Как найти медиану в треугольнике зная основание

Все формулы медианы треугольника


Медиана – отрезок |AO|, который выходит из вершины A и делит противолежащею сторону  c пополам.

Медиана делит треугольник ABC на два равных по площади треугольника AOC и ABO.

Найти длину медианы треугольника по формулам

M – медиана, отрезок |AO|

c – сторона на которую ложится медиана

a, b – стороны треугольника

γ – угол CAB

Формула длины медианы через три стороны, (M):

Формула длины медианы через три стороны

Формула длины медианы через две стороны и угол между ними, (M):

Формула длины медианы через две стороны и угол между ними



Подробности

Автор: Administrator

Опубликовано: 08 октября 2011

Обновлено: 13 августа 2021

В данной статье мы рассмотрим определение и свойства медиан, проведенных к основанию и боковым сторонам равнобедренного треугольника, а также разберем пример решения задачи для закрепления теоретического материала.

  • Определение медианы

  • Свойства медианы в равнобедренном треугольнике

    • Свойство 1

    • Свойство 2

    • Свойство 3

    • Свойство 4

    • Свойство 5

    • Свойство 6

  • Пример задачи

Определение медианы

Медианой называется отрезок в треугольнике, который соединяет вершину и середину противоположной стороны.

Медиана в равнобедренном треугольнике проведенная к основанию

  • BD – медиана △ABC;
  • AD = DC.

Треугольник является равнобедренным, если две его стороны равны (боковые), а третья сторона – это основание фигуры.

  • AB = BC – боковые стороны;
  • AC – основание.

Свойства медианы в равнобедренном треугольнике

Свойство 1

Медиана в равнобедренном треугольнике, проведенная к основанию, одновременно является высотой, опущенной на основание, и биссектрисой угла, из которого она проведена.

Медиана проведенная к основанию равнобедренного треугольника

  • BD – медиана и высота, опущенная на основание AC, а также биссектриса угла ABC.
  • ∠ABD = ∠CBD

Свойство 2

В равнобедренном треугольнике медианы пресекаются в одной точке (центр тяжести) и делятся в этой точке в отношении 2:1.

Деление медиан в точке пересечения в равнобедренном треугольнике

  • O – центр тяжести или центроид треугольника;
  • AO = 2OF;
  • BO = 2OD;
  • CO = 2OE.

Свойство 3

Медиана делит равнобедренный треугольник на 2 равных по площади (равновеликих) треугольника. Следовательно, S1 = S2.

Деление медианой равнобедренного треугольника на 2 равновеликих треугольника

Свойство 4

Если провести три медианы в равнобедренном треугольнике, образуются 6 равновеликих треугольников (S1 = S2 = S3 = S4 = S5 = S6).

Деление медианами равнобедренного треугольника на 6 равновеликих треугольников

Свойство 5

Длину медианы в равнобедренном треугольнике, проведенную к основанию, можно найти по следующей формуле:

Формула расчета медианы к основанию равнобедренного треугольника через длины его сторон

  • a – основание;
  • b – боковая сторона.

Свойство 6

Данной свойство, в отличие от перечисленных выше, не относится к медиане, опущенной на основание фигуры. Оно гласит:

Медианы, проведенные к боковым сторонам равнобедренного треугольника, равны между собой.

Медианы проведенные к боковым сторонам равнобедренного треугольника

AF = CE, следовательно, AE = EB = BF = FC.

Пример задачи

Основание равнобедренного треугольника равняется 7 см, а боковая сторона – 12 см. Найдите длину медианы, проведенной к основанию фигуры.

Решение
Воспользуемся формулой, представленной в Свойстве 5, подставив в нее известные нам по условиям задачи значения:

Расчет медианы к основанию равнобедренного треугольника через длины его сторон

Определение и свойства медианы в равнобедренном треугольнике

В данной статье мы рассмотрим определение и свойства медиан, проведенных к основанию и боковым сторонам равнобедренного треугольника, а также разберем пример решения задачи для закрепления теоретического материала.

Определение медианы

Медианой называется отрезок в треугольнике, который соединяет вершину и середину противоположной стороны.

Треугольник является равнобедренным, если две его стороны равны (боковые), а третья сторона – это основание фигуры.

