Алгебра и начала математического анализа, 11 класс
Урок №19. Решение задач с помощью производной.
Перечень вопросов, рассматриваемых в теме
- механический смысл первой производной;
- механический смысл второй производных;
- скорость и ускорение.
Глоссарий по теме
Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S’(t).
Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.
Производная от производной называется второй производной или производной второго порядка и обозначается fили
Производная от второй производной называется производной третьего порядка и обозначается или f”’(x). Производную n-го порядка обозначают f(n) (x) или y(n).
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
Основная литература:
Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Давайте вспомним механический смысл производной:
Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S'(t).
Пример 1. Точка движется прямолинейно по закону (S выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.
Решение:
скорость прямолинейного движения равна производной пути по времени, то есть .
Подставив в уравнение скорости t=3 с, получим v(3)=32+4∙3-1= 20 (м/с).
Ответ: 20 м/c.
Пример 2. Маховик, задерживаемый тормозом, поворачивается за t с на угол
Найдите:
а) угловую скорость вращения маховика в момент t = 6 с;
б) в какой момент времени маховик остановится?
Решение: а) Угловая скорость вращения маховика определяется по формуле ω=φ’. Тогда ω=(4t-0,2t2)=4-0,4t.
Подставляя t = 6 с, получим ω=4-0,4∙6=1,6 (рад/с).
б) В тот момент, когда маховик остановится, его скорость будет равна нулю (ω=0) . Поэтому 4-0,4t=0.. Отсюда t=10 c.
Ответ: угловая скорость маховика равна (рад/с); t=10 c.
Пример 3. Тело массой 6 кг движется прямолинейно по закону S=3t2+2t-5. Найти кинетическую энергию тела через 3 с после начала движения.
Решение: найдём скорость движения тела в любой момент времени t.
v= S’=(3t2+2t-5)’=6t+2
Вычислим скорость тела в момент времени t=3. v(3)=6∙3+2=20 (м/с)..
Определим кинетическую энергию тела в момент времени t=3.
Ответ: Е=1200 Дж
Производная второго порядка. Производная n-го порядка.
Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.
Производная от производной называется второй производной или производной второго порядка и обозначается .
Производная от второй производной называется производной третьего порядка и обозначается y”’ или f”'(x) Производную n-го порядка обозначают f(n) (x) или y(n).
Примеры. Найдем производные четвёртого порядка для заданных функций:
1) f(x)= sin 2x
f'(x)=cos 2x∙(2x)’= 2cos 2x
f (x)=-2sin2x∙(2x)’=-4sin 2x
f”'(x)= -4 cos 2x∙(2x)= -8 cos 2x
f(4)(x)= 8 sin2x∙(2x)’= 16 sin 2x
2) f(x)=23x
f’(x)=3∙ 23x ∙ln2
f (x)= 9∙ 23x ∙ln22
f”'(x)= 27∙ 23x ∙ln32
f(4)(x)= 81∙ 23x ∙ln42
Механический смысл второй производной.
Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть
Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)
Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.
Решение:
найдём скорость точки в любой момент времени t.
v=S’=(3t2-3t+8)’=6t-3.
Вычислим скорость в момент времени t=4 c.
v(4)=6∙4-3=21(м/с)
Найдём ускорение точки в любой момент времени t.
a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.
Ответ: v=21(м/с); a= v’= 6 (м/с2).
Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.
Решение: сила, действующая на тело, находится по формуле F=ma.
Найдём скорость движения точки в любой момент времени t.
v=S’=(t3-3t2+5)’=3t2-6t.
Тогда v(4)=3∙42-6∙4=24 (м/с).
Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.
Тогда a(4)= 6∙4-6= 18 (м/с2).
F=ma=3∙18= 54 Н
Ответ: F= 54 Н
Разбор решения заданий тренировочного модуля
№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Напишите производную третьего порядка для функции:
f(x)= 3cos4x-5x3+3x2-8
_____________________
Решим данную задачу:
f’’’(x)=( 3cos4x-5x3+3x2-8)’’’=(((3cos4x-5x3+3x2-8)’)’)’=((-12sin4x-15x2+6x)’)’=(-48cos4x-30x)’=192sin4x-30.
Ответ: 192sin4x-30
№ 2. Тип задания: выделение цветом
Точка движется прямолинейно по закону S(t)= 3t2+2t-7. Найти скорость и ускорение точки в момент t=6 c.
