Как найти место встречи двух тел формула

Как найти место встречи двух тел, если дано начальное расстояние между ними и их скорости?



Знаток

(384),
закрыт



12 лет назад

Styx

Гений

(83658)


12 лет назад

в физике такие задачи решают так начало отсчета-это самое главное !!!выбираете в начальном положении 1 машины
1) записываете ур движения 1 машины x1=100t
2) записываете координату второй машины- x2= 100-80(t-1/4)
3)в момент встречи у них x1=x2 решаете уравнение находите t? подставляете в любое x находите координату
графически строите графики x1(t) x2(t)/ в математике это y=kx +b- вся беда в ом, что математика у вас отдельно, а мухи отдельно!! ! время, при котором графики пересекаются и есть время встречи!! ! ВСЕ!!

Как найти место встречи двух тел

x = -3 + 2 * t – уравнение движение второго тела.

Необходимо найти время t и место встречи тел.

Для того, чтобы найти время встречи тел, приравняем оба уравнения (так как в месте встречи координаты х обоих тел будут одинаковы):

5 – 8 * t = -3 + 2 * t

2 * t + 8 * t = 5 + 3

Теперь найдем координату:

х = 5 – 8 * t = 5 – 8 * 0,8 = 5 – 6,4 = -1.4

Ответ: время встречи t = 0,8 секунд, место встречи х = -1,4.

  • 10 – 11 классы
  • Физика
  • 6 баллов

Найти место и время встречи двух тел 2 способами (графич. и аналит.)

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Ответ

Проверено экспертом

по графику видно: на расстоянии 16 метров через 4 секунды

Вопрос по физике:

Найти место и время
встречи двух тел 2 способами (графич. и аналит.)

Ответы и объяснения 2

Привет на это задаче 16 и 1000

Дано:
S1=2500м
S2=6000м
t1=40с
t2=20с
Найти место и время встречи двух тел.
решение:
Первое тело двигалось в правильном направлении по графику, второе тело двигалось в неправильном направлении по графику. Так первое тело проехало путь 2500м за 40с. Второе тело прошло путь 6000м за 20с. По графику видно, что они встретились в точке, где путь равен 1000м.
так навреное!

Знаете ответ? Поделитесь им!
Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не знаю» и так далее;
  • Использовать мат – это неуважительно по отношению к пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.
Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует? Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие вопросы в разделе Физика.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи – смело задавайте вопросы!

Физика — область естествознания: естественная наука о простейших и вместе с тем наиболее общих законах природы, о материи, её структуре и движении.

Уравнение координаты при равноускоренном прямолинейном движении

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а)

б)

в)

г)

По уравнениям движения двух тел х1 = 20t и х2 = 250 — 5t определите: а) место и время встречи этих тел;

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Физическую задачу в кинематике можно решить несколькими способами:

  •  аналитический — решение задачи основано на формулах (физических законах), которые связывают искомую величину и данные в условии задачи;
  •  графический — решение задачи осуществляется с помощью графика.

Основные закономерности графического способа решения задач по кинематике

1.1. График зависимости модуля скорости (v(t)) равномерного движения от времени — прямая линия, параллельная оси (OX) (рис. (1)).

geogebra-export (15).png

Рис. (1). График модуля скорости равномерного движения

Если изображается зависимость проекции скорости от времени (v_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

1.2. Модуль перемещения (или пройденный путь при одномерном прямолинейном движении) на графике (v(t)) в момент времени (t_1) будет равен площади фигуры (прямоугольника) под графиком модуля скорости (рис. (2)).

график2.PNG

Рис. (2). Определение модуля перемещения по графику скорости

2.1. График модуля перемещения (s(t)) для равномерного движения (рис. (3)) — прямая под углом ({alpha}) к оси времени: 

график_перемещения.PNG

Рис. (3). График модуля перемещения

Если изображается зависимость проекции перемещения от времени (s_x(t)), то возможны следующие варианты интерпретации:

а) график расположен над осью времени — тело движется в положительном направлении оси (OX);

б) график расположен под осью времени — тело движется в отрицательном направлении оси (OX).

