калькулятор медиана чисел

Как найти медиану чисел

Лучше рассмотреть процесс вычисления медианы на примере. Пусть у нас есть ряд чисел: 13 19 24 17 15 11. Для удобства числа будет записывать через пробел. Найдем его медиану. Для начала необходимо расположить числа в порядке возрастания. Эта процедура называется сортировкой. Получим новый ряд: 11 13 15 17 19 24. Так как количество чисел в ряду равно 6, а число 6 четное, то середина ряда будет между числами 15 и 17. Найдем среднее этих двух чисел: (15 + 17) / 2 = 16. Это и будет медианой ряда. Не стоит путать медиану, среднее гармоническое и среднее арифметическое — это принципиально разные понятия.

Рассмотрим другой пример, когда количество чисел в ряду нечетное. Есть такой ряд: 18 46 10 5 38. Найдем медиану набора этих чисел. Отсортируем ряд по возрастанию и получим ряд: 5 10 18 38 48. Так как количество чисел в этом ряду 5, то у него есть середина — это элемент с номером 2. Значит медиана этого ряда равна элементу с номером 2. Получаем ответ 18.

И еще пример — найдем медиану чисел 158 166 134 130 132. Отсортируем и получим ряд 130 132 134 158 166. Количество чисел нечетное и равно 5, значит средний элемент имеет номер 3. Третий элемент нашего отсортированного ряда — число 134. Это и есть медиана.

Ваша оценка

[Оценок: 259 Средняя: 3]

Медиана ряда чисел Автор admin средний рейтинг 3/5 259 рейтинги пользователей

Онлайн калькулятор для нахождения медианы ряда чисел. Медианой (серединой) набора чисел называется число стоящее посередине упорядоченного по возрастанию ряда чисел. Если количество чисел в ряду чётное, то медианой ряда является полусумма двух стоящих посередине чисел.
Применяется в математической статистике — число, характеризующее выборку (например, набор чисел), также используется для вычисления медианной зарплаты.

Формула медианы числового набора, пример вычисления медианы числового ряда: 3, 7, 1, 6, 9
Решение: упорядочиваем список чисел в порядке возрастания: 1, 3, 6, 7, 9. Поскольку количество чисел в ряду нечётное, то число 6 стоящее по середине и будет являться медианой данного ряда.

Пример нахождения медианы ряда чисел: 1, 5, 8, 4, 3, 9
Решение: записываем все числа ряда в порядке возрастания: 1, 3, 4 ,5, 8, 9. Поскольку чисел в ряду чётное, то медиана этого ряда будет равна полусумме двух средних чисел: (4+5)/2 = 4.5

Правила ввода

Вводить можно целые(1, 2, 3, -7), десятичные(0.25, -1.15), дробные(-1/8, 32/9). Если необходимо ввести смешанное число, то нужно перед вводом перевести его в неправильную обыкновенную дробь. Т.е. 1 целая 1/2 вводить нужно будет как 3/2.

При вводе десятичных дробей использовать точку. Запятая зарезервирована под разделитель.

В качестве разделителя можно использовать любой символ кроме цифр(0-9), слэша(/), точки(.), знака минус(-). Остальные символы и перенос строки будут программой заменены на разделители.

Калькулятор может находить медиану 3 чисел, 4 чисел, 5 чисел. Количество ограничено 500 числами.

Определение медианы ряда чисел

Медианой упорядоченного ряда чисел с нечётным числом чисел, называется число записанное посередине.

Медианой упорядоченного ряда чисел с чётным числом чисел, называется среднее арифметическое двух чисел, записанных посередине.

Как найти медиану ряда чисел

  • Для начала необходимо отсортировать по возрастанию данный ряд
  • Если количество чисел в ряду нечётное, то медианой будет среднее число
  • Если количество чисел в ряду чётное, то медианой будет среднее арифметическое двух чисел, записанных посередине.

Пример нахождения медианы ряда чисел

Пример 1

Дан ряд чисел 4, 7, 2, 6, 3, 1 необходимо найти медиану данного ряда.

Отсортируем ряд по возрастанию

1, 2, 3, 4, 6, 7

Т.к. количество чисел чётное медиана будет равна (3+4)/2=3.5

Пример 2

Дан ряд чисел 0.4, 0.7, 0.2, 0.6, 0.3 необходимо найти медиану данного ряда.