  • AB = BC – боковые стороны;
  • AC – основание.

Свойства медианы в равнобедренном треугольнике

Свойство 1

Медиана в равнобедренном треугольнике, проведенная к основанию, одновременно является высотой, опущенной на основание, и биссектрисой угла, из которого она проведена.

  • BD – медиана и высота, опущенная на основание AC, а также биссектриса угла ABC.
  • ∠ABD = ∠CBD

Свойство 2

В равнобедренном треугольнике медианы пресекаются в одной точке (центр тяжести) и делятся в этой точке в отношении 2:1.

Свойство 3

Медиана делит равнобедренный треугольник на 2 равных по площади (равновеликих) треугольника. Следовательно, S1 = S2.

Свойство 4

Если провести три медианы в равнобедренном треугольнике, образуются 6 равновеликих треугольников (S1 = S2 = S3 = S4 = S5 = S6).

Свойство 5

Длину медианы в равнобедренном треугольнике, проведенную к основанию, можно найти по следующей формуле:

Свойство 6

Данной свойство, в отличие от перечисленных выше, не относится к медиане, опущенной на основание фигуры. Оно гласит:

Медианы, проведенные к боковым сторонам равнобедренного треугольника, равны между собой.

AF = CE, следовательно, AE = EB = BF = FC.

Пример задачи

Основание равнобедренного треугольника равняется 7 см, а боковая сторона – 12 см. Найдите длину медианы, проведенной к основанию фигуры.

Решение
Воспользуемся формулой, представленной в Свойстве 5, подставив в нее известные нам по условиям задачи значения:

Равнобедренный треугольник: свойства, признаки и формулы

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Определение равнобедренного треугольника

Какой треугольник называется равнобедренным?

Равнобедренным называется треугольник, у которого две стороны равны.

Давайте посмотрим на такой треугольник:

На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.

А вот как называются стороны равнобедренного треугольника:

AB и BC — боковые стороны,

AC — основание треугольника.

Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.

Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.

Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.

Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.

Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.

Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».

В данном треугольнике медианой является отрезок BH.

Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.

Высотой в представленном равнобедренном треугольнике является отрезок BH.

Признаки равнобедренного треугольника

Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.

  1. Если у треугольника два угла равны, то этот треугольник — равнобедренный.
  2. Если высота треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник — равнобедренный.
  3. Если высота треугольника совпадает с его биссектрисой, проведенной из того же угла, то такой треугольник — равнобедренный.
  4. Если биссектриса треугольника совпадает с его медианой, проведенной из того же угла, то такой треугольник снова равнобедренный!

Свойства равнобедренного треугольника

Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!

Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, AH = HC и BH — медиана.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.

Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.

Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).

Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.

Во-вторых, AH = HC и BH — медиана.

Примеры решения задач

Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.

Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.

Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.

Значит, ∠A = ∠C = 80°.

Не должно вас удивить и то, что сумма углов треугольника равна 180°.

∠B = 180° − 80° − 80° = 20°.

Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.

Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.

А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.

Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.

Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.

Как найти медиану в равнобедренном треугольнике

Вчера ко мне подошла старшая дочь и спросила: «Мам, ты знаешь, как найти медиану в равнобедренном треугольнике?» Я в панике начала вспоминать, а что такое медиана? Многое из геометрии я помню, но тема медиан вылетела из головы. Почитав немного теории в учебнике, конечно, я сразу вспомнила и про медианы, и про треугольники. И скажу, что на практике все намного проще, чем в теории.

Вычисление медианы по двум сторонам треугольника

Вообще, медиана – это отрезок, проведенный из угла треугольника к противоположной ему стороне, при этом поделив эту сторону на две равные части.

В равнобедренном треугольнике две стороны и два угла у основания равны. А медиана, проведенная к основанию, не только делит его пополам, но еще и является высотой. Высота в свою очередь образует с основанием прямой угол.

Равнобедренный треугольник поделился на два одинаковых прямоугольных. Высота h в таком треугольнике – это один из катетов. По теореме Пифагора найдем этот катет:

Квадрат катета – это разность квадрата гипотенузы и квадрата второго катета.
Значит, катет – квадратный корень из разности квадрата гипотенузы и квадрата второго катета.