2.2. Модуль скорости равномерного движения на графике модуля перемещения (s(t)) равен тангенсу угла (tgalpha) наклона прямой на графике (рис. (4)).

График_перемещения2.PNG

Рис. (4). Определение модуля скорости по графику модуля перемещения

Решение задачи аналитическим и графическим способами

Два катера, между которыми расстояние (30) м, равномерно движутся навстречу друг другу со значениями модулей скоростей υ1 (=) (2) м/с и υ2 (=) (4) м/c. Определи время встречи катеров. Какой путь успеет пройти первый катер до встречи?

Дано:

начальная координата первого катера —

x01

 (=) (0) м, а второго —

x02

 (=) (30) м.  

Вектор скорости первого катера (vec{v_1}) сонаправлен оси (OX), его проекция будет положительна ({v_1}_x > 0), а вектор скорости второго катера (vec{v_2}) направлен противоположно оси (OX), поэтому его проекция будет отрицательна: ({v_2}_x < 0) (рис. (5)).

задание.PNG

Рис. (5). Задача

Аналитический способ решения

1. Запишем уравнения движения тел, исходя из формулы (x(t) = x_0 + v_x(t – t_0)).

2. В момент встречи (t_{встр}) тела будут иметь одинаковую координату (x_1 = x_2):

2tвстр=30−4tвстр;6tвстр=30;[tвстр]=мм/с=c;tвстр=306=5c.

 — расчёт времени встречи катеров.

3. Для ответа на второй вопрос воспользуемся следующей формулой:  

L=υ1⋅tвстр;[L]=мc⋅c=м;L=2⋅5=10м.

 — расчёт пути, пройденного первым катером до момента встречи (t_{встр}).

Графический способ решения

1. Запишем для первого катера уравнение движения:

x1=0+2t=2t

.

2. Заполним таблицу значений (x(t)) для построения графика движения первого катера.

(x), м (0) (2) (4)
(t), с (0) (1) (2)

3. Запишем для второго катера уравнение движения:

x2=30−4t

.

4. Заполним таблицу значений (x(t)) для построения графика движения второго катера.

(x), м (30) (26) (22)
(t), с (0) (1) (2)

5. Построим графики движений двух катеров.

анал играф.png

Рис. (6). График движения катеров

6. Находим по графику (рис. (6)):

а) время встречи (точка пересечения)

tвстр

 (=) (5) c;

б) путь, пройденный первым катером, равен изменению координаты (L) (=) (x(t_{встр})) 

x01

(=) (10) м.

Ответ: (5) с; (10) м.

Источники:

Рис. 1. График модуля скорости равномерного движения. © ЯКласс.

Рис. 2. Определение модуля перемещения по графику скорости. © ЯКласс.

Рис. 3. График модуля перемещения. © ЯКласс.

Рис. 4. Определение модуля скорости по графику модуля перемещения. © ЯКласс.

Рис. 5. Задача. © ЯКласс.

Рис. 6. График движения катеров. © ЯКласс.

2.2.1 Как перевести из км/ч в м/с и т. д?

В задачах часто необходимо переводить из одних единиц измерения в другие:

1 км/ч = (1000 м)/(3600 с) = 5/18 м/с,

1 м/с = 18/5 км/ч,

1 км/с = 1000 м/с,

1 см/с = 0,01 м/с,

1 м/мин = 1/60 м/с.

Например, если nu =36км/ч, то для того, чтобы перевести в м/с, нужно умножить на 5/18:

36 км/ч=36 умножить на дробь: числитель: 5, знаменатель: 18 конец дроби =10 м/с.

2.2.2 Как найти скорость тела, если известен закон движения?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Видим, что в этой формуле скорость стоит коэффициентом перед временем. Поэтому, если в условии задачи дан закон движения, необходимо посмотреть на коэффициент перед t — это и есть скорость.