- v=38 м/с; a=6 м/с2
- v=38 м/с; a=5 м/с2
- v=32 м/с; a=6 м/с2
- v=32 м/с; a=5 м/с2
Решим данную задачу:
Воспользуемся механическим смыслом второй производной:
v= S’(t)=( 3t2+2t-7)’=6t+2.
Вычислим скорость в момент времени t=6 c.
v(6)=6∙6+2=38 (м/с)
Найдём ускорение точки в любой момент времени t.
a= v’= (6t+2)’=6 и a(6)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.
Ответ: v=38(м/с); a= v’= 6 (м/с2).
Верный ответ:
- v=38 м/с; a=6 м/с2
- v=38 м/с; a=5 м/с2
- v=32 м/с; a=6 м/с2
- v=32 м/с; a=5 м/с2
Загрузить PDF
Загрузить PDF
Скорость — это быстрота перемещения объекта в заданном направлении. [1]
В общих целях нахождение скорости объекта (v) — простая задача: нужно разделить перемещение (s) в течение определенного времени (s) на это время (t), то есть воспользоваться формулой v = s/t. Однако таким способом получают среднюю скорость тела. Используя некоторые вычисления, можно найти скорость тела в любой точке пути. Такая скорость называется мгновенной скоростью и вычисляется по формуле v = (ds)/(dt), то есть представляет собой производную от формулы для вычисления средней скорости тела.[2]
-
1
Начните с уравнения. Для вычисления мгновенной скорости необходимо знать уравнение, описывающее перемещение тела (его позицию в определенный момент времени),[3]
то есть такое уравнение, на одной стороне которого находится s (перемещение тела), а на другой стороне — члены с переменной t (время).[4]
Например:s = -1.5t2 + 10t + 4
- В этом уравнении:
-
- Перемещение = s. Перемещение — пройденный объектом путь. Например, если тело переместилось на 10 м вперед и на 7 м назад, то общее перемещение тела равно 10 – 7 = 3 м (а на 10 + 7 = 17 м).
- Время = t. Обычно измеряется в секундах.
-
- В этом уравнении:
-
2
Вычислите производную уравнения. Чтобы найти мгновенную скорость тела, чьи перемещения описываются приведенным выше уравнением, нужно вычислить производную этого уравнения. Производная — это уравнение, позволяющее вычислить наклон графика в любой точке (в любой момент времени). Чтобы найти производную, продифференцируйте функцию следующим образом: если y = a*xn, то производная = a*n*xn-1. Это правило применяется к каждому члену многочлена.
- Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:
s = -1.5t2 + 10t + 4
(2)-1.5t(2-1) + (1)10t1 – 1 + (0)4t0
-3t1 + 10t0
-3t + 10
- Другими словами, производная каждого члена с переменной t равна произведению множителя (стоящему перед переменной) и степени переменной, умноженному на переменную в степени, равную исходной степени минус 1. Свободный член (член без переменной, то есть число) исчезает, потому что умножается на 0. В нашем примере:
-
3
Замените “s” на “ds/dt”, чтобы показать, что новое уравнение — это производная от исходного уравнения (то есть производная s от t). Производная — это наклон графика в определенной точке (в определенный момент времени). Например, чтобы найти наклон линии, описываемой функцией s = -1.5t2 + 10t + 4 при t = 5, просто подставьте 5 в уравнение производной.
- В нашем примере уравнение производной должно выглядеть следующим образом:
ds/dt = -3t + 10
- В нашем примере уравнение производной должно выглядеть следующим образом:
-
4
В уравнение производной подставьте соответствующее значение t, чтобы найти мгновенную скорость в определенный момент времени.[5]
Например, если вы хотите найти мгновенную скорость при t = 5, просто подставьте 5 (вместо t) в уравнение производной ds/dt = -3 + 10. Затем решите уравнение:ds/dt = -3t + 10
ds/dt = -3(5) + 10
ds/dt = -15 + 10 = -5 м/с- Обратите внимание на единицу измерения мгновенной скорости: м/с. Так как нам дано значение перемещения в метрах, а время — в секундах, и скорость равна отношению перемещения ко времени, то единица измерения м/с — правильная.
