Как найти мгновенную скорость на графике зависимости

1. Мгновенная скорость

В этом параграфе мы будем рассматривать неравномерное движение. Однако при этом нам пригодится то, что мы знаем о прямолинейном равномерном движении.

На рисунке 4.1 показаны положения разгоняющегося автомобиля на прямом шоссе с интервалом времени 1 с. Стрелка указывает на зеркальце заднего вида, положение которого мы рассмотрим далее более подробно.

Неравномерное движение

Мы видим, что за равные интервалы времени автомобиль проходит разные пути, то есть движется неравномерно.

Уменьшим теперь последовательные интервалы времени в 20 раз – до 0,05 с – и проследим за изменением положения автомобиля в течение половины секунды (это нетрудно сделать, например, с помощью видеосъемки).

Чтобы не загромождать рисунок 4.2, на нем изображены только два положения автомобиля с промежутком времени 0,5 с. Последовательные положения автомобиля с интервалом 0,05 с отмечены положением его зеркальца заднего вида (показано красным цветом).

Мгновенная скорость

Мы видим, что когда последовательные равные промежутки времени достаточно малы, то пути, проходимые автомобилем за эти промежутки времени, практически одинаковы. А это означает, что движение автомобиля в течение столь малых промежутков времени можно с хорошей точностью считать прямолинейным равномерным.

Оказывается, этим замечательным свойством обладает любое движение (даже криволинейное): если рассматривать его за достаточно малый промежуток времени Δt, оно очень похоже на прямолинейное равномерное движение! Причем чем меньше промежуток времени, тем больше это сходство.

Скорость тела за достаточно малый промежуток времени и называют его скоростью в данный момент времени t, если этот момент времени находится в промежутке Δt. А более точное ее название – мгновенная скорость.

Насколько малым должен быть промежуток времени Δt, чтобы в течение этого промежутка движение тела можно было считать прямолинейным равномерным, зависит от характера движения тела.

В случае разгона автомобиля это доли секунды. А, например, движение Земли вокруг Солнца можно с хорошей точностью считать прямолинейным и равномерным даже в течение суток, хотя Земля за это время пролетает в космосе больше двух с половиной миллионов километров!

Говоря далее о скорости, мы будем (если это особо не оговорено) подразумевать обычно мгновенную скорость.

? 1. По рисунку 4.2 определите мгновенную скорость автомобиля. Длину автомобиля примите равной 5 м.

Значение мгновенной скорости автомобиля показывает спидометр (рис. 4.3).

Спидометр

Как найти мгновенную скорость по графику зависимости координаты от времени

На рисунке 4.4 изображен график зависимости координаты от времени для автомобиля, который движется по прямолинейному шоссе.

График зависимости координаты от времени

Мы видим, что он движется неравномерно, потому что график зависимости его координаты от времени – это кривая, а не отрезок прямой.

Покажем, как определить по этому графику мгновенную скорость автомобиля в какой-либо момент времени – скажем, при t = 3 с (точка на графике).

Для этого рассмотрим движение автомобиля за столь малый промежуток времени, в течение которого его движение можно считать прямолинейным равномерным.

На рисунке 4.5 показан интересующий нас участок графика при десятикратном увеличении (см., например, шкалу времени).

Увеличенный график зависимости координаты от времени

Мы видим, что этот участок графика практически неотличим от отрезка прямой (красный отрезок). За последовательные равные промежутки времени по 0,1 с автомобиль проходит практически одинаковые расстояния – по 1 м.

2. Чему равна мгновенная скорость автомобиля в момент t = 3 с?

Возвращаясь к прежнему масштабу чертежа, мы увидим, что прямая красного цвета, с которой практически совпадал малый участок графика, – касательная к графику зависимости координаты от времени в данный момент времени (рис. 4.6).

Касательная к графику зависимости координаты от времени

Итак, о мгновенной скорости тела можно судить по угловому коэффициенту касательной к графику зависимости координаты от времени: чем больше угловой коэффициент касательной, тем больше скорость тела. (Описанный способ определения мгновенной скорости с помощью касательной к графику зависимости координаты от времени связан с понятием производной функции. Это понятие вы будете изучать в курсе «Алгебра и начала аиализа».) А в тех точках графика, где угол наклона касательной равен нулю, то есть касательная параллельна оси времени t, мгновенная скорость тела равна нулю.