Например, пусть закон движения имеет вид: x=3 плюс 5t. В данном случае коэффициент перед t равен 5, следовательно, nu_x=5 м/с.

2.2.3 Как определить скорость по графику координаты от времени?

Закон равномерного движения имеет вид:

x=x_0 плюс nu_x t.

Графиком этого закона является прямая линия. Так как nu_x — коэффициент перед t, то nu_x является угловым коэффициентом прямой.

Для графика 1:

nu_x_1= левая круглая скобка Delta x_1 правая круглая скобка / левая круглая скобка Delta t_1 правая круглая скобка .

То, что график 1 «поднимается вверх», означает — тело едет в положительном направлении оси Ox.

Для графика 2:

nu_x_2= левая круглая скобка Delta x_2 правая круглая скобка / левая круглая скобка Delta t_2 правая круглая скобка .

То, что график 2 «опускается вниз», означает — тело едет в отрицательном направлении оси Ox.

Для определения Delta x и Delta t выбираем такие точки на графике, в которых можно точно определить значения, как правило, это точки, находящиеся в вершинах клеток.

2.2.4 Как найти закон движения, если известны координаты тела в моменты времени t_1 и t_2?

Пусть в момент времени t_1 тело находилось в точке с координатой x_1, а в момент времени t_2 тело находилось в точке с координатой x_2.

Для времени t_1 имеем:

x_1=x_0 плюс nu_x t_1.

Для времени t_2 имеем:

x_2=x_0 плюс nu_x t_2.

Решая систему уравнений (2.19) и (2.20), получим

nu_x= дробь: числитель: x_1 минус x_2, знаменатель: t_1 минус t_2 конец дроби , x_0= дробь: числитель: x_2 t_1 минус x_1 t_2, знаменатель: t_1 минус t_2 конец дроби .

2.2.5 Как найти графически момент и координату встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu _x_2 t. Согласно пункту 2.5 графиками обоих законов являются прямые линии. Необходимо на одном графике построить оба закона.

Графики пересекаются в одной точке. Координаты этой точки и являются временем и местом встречи.

2.2.6 Как аналитически найти координату и время встречи двух тел?

Пусть даны законы движения двух тел: x_1=x_01 плюс nu_x_1 t и x_2=x_02 плюс nu_x_2 t. В момент встречи тела оказываются в одной координате, то есть x_1=x_2, и необходимо решить уравнение:

x_01 плюс nu_x_1 t=x_02 плюс nu_x_2 t.

Решение уравнения имеет вид:

t_встр= дробь: числитель: |x_01 минус x_02|, знаменатель: |nu_x_1 минус nu_x_2| конец дроби .

Для нахождения координаты достаточно подставить вместо t найденное значение  t_встр в любой из законов движения:

x_встр=x_01 плюс nu_x_1 t_встр,

или

x_встр=x_02 плюс nu_x_2 t_встр.

2.2.7 Как найти среднюю скорость, если тело половину пути проехало со скоростью nu_1, а вторую половину пути nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как на каждой половине пути тело едет с постоянной скоростью, то

t=t_1 плюс t_2= дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_1 конец дроби 	 плюс дробь: числитель: дробь: числитель: L, знаменатель: 2 конец дроби , знаменатель: nu_2 конец дроби = дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби

Получаем

nu_ср= дробь: числитель: L, знаменатель: дробь: числитель: L, знаменатель: 2 конец дроби левая круглая скобка дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 правая круглая скобка конец дроби конец дроби = дробь: числитель: 2nu_1nu_2, знаменатель: nu_1 плюс nu_2 конец дроби .

В общем случае, если весь путь разбить на n равных участков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: n, знаменатель: дробь: числитель: 1, знаменатель: nu_1 конец дроби плюс дробь: числитель: 1, знаменатель: nu_2 конец дроби плюс дробь: числитель: 1, знаменатель: nu_3 конец дроби плюс ... плюс дробь: числитель: 1, знаменатель: nu_n конец дроби конец дроби .