Реклама
-
1
Постройте график перемещения тела. В предыдущей главе вы вычисляли мгновенную скорость по формуле (уравнению производной, позволяющему найти наклон графика в определенной точке).[6]
Построив график перемещения тела, вы можете найти его наклон в любой точке, а следовательно определить мгновенную скорость в определенный момент времени.- По оси Y откладывайте перемещение, а по оси X — время. Координаты точек (x,у) получите через подстановку различных значений t в исходное уравнение перемещение и вычисления соответствующих значений s.
- График может опускаться ниже оси X. Если график перемещения тела опускается ниже оси X, то это значит, что тело движется в обратном направлении от точки начала движения. Как правило, график не распространяется за ось Y (отрицательные значения x) — мы не измеряем скорости объектов, движущихся назад во времени!
-
2
Выберите на графике (кривой) точку P и близкую к ней точку Q. Чтобы найти наклон графика в точке P, используем понятие предела. Предел — состояние, при котором величина секущей, проведенной через 2 точки P и Q, лежащих на кривой, стремится к нулю.
- Например, рассмотрим точки P(1,3) и Q(4,7) и вычислим мгновенную скорость в точке P.
-
3
Найдите наклон отрезка PQ. Наклон отрезка PQ равен отношению разницы значений координат «у» точек P и Q к разнице значений координат «х» точек P и Q. Другими словами, H = (yQ – yP)/(xQ – xP), где H — наклон отрезка PQ. В нашем примере наклон отрезка PQ равен:
H = (yQ – yP)/(xQ – xP)
H = (7 – 3)/(4 – 1)
H = (4)/(3) = 1.33 -
4
Повторите процесс несколько раз, приближая точку Q к точке P. Чем меньше расстояние между двумя точками, тем ближе значение наклона полученных отрезков к наклону графика в точке P. В нашем примере проделаем вычисления для точки Q с координатами (2,4.8), (1.5,3.95) и (1.25,3.49) (координаты точки P остаются прежними):
Q = (2,4.8): H = (4.8 – 3)/(2 – 1)
H = (1.8)/(1) = 1.8Q = (1.5,3.95): H = (3.95 – 3)/(1.5 – 1)
H = (.95)/(.5) = 1.9Q = (1.25,3.49): H = (3.49 – 3)/(1.25 – 1)
H = (.49)/(.25) = 1.96 -
5
Чем меньше расстояние между точками P и Q, тем ближе значение H к наклону графика в точке P При предельно малом расстоянии между точками P и Q, значение H будет равно наклону графика в точке P Так как мы не можем измерить или вычислить предельно малое расстояние между двумя точками, графический способ дает оценочное значение наклона графика в точке Р.
- В нашем примере при приближении Q к P мы получили следующие значения H: 1.8; 1.9 и 1.96. Так как эти числа стремятся к 2, то можно сказать, что наклон графика в точке P равен 2.
- Помните, что наклон графика в данной точке равен производной функции (по которой построен этот график) в этой точке. График отображает перемещение тела с течением времени и, как отмечалось в предыдущем разделе, мгновенная скорость тела равна производной от уравнения перемещения этого тела. Таким образом, можно заявить, что при t = 2 мгновенная скорость равна 2 м/с (это оценочное значение).
Реклама
-
1
Вычислите мгновенную скорость при t = 4, если перемещение тела описывается уравнением s = 5t3 – 3t2 + 2t + 9. Этот пример похож на задачу из первого раздела с той лишь разницей, что здесь дано уравнение третьего порядка (а не второго).
- Сначала вычислим производную этого уравнения:
s = 5t3 – 3t2 + 2t + 9
s = (3)5t(3 – 1) – (2)3t(2 – 1) + (1)2t(1 – 1) + (0)9t0 – 1
15t(2) – 6t(1) + 2t(0)
15t(2) – 6t + 2 - Теперь подставим в уравнение производной значение t = 4:
s = 15t(2) – 6t + 2
15(4)(2) – 6(4) + 2
15(16) – 6(4) + 2
240 – 24 + 2 = 22 м/с
- Сначала вычислим производную этого уравнения:
-
2
Оценим значение мгновенной скорости в точке с координатами (1,3) на графике функции s = 4t2 – t. В этом случае точка P имеет координаты (1,3) и необходимо найти несколько координат точки Q, лежащий близко к точке P. Затем вычислим H и найдем оценочные значения мгновенной скорости.
- Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.
s = 4t2 – t
t = 2: s = 4(2)2 – (2)
4(4) – 2 = 16 – 2 = 14, so Q = (2,14)t = 1.5: s = 4(1.5)2 – (1.5)
4(2.25) – 1.5 = 9 – 1.5 = 7.5, so Q = (1.5,7.5)t = 1.1: s = 4(1.1)2 – (1.1)
4(1.21) – 1.1 = 4.84 – 1.1 = 3.74, so Q = (1.1,3.74)t = 1.01: s = 4(1.01)2 – (1.01)
4(1.0201) – 1.01 = 4.0804 – 1.01 = 3.0704, so Q = (1.01,3.0704) - Теперь вычислим H:
Q = (2,14): H = (14 – 3)/(2 – 1)
H = (11)/(1) = 11Q = (1.5,7.5): H = (7.5 – 3)/(1.5 – 1)
H = (4.5)/(.5) = 9Q = (1.1,3.74): H = (3.74 – 3)/(1.1 – 1)
H = (.74)/(.1) = 7.3Q = (1.01,3.0704): H = (3.0704 – 3)/(1.01 – 1)
H = (.0704)/(.01) = 7.04 - Так как полученные значения H стремятся к 7, то можно сказать, что мгновенная скорость тела в точке (1,3) равна 7 м/с (оценочное значение).
Реклама
- Сначала найдем координаты Q при t = 2, 1.5, 1.1 и 1.01.
Советы
- Чтобы найти ускорение (изменение скорости с течением времени), используйте метод из первой части, чтобы получить производную функции перемещения. Затем возьмите еще раз производную от полученной производной. Это даст вам уравнение для нахождения ускорения в данный момент времени — все, что вам нужно сделать, это подставить значение для времени.
- Уравнение, описывающее зависимость у (перемещение) от x (время), может быть очень простым, например: у = 6x + 3. В этом случае наклон является постоянным и не надо брать производную, чтобы его найти. Согласно теории линейных графиков, их наклон равен коэффициенту при переменной x, то есть в нашем примере =6.
- Перемещение подобно расстоянию, но оно имеет определенное направление, что делает его векторной величиной. Перемещение может быть отрицательным, в то время как расстояние будет только положительным.
Реклама
Об этой статье
Эту страницу просматривали 83 431 раз.
Была ли эта статья полезной?
Мгновенная скорость, теория и онлайн калькуляторы
Мгновенная скорость
Мгновенная скорость при прямолинейном движении материальной точки
При рассмотрении неравномерного движения часто интересует не средняя скорость движения тела, а скорость в определенный момент времени, или мгновенная скорость. Так, если тело стукнулось о препятствие, то сила воздействия тела на препятствие в момент удара, определено скоростью в момент соударения, а не средней скоростью движения тела. Форма траектории перемещения снаряда и его дальность полета зависит от скорости в момент запуска, а не от средней скорости.
Средняя скорость ($leftlangle vrightrangle $) движения материальной точки по оси X равна:
[leftlangle vrightrangle =frac{Delta x}{Delta t}left(1right),]
$Delta t$ – промежуток времени движения тела.
Определение
Мгновенную скорость определим как предел к которому стремится средняя скорость за бесконечно малый промежуток времени:
[v={mathop{lim }_{Delta tto 0} leftlangle vrightrangle }={mathop{lim }_{Delta tto 0} frac{Delta x}{Delta t}left(2right). }]
Такой предел в математике называют производной:
[v=frac{dx}{dt}=dot{x}left(3right).]
Выражение (3) обозначает, что мгновенная скорость (скорость в определенный момент времени) – производная от координаты. При прямолинейном движении материальной точки Мгновенную скорость можно определить как производную от пути ($s$) по времени:
[v=frac{ds}{dt}=dot{s}left(4right).]
Мгновенная скорость равномерного движения материальной точки
Средняя скорость равномерно движущейся точки величина постоянная, значит, мгновенная скорость равномерно перемещающейся точки является неизменной величиной.
Скорость равномерного движения численно равна тангенсу угла наклона прямой к оси времени (рис.1):
[v=k tg alpha left(4right),]
где $k$ – безразмерный коэффициент, определяющий отношение масштаба единиц перемещения (ось ординат) и единиц времени (ось абсцисс).
При графическом изображении переменного движения материальной точки мгновенная скорость численно равна тангенсу угла наклона касательной к графику и осью абсцисс.
