Как найти меньшую высоту треугольника 8 класс

ОлегТ
[31.3K]

более месяца назад 

Наименьшая высота CH будет проведена к большей стороне. Тогда AB = 7

По формуле площади треугольника: S = AB • CH / 2 = 7 • CH / 2

Откуда CH = 2 • S / 7

Надо найти площадь S, зная 3 стороны. Она ищется по формуле Герона

Найдем полупериметр p = (5 + 6 + 7) / 2 = 18 / 2 = 9

S = √(p • (p-a) • (p-b) • (p-c)) = √ ( 9 • (9-5) • (9-6) • (9-7))

S = √( 9 • 4 • 3 • 2) = 6•√6 см²

Получаем

CH = 2 • 6 • √6 / 7 ≈ 12 • 2,45 / 7 = 6 • 4,9 / 7 = 6 • 0,7 = 4,2 см

Ответ: 4,2 см

автор вопроса выбрал этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Наименьшая высота треугольника

Какая наименьшая высота у треугольника, какая — наибольшая? Как найти наименьшую (наибольшую) высоту треугольника, зная его площадь? Как найти наименьшую и наибольшую высоты по сторонам треугольника?

Площадь треугольника равна половине произведения стороны на проведенную к этой стороне высоту.

то есть произведение стороны на проведенную к ней высоту равны для каждой пары множителей:

наименьшая высота треугольника — та, которая проведена к его наибольшей стороне, а наибольшая высота треугольника — проведенная к наименьшей стороне.

Высота треугольника через его площадь равна частному от деления удвоенной площади на сторону, к которой эта высота проведена:

где p — полупериметр,

Значит, формулы для нахождения любой высоты треугольника по его сторонам

Формулы для нахождения высоты треугольника

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту в различных видах треугольников, а также разберем примеры решения задач для закрепления материала.

Нахождение высоты треугольника

Напомним, высота треугольника – это отрезок, проведенный перпендикулярно из вершины фигуры к противоположной стороне.

Высота в разностороннем треугольнике

Высоту треугольника abc, проведенного к стороне a, можно найти по формулам ниже:

1. Через площадь и длину стороны

где S – площадь треугольника.

2. Через длины всех сторон

где p – это полупериметр треугольника, который рассчитывается так:

3. Через длину прилежащей стороны и синус угла

4. Через стороны и радиус описанной окружности

где R – радиус описанной окружности.

Высота в равнобедренном треугольнике

Длина высоты ha, опущенной на основание a равнобедренного треугольника, рассчитывается по формуле:

Высота в прямоугольном треугольнике

Высота, проведенная к гипотенузе, может быть найдена:

1. Через длины отрезков, образованных на гипотенузе

2. Через стороны треугольника

Примечание: две остальные высоты в прямоугольном треугольнике являются его катетами.

Высота в равностороннем треугольнике

Для равностороннего треугольника со стороной a формула расчета высоты выглядит следующим образом:

Примеры задач

Задача 1
Найдите высоту треугольника, проведенную из вершины B к стороне AC, если известно, что AB = 7 см, а угол BAC = 45°.

Решение
В данном случае нам поможет формула для нахождения высоты через сторону и синус прилежащего угла:

Задача 2
Найдите длину основания равнобедренного треугольника, если высота, проведенная к нему, равняется 3 см, а боковые стороны – 5 см.

Решение
Вывести формулу для нахождения длины основания можно из формулы расчета высоты в равнобедренном треугольнике:

Найдите меньшую высоту треугольника если его стороны равны 9 см 12см 15 см

Меньшая высота треугольника — это высота, опущенная на большую сторону. Опустим высоту СО на сторону АВ.

В ΔАСО по т. Пифагора:
СО² = АС²-АО²
В ΔСОВ по т. Пифагора:
СО² = ВС²-ОВ²
Отсюда следует:
АС²-АО² = ВС²-ОВ²
пусть АО=х, тогда ОВ = 15-х;
9² — х² = 12² — (15-х)²
81 — x² = 144 — (225 — 30x + x²)
81 — x² = 144 — 225 + 30x — x²
30x = 81 — 144 + 225
30x = 162
x = 5,4 (см) — АО

СО² = АС²-АО²
СО² = 9²-5,4²
СО² = 81-29,16
СО² = 51,84
СО = √51,84 = 7,2 (см)

Ответ: 7,2 см.