Формула справедлива только если весь путь разбит на равные участки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.8 Как найти среднюю скорость, если тело половину времени проехало со скоростью nu_1, а вторую половину времени nu_2?

По определению (2.8):

nu_ср= дробь: числитель: L, знаменатель: t конец дроби .

В нашем случае, так как каждую половину времени тело едет с постоянной скоростью, то

L=L_1 плюс L_2= дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2.

Получаем

nu_ср= дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби nu_1 плюс дробь: числитель: t, знаменатель: 2 конец дроби nu_2, знаменатель: t конец дроби = дробь: числитель: дробь: числитель: t, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка , знаменатель: t конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_1 плюс nu_2 правая круглая скобка .

В общем случае, если все время разбито на n равных промежутков, на каждом из которых тело едет с постоянной скоростью, то

nu_ср= дробь: числитель: 1, знаменатель: n конец дроби левая круглая скобка nu_1 плюс nu_2 плюс nu _3 плюс ⋯ плюс nu _4 правая круглая скобка .

Формула справедлива только если все время разбито на равные промежутки. Если же разбиение будет иное, то, естественно, формула для нахождения средней скорости, будет иной.

2.2.9 Как найти скорость, с которой движется моторная лодка по течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

При движении по течению вектора overrightarrownu_0 и vecu направлены в одну сторону, следовательно, получаем сложение двух векторов, направленных в одну сторону — используем формулу (1.15):

nu =nu_0 плюс u.

Таким образом, при движении любого тела по течению его скорость определяется формулой nu =nu_0 плюс u.

2.2.10 Как найти скорость, с которой движется моторная лодка против течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли) равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

Перепишем формулу в виде:

vecnu=overrightarrownu_0 минус левая круглая скобка минус vecnu правая круглая скобка .

Вектора overrightarrownu_0 и  левая круглая скобка минус vecnu правая круглая скобка направлены в одну сторону, следовательно, получаем вычитание двух векторов, направленных в одну сторону — используем формулу c=|a минус b|:

nu =nu_0 минус u.

2.2.11 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена перпендикулярно течению реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecnu

В данном случае вектора overrightarrownu_0 и vecnu направлены перпендикулярно, следовательно, получаем задачу о сложении взаимно перпендикулярных векторов — используем формулу c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате .

2.2.12 Как найти расстояние, на которое снесет лодку, если ее скорость направлена перпендикулярно скорости реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OD. В результате, когда тело окажется на противоположном берегу, оно попадет в точке D, и его снесет на длину CD=S.

Треугольник OAB подобен треугольнику OCD:

 дробь: числитель: CD, знаменатель: AB конец дроби = дробь: числитель: OC, знаменатель: OA конец дроби Rightarrow дробь: числитель: S, знаменатель: u конец дроби = дробь: числитель: h, знаменатель: nu_0 конец дроби Rightarrow S=h дробь: числитель: u, знаменатель: nu_0 конец дроби .

2.2.13 Как найти скорость, с которой движется моторная лодка, если ее скорость направлена под углом φ к скорости течения реки?

Согласно формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно неподвижной системы отсчета nu (в нашем случае земли), равна векторной сумме скорости подвижной системы отсчета u (в нашем случае — скорость реки) и скорости в подвижной системе отсчета nu_0 (в нашем случае — собственная скорость лодки).

vecnu=overrightarrownu_0 плюс vecu.

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. Как видим, получили треугольник, в котором известен один из углов — левая круглая скобка 180 градусов минус фи правая круглая скобка . Тогда по теореме косинусов:

nu = корень из: начало аргумента: nu_0 конец аргумента в квадрате плюс u в квадрате минус 2nu _0 u косинус ⁡ левая круглая скобка 180 градусов минус фи правая круглая скобка = корень из: начало аргумента: nu _0 конец аргумента в квадрате плюс u в квадрате плюс 2nu_0 u косинус ⁡ фи .