Мгновенная скорость при криволинейном движении
Положение материальной точки на траектории зададим радиус-вектором $overline{r}(t)$, который проведем в точку наблюдения из какой-либо неподвижной точки, которую примем за начало координат. Тогда мгновенной скоростью материальной точки будет векторная величина, равная:
[overline{v}=frac{doverline{r}}{dt}=dot{overline{r}}left(5right).]
скорость – это вектор, направленный по касательной к траектории движения материальной точки в месте нахождения частицы.
Примеры задач с решением
Пример 1
Задание. Две материальные точки движутся согласно уравнениям:
[left{ begin{array}{c}
x_1=-3t+4t^2-t^3(м) \
x_2=t-2t^2-t^3(м) end{array}
right.left(1.1right),]
в какой момент времени скорости этих точек будут равны?
Решение. В задаче речь идет о нахождении времени, когда будут равны мгновенные скорости материальных точек. Величину мгновенной скорости будем находить как:
[v=frac{dx}{dt}left(1.2right).]
Тогда подставляя по очереди уравнения из системы (1.1) получим:
[left{ begin{array}{c}
v_1=frac{dx_1}{dt}=-3+8t-3t^2 \
v_2=frac{dx_2}{dt}=1-4t-3t^2 end{array}
right.left(1.3right).]
Приравняем правые части уравнений в системе (1.3), найдем момент времени в который скорости равны ($v_1=v_2$):
[-3+8t-3t^2=1-4t-3t^2to 8t+4t=1+3to 12t=4to t=frac{1}{3}left(cright).]
Ответ. $t=frac{1}{3}$ с
Пример 2
Задание. Материальная точка движется на плоскости XOY. Закон изменения координаты $x$ задан графиком рис.2 . Координата $y $задана аналитическим выражением: $y=At(1+Bt)$, где $A$ и $B$ постоянные величины. Запишите выражение, связывающее мгновенную скорость и время ($v(t)$).
Решение. Из рис. 2 мы можем записать уравнение, которое определяет изменение координаты $x$ от времени:
[xleft(tright)=At left(2.1right).]
Получили, что движение материальной точки в плоскости XOY описывают при помощи системы уравнений:
[left{ begin{array}{c}
xleft(tright)=At;; \
y=Atleft(1+Btright) end{array}
left(2.2right).right.]
Найдем составляющие скорости движения материальной точки:
[v_x=frac{dx}{dt}=frac{d}{dt}left(Atright)=A;;]
[v_y=frac{dy}{dt}=frac{d}{dt}left(Atleft(1+Btright)right)=A+2ABt.]
Модуль скорости найдем как:
[v=sqrt{v^2_x+v^2_y}=sqrt{A^2+{(A+2ABt)}^2}=sqrt{A^2+A^2+2A^2Bt+4A^2B^2t^2}=]
[=Asqrt{2+2Bt+4B^2t^2.}]
Ответ. $v=Asqrt{2+2Bt+4B^2t^2}$
Читать дальше: механические волны.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Если материальная точка находится в движении, то ее координаты подвергаются изменениям. Этот процесс может происходить быстро или медленно.
Величина, которая характеризует быстроту изменения положения координаты, называется скоростью.
Средняя скорость – это векторная величина, численно равная перемещению в единицу времени, и сонаправленная с вектором перемещения υ=∆r∆t; υ↑↑∆r.
Рисунок 1. Средняя скорость сонаправлена перемещению
Модуль средней скорости по пути равняется υ=S∆t.
Мгновенная скорость точки. Формулы
Мгновенная скорость характеризует движение в определенный момент времени. Выражение «скорость тела в данный момент времени» считается не корректным, но применимым при математических расчетах.
Мгновенной скоростью называют предел, к которому стремится средняя скорость υ при стремлении промежутка времени ∆t к 0:
υ=lim∆t∆r∆t=drdt=r˙.
Направление вектора υ идет по касательной к криволинейной траектории, потому как бесконечно малое перемещение dr совпадает с бесконечно малым элементом траектории ds.
Рисунок 2. Вектор мгновенной скорости υ
Имеющееся выражение υ=lim∆t∆r∆t=drdt=r˙ в декартовых координатах идентично ниже предложенным уравнениям:
υx=dxdt=x˙υy=dydt=y˙υz=dzdt=z˙.
Перемещение и мгновенная скорость
Запись модуля вектора υ примет вид:
υ=υ=υx2+υy2+υz2=x2+y2+z2.