? 3. Рассмотрите рисунок 4.6.
а) В каких точках графика угол наклона касательной наибольший? наименьший?
б) Найдите наибольшую и наименьшую мгновенную скорость автомобиля в течение первых 6 с его движения.

2. Средняя скорость

Во многих задачах используют среднюю скорость, связанную с пройденным путем:

vср = l/t.     (1)

Определенная таким образом средняя скорость является скалярной величиной, так как путь – это скалярная величина. (Иногда во избежание недоразумений ее называют средней путевой скоростью.)

Например, если автомобиль в течение трех часов проехал по городу 120 км (при этом он мог разгоняться, тормозить и стоять на перекрестках), то его средняя скорость равна 40 км/ч.

? 4. Насколько уменьшится средняя скорость только что упомянутого автомобиля, если из-за остановок в пробках общее время движения увеличится на 1 ч?

Средняя скорость на двух участках движения

Во многих задачах рассматривается движение тела на двух участках, на каждом из которых движение можно считать равномерным. В таком случае, согласно определению средней скорости (1), можно записать:

vср = (l1 + l2)/(t1 + t2),     (2)

где l1 и t1 – путь и время для первого участка, а l2 и t2 – для второго. Рассмотрим примеры.
Саша выехал из поселка на велосипеде со скоростью 15 км/ч и ехал в течение часа. А потом велосипед сломался, и Саша еще час шел пешком со скоростью 5 км/ч.

? 5. Найдите:
а) путь, пройденный Сашей за все время движения;
б) общее время движения Саши;
в) среднюю скорость Саши.

В рассмотренном случае средняя скорость оказалась равной среднему арифметическому скоростей, с которыми Саша ехал и шел. Всегда ли это справедливо? Рассмотрим следующий пример.
Пусть Саша ехал на велосипеде в течение часа со скоростью 15 км/ч, а потом прошел такое же расстояние пешком со скоростью 5 км/ч.

? 6. Найдите:
а) путь, который Саша прошел пешком;
б) путь, пройденный Сашей за все время движения;
в) общее время движения Саши;
б) среднюю скорость Саши.

Рассмотрев этот случай, вы увидите, что на этот раз средняя скорость не равна среднему арифметическому скоростей езды и ходьбы. А если присмотреться еще внимательнее, то можно заметить, что во втором случае средняя скорость меньше, чем в первом. Почему?

? 7. Сравните промежутки времени, в течение которых Саша ехал и шел пешком в первом и втором случаях.

Обобщим рассмотренные выше ситуации.

Рассмотрим сначала случай, когда тело двигалось с разными скоростями в течение равных промежутков времени.

Пусть первую половину всего времени движения тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Можно ли найти среднюю скорость движения на всем участке, если не известны ни общее время движения, ни путь, пройденный телом за все время движения?

Можно: для этого введем обозначения для всех нужных нам величин независимо от того, известны они или неизвестны. Это распространенный прием при решении многих задач.

Обозначим все время движения t, весь путь l, а пути, пройденные за первую и вторую половину времени движения, обозначим соответственно) l1 и l2.

? 8. Выразите через v1, v2 и t:
a) l1 и l2; б) l; в) среднюю скорость.

Найдя ответы на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках с разными скоростями в течение равных промежутков времени, то его средняя скорость на всем пути равна среднему арифметическому скоростей движения на двух участках.

Рассмотрим теперь случай, когда тело двигалось с разными скоростями первую и вторую половину пути.

Пусть теперь первую половину всего пути тело двигалось со скоростью v1, а вторую половину – со скоростью v2. Обозначим снова все время движения t, весь путь l, а промежутки времени, в течение которых тело двигалось на первом и втором участке, обозначим соответственно t1 и t2.

? 9. Выразите через v1, v2 и l:
а) t1 и t2; б) t; в) среднюю скорость.

Ответив на эти вопросы, вы узнаете, справедливо ли в общем случае утверждение: если тело двигалось на двух участках равной длины с разными скоростями, то его средняя скорость на всем пути не равна среднему арифметическому этих скоростей.

? 10. Докажите, что средняя скорость тела, которое двигалось на двух участках равной длины с разными скоростями, меньше, чем если бы оно двигалось на двух участках с теми же скоростями в течение равных промежутков времени.
Подсказка. Выразите для каждого из двух случаев среднюю скорость через скорости на первом и втором участках и сравните полученные выражения.