2.2.14 Как найти расстояние, на которое снесет лодку, если ее скорость направлена под углом  фи к скорости течения реки?

В результате сложения скоростей по формуле vecnu=overrightarrownu_0 плюс vecu скорость тела относительно земли равна vecnu и направлена по прямой OB. В результате, когда тело окажется на противоположном берегу, оно попадет в точке В, и его снесет на длину АВ=S.

В задачах, когда движение происходит в плоскости, то есть и вдоль оси Ox, и вдоль оси Oy, необходимо введение системы координат для того, чтобы упростить рассмотрение задачи.

Проекция nu_x:

nu_x=nu _0 косинус ⁡ фи плюс u.

Проекция nu_y:

nu _y=nu_0 синус ⁡ фи .

Формулы nu_x=nu _0 косинус ⁡ фи плюс u и nu _y=nu_0 синус ⁡ фи не просто результат математической операции нахождения проекции, nu_x и nu_y имеют физический смысл: со скоростью nu_x тело плывет вдоль оси Ox, то есть по течению; со скоростью nu_y тело переплывает реку. Например, время, за которое тело переплывет реку, можно найти просто поделив ширину реки на nu_y:

t_0= дробь: числитель: h, знаменатель: nu_y конец дроби = дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби .

Тогда

S=nu_xt_0= дробь: числитель: h, знаменатель: nu_0 синус фи конец дроби левая круглая скобка nu_0 косинус фи плюс u правая круглая скобка .

2.2.15 Под каким углом α нужно направить собственную скорость лодки, чтобы за минимальное время переплыть реку?

Согласно формуле nu _y=nu_0 синус ⁡ фи скорость, с которой лодка переплывает реку, равна:

nu_y=nu_0 синус ⁡ фи .

Очевидно, что время будет минимальным, если nu_y будет максимальным, то есть  фи =90 градусов= дробь: числитель: Пи , знаменатель: 2 конец дроби .

2.2.16 С какой скоростью машина обгоняет вторую машину, если они движутся в одну сторону?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина также движется вправо со скоростью overrightarrownu_2. Скорость обгона — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как overrightarrownu_1 и overrightarrownu_2 направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_обгона=nu_1 минус nu_2.

Заметим, что при обгоне, естественно nu_1 больше nu_2, поэтому nu_обгона больше 0.

2.2.17 За какое время проедут мимо друг друга два поезда, двигающиеся в одном направлении?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_обгона конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 минус nu_2 конец дроби .

2.2.18 С какой скоростью машина едет навстречу вторую машину, если они движутся в противоположных направлениях?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется влево со скоростью overrightarrownu_2. Скорость движения навстречу — это скорость, с которой 1-ая машина движется относительно 2-ой, то есть — это относительная скорость, и она определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Перепишем эту формулу в виде:

overrightarrownu_отн=overrightarrownu_1 минус левая круглая скобка минус overrightarrownu_2 правая круглая скобка .

Так как overrightarrownu_1 и  левая круглая скобка минус overrightarrownu_2 правая круглая скобка направлены в одну сторону, то получили задачу о вычитании векторов, направленных в одну сторону — формула c=|a минус b|:

nu_встр=nu_1 минус левая круглая скобка минус nu_2 правая круглая скобка =nu_1 плюс nu_2.

2.2.19 За какое время проедут мимо друг друга два поезда, двигающиеся в противоположных направлениях?

Пусть длина 1-го поезда L_1, а скорость 2-го поезда L_2. Скорость обгона определяется формулой nu_обгона=nu_1 минус nu_2. Тогда

t= дробь: числитель: L_1 плюс L_2, знаменатель: nu_встр конец дроби = дробь: числитель: L_1 плюс L_2, знаменатель: nu_1 плюс nu_2 конец дроби .