Чтобы перейти от декартовых прямоугольных координат к криволинейным, применяют правила дифференцирования сложных функций. Если радиус-вектор r является функцией криволинейных координат r=rq1, q2, q3, тогда значение скорости запишется как:
υ=drdt=∑i=13∂r∂qi∂qi∂r=∑i=13∂r∂qiq˙i.
Рисунок 3. Перемещение и мгновенная скорость в системах криволинейных координат
При сферических координатах предположим, что q1=r; q2=φ; q3=θ, то получим υ, представленную в такой форме:
υ=υrer+υφeφ+υθφθ, где υr=r˙; υφ=rφ˙sin θ; υθ=rθ˙; r˙=drdt; φ˙=dφdt; θ˙=dθdt; υ=r1+φ2sin2θ+θ2.
Мгновенной скоростью называют значение производной от функции перемещения по времени в заданный момент, связанной с элементарным перемещением соотношением dr=υ(t)dt
Дан закон прямолинейного движения точки x(t)=0,15t2-2t+8. Определить ее мгновенную скорость через 10 секунд после начала движения.
Решение
Мгновенной скоростью принято называть первую производную радиус-вектора по времени. Тогда ее запись примет вид:
υ(t)=x˙(t)=0.3t-2; υ(10)=0.3×10-2=1 м/с.
Ответ: 1 м/с.
Движение материальной точки задается уравнением x=4t-0,05t2. Вычислить момент времени tост, когда точка прекратит движение, и ее среднюю путевую скорость υ.
Решение
Вычислим уравнение мгновенной скорости, подставим числовые выражения:
υ(t)=x˙(t)=4-0,1t.
4-0,1t=0;tост=40 с;υ0=υ(0)=4;υ=∆υ∆t=0-440-0=0,1 м/с.
Ответ: заданная точка остановится по прошествии 40 секунд; значение средней скорости равняется 0,1 м/с.
Download Article
Download Article
Velocity is defined as the speed of an object in a given direction.[1]
In many common situations, to find velocity, we use the equation v = s/t, where v equals velocity, s equals the total displacement from the object’s starting position, and t equals the time elapsed. However, this technically only gives the object’s average velocity over its path. Using calculus, it’s possible to calculate an object’s velocity at any moment along its path. This is called instantaneous velocity and it is defined by the equation v = (ds)/(dt), or, in other words, the derivative of the object’s average velocity equation.[2]
-
1
Start with an equation for velocity in terms of displacement. To get an object’s instantaneous velocity, first we have to have an equation that tells us its position (in terms of displacement) at a certain point in time. This means the equation must have the variable s on one side by itself and t on the other (but not necessarily by itself), like this:
s = -1.5t2 + 10t + 4
- In this equation, the variables are:
-
-
Displacement = s . The distance the object has traveled from its starting position.[3]
For example, if an object goes 10 meters forward and 7 meters backward, its total displacement is 10 – 7 = 3 meters (not 10 + 7 = 17 meters). - Time = t . Self explanatory. Typically measured in seconds.
-
Displacement = s . The distance the object has traveled from its starting position.[3]
-
- In this equation, the variables are:
-
2
Take the equation’s derivative. The derivative of an equation is just a different equation that tells you its slope at any given point in time. To find the derivative of your displacement formula, differentiate the function with this general rule for finding derivatives: If y = a*xn, Derivative = a*n*xn-1.This rule is applied to every term on the “t” side of the equation.[4]
- In other words, start by going through the “t” side of your equation from left to right. Every time you reach a “t”, subtract 1 from the exponent and multiply the entire term by the original exponent. Any constant terms (terms which don’t contain “t”) will disappear because they be multiplied by 0. This process isn’t actually as hard as it sounds — let’s derive the equation in the step above as an example:
s = -1.5t2 + 10t + 4
(2)-1.5t(2-1) + (1)10t1 – 1 + (0)4t0
-3t1 + 10t0
-3t + 10
Advertisement
- In other words, start by going through the “t” side of your equation from left to right. Every time you reach a “t”, subtract 1 from the exponent and multiply the entire term by the original exponent. Any constant terms (terms which don’t contain “t”) will disappear because they be multiplied by 0. This process isn’t actually as hard as it sounds — let’s derive the equation in the step above as an example:
-
3
Replace “s” with “ds/dt.” To show that our new equation is a derivative of the first one, we replace “s” with the notation “ds/dt”. Technically, this notation means “the derivative of s with respect to t.” A simpler way to think of this is just that ds/dt is just the slope of any given point in the first equation. For example, to find the slope of the line made by s = -1.5t2 + 10t + 4 at t = 5, we would just plug “5” into t in its derivative.