Предположим, в условии даны стороны равнобедренного треугольника: a и b. Из этого следует, что в прямоугольном треугольнике получилась гипотенуза a и катет b / 2.

Подставляем значения и получаем, что высота равна:

Например, дано: a = 5, b = 6. Найти: h = ?

  1. a ^ 2 = 25
  2. (b ^ 2) / 4 = 9
  3. h ^ 2 = (a ^ 2) – (b ^ 2)
  4. h ^ 2 = 25 – 9
  5. h ^ 2 = 16
  6. h = 4

Вычисление медианы по основанию и площади треугольника

Если из условия задачи мы знаем площадь равнобедренного треугольника и его основание, то без труда найдем медиану.

  • Площадь равнобедренного треугольника находится по формуле:
    S = (b * h) / 2
  • Выражаем h:
    h = 2S / b
  • Например, дано: площадь S = 12, основание b = 6. Найти медиану h.
    h = 2 * 12 / 6
    h = 4

Пока я помогала дочери решать задачи, поняла, что их школьное детство намного проще нашего. Мало того, что все формулы есть в интернете, так еще есть и онлайн-калькуляторы, которые выдают правильный ответ и подробное решение за секунду! Однако это скорее минус. Нам приходилось запоминать все формулы и правила, а сегодняшние дети полагаются на мобильных помощников.

Теперь вы знаете, как найти медиану в равнобедренном треугольнике, это просто и быстро: всего несколько коротких действий. В учебнике по математике найдется много вариантов этой задачи, но само решение основывается на теореме Пифагора. Эта теорема запоминается еще с первых уроков геометрии и остается в памяти навсегда.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/chto-takoe-ravnobedrennyj-treugolnik

http://dobriy-sovet.ru/kak-najti-medianu-v-ravnobedrennom-treugolnike/

[/spoiler]

Вчера ко мне подошла старшая дочь и спросила: «Мам, ты знаешь, как найти медиану в равнобедренном треугольнике?» Я в панике начала вспоминать, а что такое медиана? Многое из геометрии я помню, но тема медиан вылетела из головы. Почитав немного теории в учебнике, конечно, я сразу вспомнила и про медианы, и про треугольники. И скажу, что на практике все намного проще, чем в теории.

Как найти медиану в равнобедренном треугольнике

Вычисление медианы по двум сторонам треугольника

Вообще, медиана – это отрезок, проведенный из угла треугольника к противоположной ему стороне, при этом поделив эту сторону на две равные части.

В равнобедренном треугольнике две стороны и два угла у основания равны. А медиана, проведенная к основанию, не только делит его пополам, но еще и является высотой. Высота в свою очередь образует с основанием прямой угол.

Равнобедренный треугольник поделился на два одинаковых прямоугольных. Высота h в таком треугольнике – это один из катетов. По теореме Пифагора найдем этот катет:

Квадрат катета – это разность квадрата гипотенузы и квадрата второго катета.
Значит, катет – квадратный корень из разности квадрата гипотенузы и квадрата второго катета.

Предположим, в условии даны стороны равнобедренного треугольника: a и b. Из этого следует, что в прямоугольном треугольнике получилась гипотенуза a и катет b / 2.

Подставляем значения и получаем, что высота равна:

Как найти медиану в равнобедренном треугольникеНапример, дано: a = 5, b = 6. Найти: h = ?

  1. a ^ 2 = 25
  2. (b ^ 2) / 4 = 9
  3. h ^ 2 = (a ^ 2) – (b ^ 2)
  4. h ^ 2 = 25 – 9
  5. h ^ 2 = 16
  6. h = 4

Вычисление медианы по основанию и площади треугольника

Если из условия задачи мы знаем площадь равнобедренного треугольника и его основание, то без труда найдем медиану.

  • Площадь равнобедренного треугольника находится по формуле:
    S = (b * h) / 2
  • Выражаем h:
    h = 2S / b
  • Например, дано: площадь S = 12, основание b = 6. Найти медиану h.
    h = 2 * 12 / 6
    h = 4

Пока я помогала дочери решать задачи, поняла, что их школьное детство намного проще нашего. Мало того, что все формулы есть в интернете, так еще есть и онлайн-калькуляторы, которые выдают правильный ответ и подробное решение за секунду! Однако это скорее минус. Нам приходилось запоминать все формулы и правила, а сегодняшние дети полагаются на мобильных помощников.