2.2.20 Как найти относительную скорость, если тела движутся по взаимно перпендикулярным направлениям?

Пусть 1-ая машина движется вправо со скоростью overrightarrownu_1, а 2-ая машина движется перпендикулярно первой со скоростью overrightarrownu_2. Относительная скорость определяется формулой c=|a минус b|:

overrightarrownu_отн=overrightarrownu_1 минус overrightarrownu_2.

Так как вектора overrightarrownu_1 и overrightarrownu_2 перпендикулярны, то воспользуемся формулой c= корень из: начало аргумента: a в степени левая круглая скобка 2 конец аргумента плюс b в квадрате правая круглая скобка :

nu_отн= корень из: начало аргумента: nu_1 конец аргумента в квадрате плюс nu_2 в квадрате .

Определение и формулы

Уравнение координаты — зависимость координаты тела от времени:

x = x(t)

Уравнение координаты при равноускоренном прямолинейном движении:

x0 — координата тела в начальный момент времени, v0x —проекция начальной скорости на ось ОХ, ax —проекция ускорения на ось ОХ, x — координата тела в момент времени t

Зная уравнение координаты, можно определить координату тела в любой момент времени.

Пример №1. Движение автомобиля задано уравнением:

Определить начальное положение автомобиля относительно тела отсчета, его начальную скорость и ускорение. Также найти положение тела относительно тела отсчета в момент времени t = 10 c.

Уравнение координаты — это многочлен. В уравнении выше оно включает в себя только 2 многочлена. Первый — 15 — соответствует начальной координате тела. Поэтому x0 = 15. Коэффициент перед квадратом времени второго многочлена соответствует ускорению тела. Поэтому a = 5 м/с2. Второй многочлен отсутствует. Это значит, что коэффициент перед t равен 0. Поэтому начальная скорость тела равна нулю: v0 = 0 м/с.

В момент времени t = 10 c координата автомобиля равна:

Совместное движение двух тел

Иногда в одной системе отсчета рассматривается движение сразу двух тел. В этом случае движение каждого тела задается своим уравнением. Эти уравнения используются для нахождения различных параметров движения этих тел. Такой способ решения задач называется аналитическим.

Аналитический способ решения задачи на совместное движение тел

Чтобы найти место встречи двух тел, нужно:

  1. Построить уравнения зависимости x(t) обоих тел: x1(t) и x2(t).
  2. Построить уравнение вида x1 = x2.
  3. Найти время встречи двух тел tвстр.
  4. Подставить найденной время в любое из уравнений x1(t) или x2(t), чтобы вычислить координату xвстрч.

Пример №2. По одному направлению из одной точки начали двигаться два тела. Первое тело движется прямолинейно и равномерно со скоростью 3 м/с. Второе тело — равноускорено с ускорением 1 м/с2 без начальной скорости. Определите, через какое время второе тело догонит первое. Вычислите, на каком расстоянии от тела отсчета это произойдет.

Составим уравнения для движения каждого из тел:

Приравняем правые части этих уравнений и найдем время t:

Отсюда t1 = 0 с, а t2 = 6 с. Первый корень нам не подходит — из условия задачи уже было понятно, что тела начали движение одновременно. Снова они встрется, когда пройдет 6 секунд.

Чтобы найти, какое расстояние они пройдут за это время, подставим известное время в любое из уравнений:

x = 3t = 3∙6 = 18 (м).

Графический способ решения задачи на совместное движение тел

Существует графический способ решения данной задачи. Для этого нужно:

  1. Построить графики x1(t) и x2(t).
  2. Найти точку пересечения графиков.
  3. Пустить перпендикуляр из этой точки к оси ОХ.
  4. Значение точки пересечения — координата места пересечения двух тел.

Таким способом можно определить, в какое время произойдет встреча двух тел. Нужно лишь провести перпендикуляр к оси времени после построения графиков перемещений.

Графический способ решения задач требует высокой точности построения графиков. Поэтому он применяется редко!