- In our running example, our finished equation should now look like this:
ds/dt = -3t + 10
- In our running example, our finished equation should now look like this:
-
4
Plug in a t value for your new equation to find instantaneous velocity.[5]
Now that you have your derivative equation, finding the instantaneous velocity at any point in time is easy. All you need to do is pick a value for t and plug it into your derivative equation. For example, if we want to find the instantaneous velocity at t = 5, we would just substitute “5” for t in the derivative ds/dt = -3 + 10. Then, we’d just solve the equation like this:ds/dt = -3t + 10
ds/dt = -3(5) + 10
ds/dt = -15 + 10 = -5 meters/second- Note that we use the label “meters/second” above. Since we’re dealing with displacement in terms of meters and time in terms of seconds and velocity in general is just displacement over time, this label is appropriate.
Advertisement
-
1
Graph your object’s displacement over time. In the section above, we mentioned that derivatives are just formulas that let us find the slope at any point for the equation you take the derivative for.[6]
In fact, if you represent an object’s displacement with a line on a graph, the slope of the line at any given point is equal to the object’s instantaneous velocity at that point.[7]
- To graph an object’s displacement, use the x axis to represent time and the y axis to represent displacement. Then, just plot points by plugging values for t into your displacement equation, getting s values for your answers, and marking the t,s (x,y) points on the graph.
- Note that the graph can extend below the x axis. If the line representing your object’s motion drops below the x axis, this represents your object moving behind where it started. Generally, your graph won’t extend behind the y axis – we don’t often measure velocity for objects moving backward in time!
-
2
Choose one point P and a point Q that is near it on the line. To find a line’s slope at a single point P, we use a trick called “taking a limit.” Taking a limit involves taking two points (P, plus Q, a point near it) on the curved line and finding the slope of the line linking them over and over again as the distance between P and Q gets smaller.
- Let’s say that our displacement line contains the points (1,3) and (4,7). In this case, if we want to find the slope at (1,3), we can set (1,3) = P and (4,7) = Q.
-
3
Find the slope between P and Q. The slope between P and Q is the difference in y-values for P and Q over the difference in x-values for P and Q. In other words, H = (yQ – yP)/(xQ – xP), where H is the slope between the two points. In our example, the slope between P and Q is:
H = (yQ – yP)/(xQ – xP)
H = (7 – 3)/(4 – 1)
H = (4)/(3) = 1.33 -
4
Repeat several times, moving Q nearer to P. Your goal here is to make the distance between P and Q smaller and smaller until it gets close to a single point. The smaller the distance between P and Q gets, the closer the slope of your tiny line segments will be to the slope at point P. Let’s do this a few times for our example equation, using the points (2,4.8), (1.5,3.95), and (1.25,3.49) for Q and our original point of (1,3) for P:
Q = (2,4.8): H = (4.8 – 3)/(2 – 1)
H = (1.8)/(1) = 1.8Q = (1.5,3.95): H = (3.95 – 3)/(1.5 – 1)
H = (.95)/(.5) = 1.9Q = (1.25,3.49): H = (3.49 – 3)/(1.25 – 1)
H = (.49)/(.25) = 1.96 -
5
Estimate the slope for an infinitely small interval on the line. As Q gets closer and closer to P, H will get closer and closer to the slope at point P. Eventually, at an infinitely small interval, H will equal the slope at P. Because we aren’t able to measure or calculate an infinitely small interval, we just estimate the slope at P once it’s clear from the points we’ve tried.[8]
- In our example, as we moved Q closer to P, we got values of 1.8, 1.9, and 1.96 for H. Since these numbers appear to be approaching 2, we can say that 2 is a good estimate for the slope at P.
- Remember that the slope at a given point on a line is equal to the derivative of the line’s equation at that point. Since our line is showing our object’s displacement over time and, as we saw in the section above, an object’s instantaneous velocity is the derivative of its displacement at a given point, we can also say that 2 meters/second is a good estimate for the instantaneous velocity at t = 1.
Advertisement
-
1
Find the instantaneous velocity at t = 4 given the displacement equation s = 5t3 – 3t2 + 2t + 9. This is just like our example in the first section, except that we’re dealing with a cubic equation rather than a quadratic equation, so we can solve it in the same way.
