Как найти медиану треугольника по трем сторонам

Рассмотрим задачу, в которой требуется по сторонам треугольника найти его медиану.

Задача.

Даны стороны треугольника. Найти длину медианы, проведенной к наибольшей стороне.

po storonam treugolnika nayti ego medianuДано: ∆ ABC,

BC=a, AC=b, AB=c,

сторона AC — наибольшая,

BO- медиана.

Найти: BO.

Решение:

po storonam treugolnika nayti medianu

1) На луче BO отложим отрезок OD, OD=BO.

nayti medianu treugolnika po ego storonam

2) Проведем отрезки AD и CD.

3) Рассмотрим четырехугольник ABCD.

AO=CO (так как BO — медиана треугольника ABC по условию);

BO=DO (по построению).

Так как диагонали четырехугольника ABCD в точке пересечения делятся пополам, то ABCD — параллелограмм (по признаку).

4) По свойству диагоналей параллелограмма,

    [A{C^2} + B{D^2} = 2(A{B^2} + A{D^2})]

    [{b^2} + B{D^2} = 2({a^2} + {c^2})]

    [B{D^2} = 2({a^2} + {c^2}) - {b^2}]

    [BD = sqrt {2({a^2} + {c^2}) - {b^2}} ]

так как BO=1/2 BD (по построению),

    [underline {BO = frac{1}{2}sqrt {2({a^2} + {c^2}) - {b^2}} .} ]

Если ввести обозначение

    [BO = {m_b},]

формула для нахождения медианы треугольника по его сторонам примет вид:

    [{{m_b} = frac{1}{2}sqrt {2({a^2} + {c^2}) - {b^2}} }]

Запоминать эту формулу не обязательно. При решении конкретной задачи следует привести все рассуждения.

Если медиана проведена не к наибольшей, а к наименьшей либо средней по величине стороне, решение задачи аналогично.

Соответственно, формулы для нахождения длины медианы в этих случаях:

    [{m_a} = frac{1}{2}sqrt {2({b^2} + {c^2}) - {a^2}} ]

    [{m_c} = frac{1}{2}sqrt {2({a^2} + {b^2}) - {c^2}} ]

Приём, который применили для решения задачи — метод удвоения медианы.

Чтобы по сторонам треугольника найти медиану, не обязательно запоминать дополнительную формулу. Достаточно знать алгоритм решения.

Для начала рассмотрим задачу в общем виде.

Дан треугольник со сторонами a, b, c. Найти длину медианы, проведенной к стороне b.

AB=a, AC=b, BC=c.

найти медиану треугольника по его сторонам

Решение.

На луче BF отложим отрезок FD, FD=BF.

найти длину медианы треугольника по его сторонам

Соединим точку D с точками A и C.

нахождение медианы треугольника по его сторонам

Четырехугольник ABCD — параллелограмм (по признаку), так как у него диагонали в точке пересечения делятся пополам.

Свойство диагоналей параллелограмма: сумма квадратов диагоналей параллелограмма равна сумме квадратов его сторон.

Отсюда: AC²+BD²=2(AB²+BC²), значит, b²+BD²=2(a²+c²),

BD²=2(a²+c²)-b². По построению, BF — половина BD, следовательно,

    [BD = frac{1}{2}sqrt {2({a^2} + {c^2}) - {b^2}} ]

Это — формула нахождения медианы треугольника по его сторонам. Обычно ее записывают так:

    [{m_b} = frac{1}{2}sqrt {2({a^2} + {c^2}) - {b^2}} ]

Переходим к рассмотрению конкретной задачи.

Стороны треугольника равны 13 см, 14 см и 15 см. Найти медиану треугольника, проведенную к его средней по длине стороне.

Решение:

Даны стороны треугольника. Найти медиану

Применяя аналогичные рассуждения, получаем:

AC²+BD²=2(AB²+BC²).

Отсюда

14²+BD²=2(13²+15²)

BD²=2(169+225)-196=592

    [BD = sqrt {592}  = sqrt {16 cdot 37}  = 4sqrt {37} (cm)]

    [BF = frac{1}{2}DD = frac{1}{2} cdot 4sqrt {37}  = 2sqrt {37} (cm)]

Ответ:

    [2sqrt {37} cm]

Все формулы медианы треугольника


Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M – медиана, отрезок |AO|

c – сторона на которую ложится медиана

a, b – стороны треугольника

γ – угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними



Подробности

Автор: Administrator

Опубликовано: 08 октября 2011

Обновлено: 13 августа 2021

Длина медианы треугольника

Медиана

Медиана — отрезок, проведенный из вершины треугольника на противоположную ей сторону и делящий ее пополам.
Медиану треугольника можно вычислить по трем его сторонам по формуле:

Длина медианы треугольника

где M — медиана; a, b — стороны треугольника; c — третья, на которую проведена медиана.
Т.е. медиана треугольника равняется половине корня квадратного из удвоенной суммы квадратов двух сторон минус квадрат третьей стороны.