Отсортируем ряд по возрастанию

0.2, 0.3, 0.4, 0.6, 0.7

Т.к. количество чисел нечётное медиана будет равна 0.4

Найти медиану чисел 3, 6, 12
Найти медиану чисел 158, 166, 134, 130, 132
Найти медиану чисел 30, 32, 37
Найти медиану чисел 102, 104, 205

Если в числовом ряде есть дробные числа, используйте точку для их записи. Например, 0.42, 0.55.

Медианой ряда
чисел
(или медианой числового ряда) называется число, стоящее посередине
упорядоченного по возрастанию ряда чисел — в случае, если
количество чисел нечётное. Если же количество чисел в ряду чётно, то медианой ряда является полусумма двух стоящих
посередине чисел упорядоченного по возрастанию ряда.

Как найти медиану ряда чисел

Чтобы разобраться, как находить медиану ряда чисел, мы рассмотрим несколько примеров.

Пример 1. Найти медиану числового ряда 5, 17, 3, 9, 14, 2.

Решение. Записываем все числа ряда в порядке возрастания: 2, 3, 5, 9, 14, 17. Количество чисел в ряду
чётно, поэтому медиана этого ряда будет равна полусумме двух средних чисел: frac{5+9}{2}=7.

Пример 2. Найти медиану числового ряда 5, 2, 18, 8, 3.

Решение. записываем все числа ряда в порядке возрастания: 2, 3, 5, 8, 18. Количество чисел в ряду
нечётно, поэтому медиана этого ряда будет равна стоящему посередине числу, то есть равна 5.

Медиана (x̃, M; Мера центральной тенденции) – это центральное значение Выборки (Sample).

В математике медиана также представляет собой тип Среднего значения (Average), который используется для нахождения “центра”. Поэтому ее еще называют мерой центральной тенденции.

Нечетное количество элементов ряда

Если в ряду нечетное количество элементов, то мы сортируем значения в возрастающем или убывающем порядке, а затем выбираем центральное.

Пример. Найдем медиану следующего ряда:

4, 17, 77, 25, 22, 23, 92, 82, 40, 24, 14, 12, 67, 23, 29

Расставив эти числа по порядку, мы получим:

4, 12, 14, 17, 22, 23, 23, 24, 25, 29, 40, 67, 77, 82, 92

Всего пятнадцать элементов, то есть 8-й будет центральным. Медианное значение этого набора чисел – 24.

Четное количество элементов ряда

Если в ряду четное количество элементов, медиана рассчитывается с помощью формулы:

$$M = frac{n + 1}{2}, где$$
$$Mspace{–}space{медиана,}$$
$$nspace{–}space{количество}space{элементов}space{в}space{выборке}$$

Пример. Найдем медиану следующего ряда:

1.79, 1.61, 2.09, 1.84, 1.96, 2.11

Выполнив подстановку, мы получим:

$$M = frac{6 + 1}{2} = 3.5$$

Центральная тенденция

Помимо медианы, выделяют еще две другие меры центральной тенденции – Среднее значение (Mean) и Мода (Mode). Среднее – это частное от суммы всех Наблюдений (Observation) к их количеству. Мода – это наиболее часто повторяющееся значение выборки.

В Науке о данных (Data Science) медиана иногда используется вместо среднего значения, когда в последовательности есть выбросы, которые могут исказить среднее. Выбросы меньше влияют на медианное значение, чем на среднее. Медиана отделяет верхнюю половину выборки, генеральной совокупности или Распределения вероятностей (Probability Distribution) от нижней.

Медиана распределения вероятностей

Медиана и NumPy

Медиану можно вычислить с помощью NumPy. Для начала импортируем все необходимые библиотеки:

import numpy as np

Создадим массив из 6 элементов и вызовем встроенный метод median():

a = [10, 7, 4, 3, 2, 1]
np.median(a)

NumPy определяет четность числа элементов массива (6) и применяет тот или иной метод расчета (согласно формуле):

3.5

Ноутбук, не требующий дополнительной настройки на момент написания статьи, можно скачать здесь.

Фото: @garciasaldana_

Добавить комментарий