? 11. На первом участке пути тело двигалось со скоростью v1, а на втором – со скоростью v2. Чему равно отношение длин этих участков, если средняя скорость движения оказалась равной среднему арифметическому v1 и v2?

Дополнительные вопросы и задания

12. Одну треть всего времени движения поезд ехал со скоростью v1, а оставшееся время – со скоростью v2.
а) Выразите пройденный поездом путь через v1, v2 и все время движения t.
б) Выразите среднюю скорость поезда через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 60 км/ч, v2 = 90 км/ч.

13. Автомобиль ехал три четверти всего пути со скоростью v1, а оставшийся участок пути – со скоростью v2.
а) Выразите все время движения автомобиля через v1, v2 и весь пройденный путь l.
б) Выразите среднюю скорость движения автомобиля через v1 и v2.
в) Найдите числовое значение средней скорости при v1 = 80 км/ч, v2 = 100 км/ч.

14. Автомобиль ехал 2 ч со скоростью 60 км/ч. Сколько времени после этого он должен ехать со скоростью 80 км/ч, чтобы его средняя скорость на всем пути стала равной 66,7 км/ч?

15. Перенесите в тетрадь (по клеточкам) график зависимости координаты автомобиля от времени, изображенный на рисунке 4.4. Считайте, что автомобиль едет вдоль оси x.
а) Определите графически среднюю скорость за 6 с.
б) Используя касательную, определите, в какие примерно моменты времени мгновенная скорость автомобиля была равна его средней скорости за 6 с.

16. Тело движется вдоль оси x. Зависимость координаты тела от времени выражается формулой x = 0,2 * t2.
а) Выберите удобный масштаб и изобразите график зависимости x(t) в течение первых 6 с.
б) С помощью этого графика найдите момент времени, в который мгновенная скорость тела была равна средней скорости за все время движения.


Загрузить PDF


Загрузить PDF

Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]

  1. Изображение с названием Calculate Instantaneous Velocity Step 1

    1

    Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
    то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
    Например:

    s = -1.5t2 + 10t + 4

    • В этом уравнении:
      Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 – 7 = 3 м (а на 10 + 7 = 17 м).
      Время = t. Обычно измеряется в секундах.
  2. Изображение с названием Calculate Instantaneous Velocity Step 2

    2

    Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.

    • Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:

      s = -1.5t2 + 10t + 4
      (2)-1.5t(2-1) + (1)10t1 – 1 + (0)4t0
      -3t1 + 10t0
      -3t + 10

  3. Изображение с названием Calculate Instantaneous Velocity Step 3

    3

    Замените “s” на “ds/dt”, чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.

    • В нашем примере уравнение производной должно выглядеть следующим образом:

      ds/dt = -3t + 10

  4. Изображение с названием Calculate Instantaneous Velocity Step 4

    4

    В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
    Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 м/с

    • Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 5

    1

    Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
    Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.

    • По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
    • График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
  2. Изображение с названием Calculate Instantaneous Velocity Step 6

    2

    Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.

    • Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
  3. Изображение с названием Calculate Instantaneous Velocity Step 7

    3

    Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ – yP)/(xQ – xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:

    H = (yQ – yP)/(xQ – xP)
    H = (7 – 3)/(4 – 1)
    H = (4)/(3) = 1.33

  4. Изображение с названием Calculate Instantaneous Velocity Step 8

    4

    Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):

    Q = (2,4.8): H = (4.8 – 3)/(2 – 1)
    H = (1.8)/(1) = 1.8

    Q = (1.5,3.95): H = (3.95 – 3)/(1.5 – 1)
    H = (.95)/(.5) = 1.9

    Q = (1.25,3.49): H = (3.49 – 3)/(1.25 – 1)
    H = (.49)/(.25) = 1.96

  5. Изображение с названием Calculate Instantaneous Velocity Step 9

    5

    Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.

    • В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
    • Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).

    Реклама

  1. Изображение с названием Calculate Instantaneous Velocity Step 10

    1

    Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 – 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).

    • Сначала вычислим производную этого уравнения:

      s = 5t3 – 3t2 + 2t + 9
      s = (3)5t(3 – 1) – (2)3t(2 – 1) + (1)2t(1 – 1) + (0)9t0 – 1
      15t(2) – 6t(1) + 2t(0)
      15t(2) – 6t + 2

    • Теперь подставим в уравнение производной значение t = 4:

      s = 15t(2) – 6t + 2
      15(4)(2) – 6(4) + 2
      15(16) – 6(4) + 2
      240 – 24 + 2 = 22 м/с

  2. Изображение с названием Calculate Instantaneous Velocity Step 11

    2

    Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 – t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.

    • Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.

      s = 4t2 – t

      t = 2: s = 4(2)2 – (2)
      4(4) – 2 = 16 – 2 = 14, so Q = (2,14)

      t = 1.5: s = 4(1.5)2 – (1.5)
      4(2.25) – 1.5 = 9 – 1.5 = 7.5, so Q = (1.5,7.5)

      t = 1.1: s = 4(1.1)2 – (1.1)
      4(1.21) – 1.1 = 4.84 – 1.1 = 3.74, so Q = (1.1,3.74)

      t = 1.01: s = 4(1.01)2 – (1.01)
      4(1.0201) – 1.01 = 4.0804 – 1.01 = 3.0704, so Q = (1.01,3.0704)

    • Теперь вычислим H:

      Q = (2,14): H = (14 – 3)/(2 – 1)
      H = (11)/(1) = 11

      Q = (1.5,7.5): H = (7.5 – 3)/(1.5 – 1)
      H = (4.5)/(.5) = 9

      Q = (1.1,3.74): H = (3.74 – 3)/(1.1 – 1)
      H = (.74)/(.1) = 7.3

      Q = (1.01,3.0704): H = (3.0704 – 3)/(1.01 – 1)
      H = (.0704)/(.01) = 7.04

    • Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).

    Реклама

Советы

  • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
  • Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
  • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

Реклама

Об этой статье

Эту страницу просматривали 83 335 раз.

Была ли эта статья полезной?

Содержание материала

  1. Советы
  2. Видео
  3. Что такое мгновенная скорость на реальных примерах
  4. Как найти мгновенную скорость из средней скорости
  5. Мгновенная скорость при криволинейном движении
  6. Ускорение. Касательное ускорение. Центростремительное ускорение
  7. Об особенностях понятия мгновенной скорости
  8. Что мы узнали?

Советы

  • Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
  • Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
  • Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.

Видео

Что такое мгновенная скорость на реальных примерах

Реальные примеры мгновенной скорости

Если мы рассмотрим пример мяча для сквоша, мяч возвращается в исходную точку; в это время полное смещение и средняя скорость будут равны нулю. В таких случаях движение рассчитывается по формуле мгновенная скорость.

Игра в сквош, пример мгновенной скорости Изображен

Игра в сквош, пример мгновенной скорости Изображение предоставлено: Изображение предоставлено pixabay.com

Как найти мгновенную скорость из средней скорости

Для того, чтобы найти мгновенная скорость в точке, мы должны сначала найти среднюю скорость в этой точке.

Вы можете найти мгновенную скорость при t = a с помощью вычисление средней скорости графика зависимости положения от времени путем взятия меньшего и большего приращения точки, в которой вы хотите определить Vinst.

Мгновенная скорость при криволинейном движении

Положение материальной точки на траектории зададим радиус-вектором $overline{r}(t)$, который проведем в точку наблюдения из какой-либо неподвижной точки, которую примем за начало координат. Тогда мгновенной скоростью материальной точки будет векторная величина, равная:

скорость — это вектор, направленный по касательной к траектории движения материальной точки в месте нахождения частицы.

Ускорение. Касательное ускорение. Центростремительное ускорение

Продолжая речь о телах, движущихся неравномерно, необходимо сказать о такой физической величине, как ускорение.

Единицы измерения ускорения:

Единицы измерения ускорения:


Рисунок 6 – Тело перемещается из точки 1 в точку 2 (в верхнем правом углу дана иллюстрация к разности векторов)

Если скорость тела меняется не равномерно на выбранном участке пути, нужно поступить так же, как и в случае с поиском мгновенной скорости: разделить  на маленькие отрезки времени и рассматривать ускорение на каждом из них.

Поскольку ускорение получается из разности векторов скорости (конечной и начальной), в общем случае оно будет направлено под некоторым углом к мгновенной скорости (а, следовательно, и к вектору перемещения, и к касательной к траектории).