Если даны 2 стороны и угол между ними, воспользуемся формулой:

Длина медианы треугольника

где M — медиана; a, b — стороны треугольника, γ — угол между ними.
Отсюда, медиана равна половине корня из суммы квадратов двух сторон плюс удвоенное произведение этих сторон на cos угла между ними.

Рассчитать длину медианы треугольника

Тегитреугольник

По сторонам треугольника найти его медиану

Рассмотрим задачу, в которой требуется по сторонам треугольника найти его медиану.

Даны стороны треугольника. Найти длину медианы, проведенной к наибольшей стороне.

Дано: ∆ ABC,

сторона AC — наибольшая,

1) На луче BO отложим отрезок OD, OD=BO.

2) Проведем отрезки AD и CD.

3) Рассмотрим четырехугольник ABCD.

AO=CO (так как BO — медиана треугольника ABC по условию);

BO=DO (по построению).

Так как диагонали четырехугольника ABCD в точке пересечения делятся пополам, то ABCD — параллелограмм (по признаку).

так как BO=1/2 BD (по построению),

Если ввести обозначение

формула для нахождения медианы треугольника по его сторонам примет вид:

Запоминать эту формулу не обязательно. При решении конкретной задачи следует привести все рассуждения.

Если медиана проведена не к наибольшей, а к наименьшей либо средней по величине стороне, решение задачи аналогично.

Соответственно, формулы для нахождения длины медианы в этих случаях:

Приём, который применили для решения задачи — метод удвоения медианы.

Определение и свойства медианы треугольника

В данной статье мы рассмотрим определение медианы треугольника, перечислим ее свойства, а также разберем примеры решения задач для закрепления теоретического материала.

Определение медианы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой стороны, расположенной напротив данной вершины.

Основание медианы – точка пересечения медианы со стороной треугольника, другими словами, середина этой стороны (точка F).

Свойства медианы

Свойство 1 (основное)

Т.к. в треугольнике три вершины и три стороны, то и медиан, соответственно, тоже три. Все они пересекаются в одной точке (O), которая называется центроидом или центром тяжести треугольника.

В точке пересечения медиан каждая из них делится в отношении 2:1, считая от вершины. Т.е.:

Свойство 2

Медиана делит треугольник на 2 равновеликих (равных по площади) треугольника.

Свойство 3

Три медианы делят треугольник на 6 равновеликих треугольников.

Свойство 4

Наименьшая медиана соответствует большей стороне треугольника, и наоборот.

  • AC – самая длинная сторона, следовательно, медиана BF – самая короткая.
  • AB – самая короткая сторона, следовательно, медиана CD – самая длинная.

Свойство 5

Допустим, известны все стороны треугольника (примем их за a, b и c).

Длину медианы ma, проведенную к стороне a, можно найти по формуле:

Примеры задач

Задание 1
Площадь одной из фигур, образованной в результате пересечения трех медиан в треугольнике, равняется 5 см 2 . Найдите площадь треугольника.

Решение
Согласно свойству 3, рассмотренному выше, в результате пересечения трех медиан образуются 6 треугольников, равных по площади. Следовательно:
S = 5 см 2 ⋅ 6 = 30 см 2 .

Задание 2
Стороны треугольника равны 6, 8 и 10 см. Найдите медиану, проведенную к стороне с длиной 6 см.

Решение
Воспользуемся формулой, приведенной в свойстве 5:

Элементы треугольника. Медиана

Определение

Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны

Свойства

1. Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины . Эта точка называется центром тяжести треугольника.

2. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника)

3. Медианы треугольника делят треугольник на 6 равновеликих треугольников

4. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы

5. Длина медианы треугольника вычисляется по формуле:

, где где — медиана к стороне ; — стороны треугольника

6. Длина стороны треугольника через медианы вычисляется по формуле:

, где – медианы к соответствующим сторонам треугольника, — стороны треугольника.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

[spoiler title=”источники:”]

[/spoiler]

Добавить комментарий