[spoiler title=”источники:”]

[/spoiler]

Как найти наибольшую или наименьшую высоту треугольника? Чем меньше высота треугольника, тем больше проведенная к ней высота. То есть наибольшая из высот треугольника — та, которая проведена к его наименьшей стороне. Наименьшая высота — та, которая проведена к наибольшей из сторон треугольника.

Чтобы найти наибольшую высоту треугольника, можно площадь треугольника разделить на длину стороны, к которой проведена эта высота (то есть на длину наименьшей из сторон треугольника).

Соответственно, для нахождения наименьшей высоты треугольника можно площадь треугольника разделить на длину его наибольшей стороны.

Задача 1.

Найти наименьшую высоту треугольника, стороны которого равны 7 см, 8 см и 9 см.

nayti naimenshuyu vyisotu treugolnika

Дано:

∆ ABC,

AC=7 см, AB=8 см, BC=9 см.

Найти: наименьшую высоту треугольника.

Решение:

Наименьшая из высот треугольника — та, которая проведена к его наибольшей стороне. Значит, нужно найти высоту AF, проведенную к стороне BC.

kak nayti naimenshuyu vyisotu treugolnika

Для удобства записи введем обозначения

BC=a, AC=b, AB=c, AF=ha.

Высота треугольника равна частному от деления удвоенной площади треугольника на сторону, к которой эта высота проведена. Площадь треугольника по сторонам можно найти с помощью формулы Герона. Поэтому

    [{h_a} = frac{{2sqrt {p(p - a)(p - b)(p - c)} }}{a},]

где

    [p = frac{{a + b + c}}{2}.]

Вычисляем:

    [p = frac{{7 + 8 + 9}}{2} = 12(cm),]

    [{h_a} = frac{{2sqrt {12(12 - 9)(12 - 7)(12 - 8)} }}{9} = ]

    [ = frac{{2sqrt {12 cdot 3 cdot 5 cdot 4} }}{9} = frac{{2sqrt {36 cdot 5 cdot 4} }}{9} = ]

    [ = frac{{2 cdot 6 cdot 2sqrt 5 }}{9} = frac{{8sqrt 5 }}{3}(cm).]

Ответ:

    [frac{{8sqrt 5 }}{3}cm.]

Задача 2.

Найти наибольшую сторону треугольника со сторонами 1 см, 25 см и 30 см.

nayti naibolshuyu vyisotu treugolnika

Дано:

∆ ABC,

AC=25 см, AB=11 см, BC=30 см.

Найти:

наибольшую высоту треугольника ABC.

Решение:

kak nayti naibolshuyu vyisotu treugolnika

Наибольшая высота треугольника проведена к его наименьшей стороне.

Значит, нужно найти высоту CD, проведенную к стороне AB.

Для удобства обозначим

BC=a,

AC=b,

AB=c,

CD=hc.

    [{h_c} = frac{{2sqrt {p(p - a)(p - b)(p - c)} }}{c}.]

Вычисляем:

    [p = frac{{30 + 25 + 11}}{2} = 33(cm),]

    [{h_c} = frac{{2sqrt {33(33 - 30)(33 - 25)(33 - 11)} }}{{11}} = ]

    [ = {h_c} = frac{{2sqrt {33 cdot 3 cdot 8 cdot 22} }}{{11}} = frac{{2sqrt {3 cdot 11 cdot 3 cdot 4 cdot 2 cdot 2 cdot 11} }}{{11}} = ]

    [ = frac{{2 cdot 3 cdot 11 cdot 2 cdot 2}}{{11}} = 2 cdot 3 cdot 2 cdot 2 = 24(cm).]

Ответ: 24 см.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,653
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,912
  • разное
    16,901

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Напишите мини-сочинение на тему школьных дней (на английском), по плану вступление,преимущества(школы),недостатки(школы),итог. Используя данные выражения: Some of the advantages:

to become smarter, to develop your mind, to take part in school activities, to have good sports facilities, to have good and experienced teachers, to have interesting school traditions, to develop your imagination, to study interesting subjects, to learn new things, to prepare for adult life, to have a lot of friends, to enjoy school life and friendship…

Some of the disadvantages:

not to need so much knowledge, to have no time for sports and hobbies, to get up early in the morning every day, to be tired of doing homework, to work too hard, not to be allowed to do what you want to, to have boring lessons, to be afraid of some teachers, to have too many extra subjects, to worry about getting good marks, to have many tests, school has nothing to do with real life…

Добавить комментарий