Как найти медиану в равнобедренном треугольникеТеперь вы знаете, как найти медиану в равнобедренном треугольнике, это просто и быстро: всего несколько коротких действий. В учебнике по математике найдется много вариантов этой задачи, но само решение основывается на теореме Пифагора. Эта теорема запоминается еще с первых уроков геометрии и остается в памяти навсегда.

Видео по теме


Подпишитесь на наши интересные статьи в соцетях!

Или подпишитесь на рассылку


Медиана равна половине гипотенузы прямоугольного треугольника!

Почему??? При чём тут прямой угол?

Давай смотреть внимательно. Только не на треугольник, а на … прямоугольник.

Ты заметил, что наш треугольник ( displaystyle ABC) – ровно половина этого прямоугольника?

Проведём диагональ ( displaystyle BD):

Помнишь ли ты, что диагонали прямоугольника равны и делятся точкой пересечения пополам?

Если не помнишь, загляни в тему «Параллелограмм, прямоугольник, ромб…»

Но одна из диагоналей – ( displaystyle AC) – наша гипотенуза! Значит, точка пересечения диагоналей – середина гипотенузы ( displaystyle Delta ABC).

Она называлась у нас ( displaystyle M).

Значит, половина второй диагонали – наша медиана ( displaystyle BM). Диагонали равны, их половинки, конечно же, тоже. Вот и получим ( displaystyle BM=MA=MC)

Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы.

Более того, так бывает только в прямоугольном треугольнике!

Если медиана равна половине стороны, то треугольник прямоугольный, и эта медиана проведена к гипотенузе.

Доказывать это утверждение мы не будем, а чтобы в него поверить, подумай сам: разве бывает какой-нибудь другой параллелограмм с равными диагоналями, кроме прямоугольника?

Нет, конечно! Ну вот, значит, и медиана может равняться половине стороны только в прямоугольном треугольнике.

Решение задач на свойства медианы в прямоугольном треугольнике

Давай посмотрим, как это свойство помогает решать задачи.

Задача №1:

В ( displaystyle Delta ABC) стороны ( displaystyle AC=5); ( displaystyle BC=12). Из вершины ( displaystyle C) проведена медиана ( displaystyle CN).

Найти ( displaystyle AB), если ( displaystyle AB=2CN).

Рисуем:

Сразу вспоминаем, это если ( displaystyle CN=frac{AB}{2}), то ( displaystyle angle ACB=90{}^circ )!

Ура! Можно применить теорему Пифагора!

Видишь, как здорово? Если бы мы не знали, что медиана равна половине стороны только в прямоугольном треугольнике, мы никак не могли бы решить эту задачу. А теперь можем!

Применяем теорему Пифагора:

( A{{B}^{2}}=A{{C}^{2}}+B{{C}^{2}})

( A{{B}^{2}}={{5}^{2}}+{{12}^{2}}=169)

Ответ: ( AB=13)

А в следующей задаче пусть у нас будет не одна, а целых три медианы! Как же они себя ведут?

Запомни очень важный факт:

Три медианы в треугольнике (любом!) пересекаются в одной точке и делятся этой точкой в отношении ( 2:1), считая от вершины.

Сложно? Смотри на рисунок:

Медианы ( displaystyle AM), ( displaystyle BN) и ( displaystyle CK) пересекаются в одной точке.

Запомни:

  • ( displaystyle AO) – вдвое больше, чем ( displaystyle OM);
  • ( displaystyle BO) – вдвое больше, чем ( displaystyle ON);
  • ( displaystyle CO) – вдвое больше, чем ( displaystyle OK).

Три медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении ( displaystyle 2:1 ), считая от вершины.

Что бы это такое значило? Посмотри на рисунок. На самом деле утверждений в этой теореме целых два. Ты это заметил?

1. Медианы треугольника пересекаются в одной точке.

2. Точкой пересечения медианы делятся в отношении ( displaystyle 2:1 ), считая от вершины.

Давай попробуем разгадать секрет этой теоремы, то есть доказать ее.