Если в одной системе описывается движение двух тел, и одно тело начинает движение с опозданием tзапазд, то его уравнение координаты принимает вид:

Пример №3. Мальчики соревнуются в беге. По команде «Старт!» Миша побежал с ускорением 1 м/с2 и через 4 секунды достиг максимальной скорости, с которой дальше продолжил движение. Саша отреагировал с опозданием и начал движение спустя 1 с после команды с ускорением 1,5 м/с2, достигнув максимальной скорости через 3 секунды. Найти время, через которое Саша догонит Мишу.

Если Саша догонит Мишу до того, как мальчики станут двигаться с равномерной скоростью, уравнение движения с равномерной скоростью можно игнорировать. Если это так, то корнем уравнения будет время, не превышающее 4 с (через столько времени оба мальчика начнут двигаться равномерно).

В таком случае составим уравнения только для тех участков пути, на которых мальчики двигались равноускорено:

Приравняем правые части уравнений и вычислим t:

В результате получаем два корня: t1 = 0,6 с, а t2 = 3,4 с. Первый корень не подходит, так как в это время Саша еще не начал движение. Второй корень подходит, так как он меньше 4 с. Значит, Саша догонит Мишу через 3,4 с после того, как Миша начнет движение.

Задание EF18609

Материальная точка движется прямолинейно с постоянным ускорением. График зависимости её координаты от времени x=x(t) изображён на рисунке.

В момент времени t=0 проекции её скорости υx и ускорения ax на ось Ох удовлетворяют соотношениям:

а)

б)

в)

г)


Алгоритм решения

  1. Определить характер движения материальной точки.
  2. Записать уравнение координаты материальной точки.
  3. С помощью графика зависимости координаты от времени и уравнения координаты определить проекции искомых величин.

Решение

Графиком зависимости координаты от времени является парабола. Такой график соответствует равноускоренному прямолинейному движению. Уравнение координаты при равноускоренном прямолинейном движении имеет вид:

Ветви параболы смотрят вверх. Это значит, что коэффициент перед квадратом переменной величины (времени) стоит положительный коэффициент. Следовательно, ax>0. Поэтому варианты «б» и «г» исключаются. Остается выяснить, чему равна скорость: она равна нулю (как в ответе «а») или меньше нуля (как в ответе «в»)?

Моменту времени t=0 соответствует точка, являющая вершиной параболы. Когда ветви параболы смотрят вверх, в ее вершине скорость тела всегда равна нулю, так как эта точка лежит на границе между отрицательной и положительной скоростью. Отсюда делаем вывод, что верный ответ «а».Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17682

Мимо остановки по прямой улице с постоянной  скоростью проезжает грузовик. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/с2, и догоняет грузовик на расстоянии 150 м от остановки. Чему равна скорость грузовика?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать уравнение движения грузовика и преобразовать его с учетом условий задачи.
  3. Выразить скорость грузовика из уравнения его движения.
  4. Записать уравнение движения мотоциклиста.
  5. Найти время встречи мотоциклиста и грузовика из уравнения движения мотоциклиста.
  6. Подставить время в формулу скорости грузовика и вычислить ее.

Решение

Исходные данные:

  • Координата встречи грузовика и мотоциклиста: x = 150 м.
  • Время запаздывания мотоциклиста: tзапазд = 5 с.
  • Ускорение, с которым мотоциклист начал движение: a = 3 м/с2.

Запишем уравнение движения грузовика:

Так как начальная координата равна нулю, это уравнение примет вид:

Отсюда скорость движения грузовика равна:

Запишем уравнение движения мотоциклиста:

Так как начальная координата равна нулю, начальная скорость тоже нулевая, и мотоциклист начал движение позже грузовика, это уравнение примет вид:

Найдем время, через которое грузовик и мотоциклист встретились:

Подставим найденное время встречи в формулу для вычисления проекции скорости грузовика:

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 14.7k

Добавить комментарий