Рисунок 7 – Полное, касательно и центростремительное ускорение тела, движущегося из точки 1 в точку 2

Об особенностях понятия мгновенной скорости

Для того чтобы вычислить мгновенную скорость на практике, следует понимать, что она представляет собой функцию времени. Следует определить на какое расстояние переместился объект в течение крайне малого промежутка времени, который называют моментом времени. Насколько же мал этот допустимый интервал? Если рассматривать совершенные приборы, например радиолокационные станции, то даже самые точные из них позволяют отслеживать скорость за время, которое примерно составляет около 10-6 с. Согласитесь, что несмотря на ничтожную малость этого значения, оно ни в коей мере не является моментом времени, а представляет собой временной промежуток. По этой причине отношение физиков к понятию скорости в определенный момент времени неоднозначное, и оно считается не наделенным конкретным физическим смыслом. Хотя на практике термин «мгновенная скорость» широко используется при управлении навигацией в авиации и космонавтике.  

Подобным образом можно рассуждать и о мгновенном у

Подобным образом можно рассуждать и о мгновенном ускорении, которое представляет собой зависимость, а точнее производную от скорости и имеет с ней одно направление.

Что касается мгновенной скорости физического тела, находящегося в состоянии покоя относительно выбранной системы отсчета, то она будет равняться нулю.

Что мы узнали?

Мгновенная скорость – это скорость прохождения данного малого участка пути за малый промежуток времени. В идеале мгновенная скорость определяется на текущем бесконечно малом промежутке времени, за который совершается бесконечно малое перемещение.

Теги


Download Article


Download Article

Velocity is defined as the speed of an object in a given direction.[1]
In many common situations, to find velocity, we use the equation v = s/t, where v equals velocity, s equals the total displacement from the object’s starting position, and t equals the time elapsed. However, this technically only gives the object’s average velocity over its path. Using calculus, it’s possible to calculate an object’s velocity at any moment along its path. This is called instantaneous velocity and it is defined by the equation v = (ds)/(dt), or, in other words, the derivative of the object’s average velocity equation.[2]

  1. Image titled Calculate Instantaneous Velocity Step 1

    1

    Start with an equation for velocity in terms of displacement. To get an object’s instantaneous velocity, first we have to have an equation that tells us its position (in terms of displacement) at a certain point in time. This means the equation must have the variable s on one side by itself and t on the other (but not necessarily by itself), like this:

    s = -1.5t2 + 10t + 4

    • In this equation, the variables are:
      Displacement = s . The distance the object has traveled from its starting position.[3]
      For example, if an object goes 10 meters forward and 7 meters backward, its total displacement is 10 – 7 = 3 meters (not 10 + 7 = 17 meters).
      Time = t . Self explanatory. Typically measured in seconds.
  2. Image titled Calculate Instantaneous Velocity Step 2

    2

    Take the equation’s derivative. The derivative of an equation is just a different equation that tells you its slope at any given point in time. To find the derivative of your displacement formula, differentiate the function with this general rule for finding derivatives: If y = a*xn, Derivative = a*n*xn-1.This rule is applied to every term on the “t” side of the equation.[4]

    • In other words, start by going through the “t” side of your equation from left to right. Every time you reach a “t”, subtract 1 from the exponent and multiply the entire term by the original exponent. Any constant terms (terms which don’t contain “t”) will disappear because they be multiplied by 0. This process isn’t actually as hard as it sounds — let’s derive the equation in the step above as an example:

      s = -1.5t2 + 10t + 4
      (2)-1.5t(2-1) + (1)10t1 – 1 + (0)4t0
      -3t1 + 10t0
      -3t + 10

    Advertisement

  3. Image titled Calculate Instantaneous Velocity Step 3

    3

    Replace “s” with “ds/dt.” To show that our new equation is a derivative of the first one, we replace “s” with the notation “ds/dt”. Technically, this notation means “the derivative of s with respect to t.” A simpler way to think of this is just that ds/dt is just the slope of any given point in the first equation. For example, to find the slope of the line made by s = -1.5t2 + 10t + 4 at t = 5, we would just plug “5” into t in its derivative.