- First, we’ll take our equation’s derivative:
s = 5t3 – 3t2 + 2t + 9
s = (3)5t(3 – 1) – (2)3t(2 – 1) + (1)2t(1 – 1) + (0)9t0 – 1
15t(2) – 6t(1) + 2t(0)
15t(2) – 6t + 2 - Then, we’ll plug in our value for t (4):
s = 15t(2) – 6t + 2
15(4)(2) – 6(4) + 2
15(16) – 6(4) + 2
240 – 24 + 2 = 218 meters/second
- First, we’ll take our equation’s derivative:
-
2
Use graphical estimation to find the instantaneous velocity at (1,3) for the displacement equation s = 4t2 – t. For this problem, we’ll use (1,3) as our P point, but we’ll have to find a few other points near it to use as our Q points. Then, it’s just a matter of finding our H values and making an estimation.
- First, let’s find Q points at t = 2, 1.5, 1.1 and 1.01.
s = 4t2 – t
t = 2: s = 4(2)2 – (2)
4(4) – 2 = 16 – 2 = 14, so Q = (2,14)t = 1.5: s = 4(1.5)2 – (1.5)
4(2.25) – 1.5 = 9 – 1.5 = 7.5, so Q = (1.5,7.5)t = 1.1: s = 4(1.1)2 – (1.1)
4(1.21) – 1.1 = 4.84 – 1.1 = 3.74, so Q = (1.1,3.74)t = 1.01: s = 4(1.01)2 – (1.01)
4(1.0201) – 1.01 = 4.0804 – 1.01 = 3.0704, so Q = (1.01,3.0704) - Next, let’s get our H values:
Q = (2,14): H = (14 – 3)/(2 – 1)
H = (11)/(1) = 11Q = (1.5,7.5): H = (7.5 – 3)/(1.5 – 1)
H = (4.5)/(.5) = 9Q = (1.1,3.74): H = (3.74 – 3)/(1.1 – 1)
H = (.74)/(.1) = 7.3Q = (1.01,3.0704): H = (3.0704 – 3)/(1.01 – 1)
H = (.0704)/(.01) = 7.04 - Since our H values seem to be getting very close to 7, we can say that 7 meters/second is a good estimate for the instantaneous velocity at (1,3).
- First, let’s find Q points at t = 2, 1.5, 1.1 and 1.01.
Advertisement
Add New Question
-
Question
What is the difference between instantaneous and average velocity?
Instantaneous is at that moment, whereas average is the mean of the entire time span.
-
Question
How do I calculate instantaneous acceleration?
Instantaneous acceleration can be considered as the value of the derivative of the instantaneous velocity. For example:
s = 5(t^3) – 3(t^2) + 2t + 9
v = 15(t^2) – 6t + 2
a = 30t – 6If we want to know the instantaneous acceleration at t = 4, then a(4) = 30 * 4 – 6 = 114 m/(s^2)
-
Question
When is instantaneous velocity and average velocity the same?
Instantaneous velocity tells you the velocity of an object at a single moment in time. If the object is moving with a constant velocity, then the average velocity and instantaneous velocity will be the same. In all situations, they are not likely to be the same.
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
Video
-
To find acceleration (the change in velocity over time), use the method in part one to get a derivative equation for your displacement function. Then, take another derivative, this time of your derivative equation. This will give you an equation for finding acceleration at a given time – all you have to do is plug in your value for time.
-
The equation which relates Y (displacement) to X (time) might be really simple, like, for instance, Y= 6x + 3. In this case the slope is constant and it is not necessary to find a derivative to find the slope, which is, following the Y = mx + b basic model for linear graphs, 6.
-
Displacement is like distance but it has a set direction, this makes displacement a vector and speed a scalar. Displacement can be negative while distance will only be positive.
Thanks for submitting a tip for review!
Advertisement
References
About This Article
Article SummaryX
To calculate instantaneous velocity, start with an equation for velocity in terms of displacement, which should have an “s” on one side for displacement and a “t” on the other for time. Then, take the equation’s derivative and replace the “s” with the notation “ds” over “dt.” Finally, plug in a “t” value and solve the equation to find the instantaneous velocity at any point in time. To learn how to estimate instantaneous velocity graphically, scroll down!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,050,657 times.