Доказательство теоремы о трех медианах треугольника

Сначала проведем не все три, а только две медианы. Они-то уж точно пересекутся, правда? Обозначим точку их пресечения буквой ( displaystyle E).

Соединим точки ( displaystyle N) и ( displaystyle K). Что получилось?

Конечно, ( displaystyle NK) – средняя линяя ( displaystyle triangle ABC). Ты помнишь, что это значит?

  • ( displaystyle NK) параллельна ( displaystyle AC);
  • ( displaystyle NK=frac{AC}{2}).

А теперь проведем ещё одну среднюю линию: отметим середину ( displaystyle AE) – поставим точку ( displaystyle F), отметим середину ( displaystyle EC) — поставим точку ( displaystyle G).

Теперь ( displaystyle FG) – средняя линия ( displaystyle triangle AEC). То есть:

  • ( displaystyle FG) параллельна ( displaystyle AC);
  • ( displaystyle FG=frac{AC}{2}).

Заметил совпадения? И ( displaystyle NK) , и ( displaystyle FG) – параллельны ( displaystyle AC). И ( displaystyle NK=frac{AC}{2}), и ( displaystyle FG=frac{AC}{2}).

Что из этого следует?

  • ( displaystyle NK) параллельна ( displaystyle FG);
  • ( displaystyle NK=FG)

Посмотри теперь на четырехугольник ( displaystyle NKGF). У какого четырехугольника противоположные стороны (( displaystyle NK) и ( displaystyle FG)) параллельны и равны?

Конечно же, только у параллелограмма!

Значит, ( displaystyle NKGF) – параллелограмм. Ну и что?

А давай вспомним свойства параллелограмма. Например, что тебе известно про диагонали параллелограмма? Правильно, они делятся точкой пересечения пополам.

Снова смотрим на рисунок.

Получилось что:

Бонусы: Вебинары из нашего курса подготовки к ЕГЭ по математике по треугольникам

Лучше всего смотреть это видео с ручкой и тетрадкой в руках. То есть ставьте видео на паузу и решайте задачи самостоятельно.

Помните, понимать и уметь решать — это два, совершенно разных навыка. Очень часто вы понимаете как решить задачу, но не можете это сделать. Или допускаете ошибки, или просто теряетесь и не можете найти ход решения.

Как с этим справиться?

Нужно решать много задач. Другого способа нет. Вы должны совершить свои ошибки, чтобы научиться их не допускать.

ЕГЭ №6 Равнобедренный треугольник, произвольный треугольник

В этом видео мы вспомним все свойства равнобедренных треугольников и научимся их применять в задачах из ЕГЭ. Очень часто все «проблемы» с решением задач на равнобедренный треугольник решаются построением высоты. Также мы научимся решать и «обычные» треугольники.

ЕГЭ №6 Прямоугольный треугольник, теорема Пифагора, тригонометрия

Большинство задач в планиметрии решается через прямоугольные треугольники. Как это так? Ведь далеко не в каждой задаче речь идёт о треугольниках вообще, не то что прямоугольных.

Но на уроках этой темы мы убедимся, что это действительно так. Дело в том, что редкая сложная задача решается какой-то одной теоремой — почти всегда она разбивается на несколько задач поменьше.

И в итоге мы имеем дело с треугольниками, зачастую — прямоугольными.

В этом видео мы научимся решать задачи о прямоугольных треугольниках из ЕГЭ, выучим все необходимые теоремы и затронем основы тригонометрии.

ЕГЭ №16. Подобие треугольников. Задачи н доказательство

Это одна из самых сложных задачи в профильном ЕГЭ. Полные 3 балла за эту задачу получают менее 1% выпускников!

Основная сложность – построение доказательств. Баллы здесь снимают за любой пропущенный шаг доказательства. Например, нам часто кажется очевидным, что треугольники на рисунке подобны и мы забываем указать, по какому признаку. И за это нам снимут баллы.

В этом видео вы научитесь применять подобие треугольников для доказательств, указывать признаки подобия и доказывать каждое умозаключение.

Вы научитесь правильно записывать решение задачи, сокращать записи чтобы не тратить время на выписывание всех своих мыслей или полных названий теорем.

Вы научитесь также применять подобие треугольников не только для доказательств, а и для расчётных задач.

Добавить комментарий