    • In our running example, our finished equation should now look like this:

      ds/dt = -3t + 10

  4. Image titled Calculate Instantaneous Velocity Step 4

    4

    Plug in a t value for your new equation to find instantaneous velocity.[5]
    Now that you have your derivative equation, finding the instantaneous velocity at any point in time is easy. All you need to do is pick a value for t and plug it into your derivative equation. For example, if we want to find the instantaneous velocity at t = 5, we would just substitute “5” for t in the derivative ds/dt = -3 + 10. Then, we’d just solve the equation like this:

    ds/dt = -3t + 10
    ds/dt = -3(5) + 10
    ds/dt = -15 + 10 = -5 meters/second

    • Note that we use the label “meters/second” above. Since we’re dealing with displacement in terms of meters and time in terms of seconds and velocity in general is just displacement over time, this label is appropriate.
  5. Advertisement

  1. Image titled Calculate Instantaneous Velocity Step 5

    1

    Graph your object’s displacement over time. In the section above, we mentioned that derivatives are just formulas that let us find the slope at any point for the equation you take the derivative for.[6]
    In fact, if you represent an object’s displacement with a line on a graph, the slope of the line at any given point is equal to the object’s instantaneous velocity at that point.[7]

    • To graph an object’s displacement, use the x axis to represent time and the y axis to represent displacement. Then, just plot points by plugging values for t into your displacement equation, getting s values for your answers, and marking the t,s (x,y) points on the graph.
    • Note that the graph can extend below the x axis. If the line representing your object’s motion drops below the x axis, this represents your object moving behind where it started. Generally, your graph won’t extend behind the y axis – we don’t often measure velocity for objects moving backward in time!
  2. Image titled Calculate Instantaneous Velocity Step 6

    2

    Choose one point P and a point Q that is near it on the line. To find a line’s slope at a single point P, we use a trick called “taking a limit.” Taking a limit involves taking two points (P, plus Q, a point near it) on the curved line and finding the slope of the line linking them over and over again as the distance between P and Q gets smaller.

    • Let’s say that our displacement line contains the points (1,3) and (4,7). In this case, if we want to find the slope at (1,3), we can set (1,3) = P and (4,7) = Q.
  3. Image titled Calculate Instantaneous Velocity Step 7

    3

    Find the slope between P and Q. The slope between P and Q is the difference in y-values for P and Q over the difference in x-values for P and Q. In other words, H = (yQ – yP)/(xQ – xP), where H is the slope between the two points. In our example, the slope between P and Q is:

    H = (yQ – yP)/(xQ – xP)
    H = (7 – 3)/(4 – 1)
    H = (4)/(3) = 1.33

  4. Image titled Calculate Instantaneous Velocity Step 8

    4

    Repeat several times, moving Q nearer to P. Your goal here is to make the distance between P and Q smaller and smaller until it gets close to a single point. The smaller the distance between P and Q gets, the closer the slope of your tiny line segments will be to the slope at point P. Let’s do this a few times for our example equation, using the points (2,4.8), (1.5,3.95), and (1.25,3.49) for Q and our original point of (1,3) for P:

    Q = (2,4.8): H = (4.8 – 3)/(2 – 1)
    H = (1.8)/(1) = 1.8

    Q = (1.5,3.95): H = (3.95 – 3)/(1.5 – 1)
    H = (.95)/(.5) = 1.9

    Q = (1.25,3.49): H = (3.49 – 3)/(1.25 – 1)
    H = (.49)/(.25) = 1.96

  5. Image titled Calculate Instantaneous Velocity Step 9

    5

    Estimate the slope for an infinitely small interval on the line. As Q gets closer and closer to P, H will get closer and closer to the slope at point P. Eventually, at an infinitely small interval, H will equal the slope at P. Because we aren’t able to measure or calculate an infinitely small interval, we just estimate the slope at P once it’s clear from the points we’ve tried.[8]

    • In our example, as we moved Q closer to P, we got values of 1.8, 1.9, and 1.96 for H. Since these numbers appear to be approaching 2, we can say that 2 is a good estimate for the slope at P.
    • Remember that the slope at a given point on a line is equal to the derivative of the line’s equation at that point. Since our line is showing our object’s displacement over time and, as we saw in the section above, an object’s instantaneous velocity is the derivative of its displacement at a given point, we can also say that 2 meters/second is a good estimate for the instantaneous velocity at t = 1.
  6. Advertisement

  1. Image titled Calculate Instantaneous Velocity Step 10

    1

    Find the instantaneous velocity at t = 4 given the displacement equation s = 5t3 – 3t2 + 2t + 9. This is just like our example in the first section, except that we’re dealing with a cubic equation rather than a quadratic equation, so we can solve it in the same way.

    • First, we’ll take our equation’s derivative:

      s = 5t3 – 3t2 + 2t + 9
      s = (3)5t(3 – 1) – (2)3t(2 – 1) + (1)2t(1 – 1) + (0)9t0 – 1
      15t(2) – 6t(1) + 2t(0)
      15t(2) – 6t + 2

    • Then, we’ll plug in our value for t (4):

      s = 15t(2) – 6t + 2
      15(4)(2) – 6(4) + 2
      15(16) – 6(4) + 2
      240 – 24 + 2 = 218 meters/second

  2. Image titled Calculate Instantaneous Velocity Step 11

    2

    Use graphical estimation to find the instantaneous velocity at (1,3) for the displacement equation s = 4t2 – t. For this problem, we’ll use (1,3) as our P point, but we’ll have to find a few other points near it to use as our Q points. Then, it’s just a matter of finding our H values and making an estimation.

    • First, let’s find Q points at t = 2, 1.5, 1.1 and 1.01.

      s = 4t2 – t

      t = 2: s = 4(2)2 – (2)
      4(4) – 2 = 16 – 2 = 14, so Q = (2,14)

      t = 1.5: s = 4(1.5)2 – (1.5)
      4(2.25) – 1.5 = 9 – 1.5 = 7.5, so Q = (1.5,7.5)

      t = 1.1: s = 4(1.1)2 – (1.1)
      4(1.21) – 1.1 = 4.84 – 1.1 = 3.74, so Q = (1.1,3.74)

      t = 1.01: s = 4(1.01)2 – (1.01)
      4(1.0201) – 1.01 = 4.0804 – 1.01 = 3.0704, so Q = (1.01,3.0704)

    • Next, let’s get our H values:

      Q = (2,14): H = (14 – 3)/(2 – 1)
      H = (11)/(1) = 11

      Q = (1.5,7.5): H = (7.5 – 3)/(1.5 – 1)
      H = (4.5)/(.5) = 9

      Q = (1.1,3.74): H = (3.74 – 3)/(1.1 – 1)
      H = (.74)/(.1) = 7.3

      Q = (1.01,3.0704): H = (3.0704 – 3)/(1.01 – 1)
      H = (.0704)/(.01) = 7.04

    • Since our H values seem to be getting very close to 7, we can say that 7 meters/second is a good estimate for the instantaneous velocity at (1,3).
  3. Advertisement

Add New Question

  • Question

    What is the difference between instantaneous and average velocity?

    Community Answer

    Instantaneous is at that moment, whereas average is the mean of the entire time span.

  • Question

    How do I calculate instantaneous acceleration?

    Community Answer

    Instantaneous acceleration can be considered as the value of the derivative of the instantaneous velocity. For example:

    s = 5(t^3) – 3(t^2) + 2t + 9
    v = 15(t^2) – 6t + 2
    a = 30t – 6

    If we want to know the instantaneous acceleration at t = 4, then a(4) = 30 * 4 – 6 = 114 m/(s^2)

  • Question

    When is instantaneous velocity and average velocity the same?

    Community Answer

    Instantaneous velocity tells you the velocity of an object at a single moment in time. If the object is moving with a constant velocity, then the average velocity and instantaneous velocity will be the same. In all situations, they are not likely to be the same.

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • To find acceleration (the change in velocity over time), use the method in part one to get a derivative equation for your displacement function. Then, take another derivative, this time of your derivative equation. This will give you an equation for finding acceleration at a given time – all you have to do is plug in your value for time.

  • The equation which relates Y (displacement) to X (time) might be really simple, like, for instance, Y= 6x + 3. In this case the slope is constant and it is not necessary to find a derivative to find the slope, which is, following the Y = mx + b basic model for linear graphs, 6.

  • Displacement is like distance but it has a set direction, this makes displacement a vector and speed a scalar. Displacement can be negative while distance will only be positive.

Thanks for submitting a tip for review!

Advertisement

References

About This Article

Article SummaryX

To calculate instantaneous velocity, start with an equation for velocity in terms of displacement, which should have an “s” on one side for displacement and a “t” on the other for time. Then, take the equation’s derivative and replace the “s” with the notation “ds” over “dt.” Finally, plug in a “t” value and solve the equation to find the instantaneous velocity at any point in time. To learn how to estimate instantaneous velocity graphically, scroll down!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,049,646 times.

Did this article help you?

Добавить комментарий