Задание 11 первой части Профильного ЕГЭ по математике — это нахождение точек максимума и минимума функции, а также наибольших и наименьших значений функции с помощью производной.
Вот какие типы задач могут встретиться в этом задании:
Нахождение точек максимума и минимума функций
Исследование сложных функций
Нахождение наибольших и наименьших значений функций на отрезке
Нахождение точек максимума и минимума функций
1. Найдите точку максимума функции
Найдем производную функции.
Приравняем производную к нулю. Получим:
Исследуем знаки производной.
В точке производная меняет знак с «плюса» на «минус». Значит, — точка максимума функции
Ответ: 17.
2. Найдите точку минимума функции
Найдем производную функции.
Приравняем производную к нулю.
Определим знаки производной.
В точке производная меняет знак с «минуса» на «плюс». Значит, — точка минимума функции
Ответ: 1.
Исследование сложных функций
3. Найдите точку максимума функции
Перед нами сложная функция Возможно, вы знаете формулы производной сложной функции. Но вообще-то их изучают на первом курсе вуза, поэтому мы решим задачу более простым способом.
Так как функция монотонно возрастает, точка максимума функции будет при том же , что и точка максимума функции А ее найти легко.
при . В точке производная меняет знак с «плюса» на «минус». Значит, — точка максимума функции .
Заметим, что точку максимума функции можно найти и без производной.
Графиком функции является парабола ветвями вниз, и наибольшее значение достигается в вершине параболы, то есть при
Ответ: – 4.
4. Найдите абсциссу точки максимума функции
Напомним, что абсцисса — это координата по
Снова сложная функция. Применяем тот же прием, что и в предыдущей задаче.
Так как функция монотонно возрастает, точка максимума функции является и точкой максимума функции
Это вершина квадратичной параболы
Нахождение наибольших и наименьших значений функций на отрезке
5. Найдите наибольшее значение функции на отрезке
Мы помним, что наибольшее значение функции на отрезке может достигаться либо в точке максимума, либо на конце отрезка. Эти случаи показаны на рисунке.
Будем искать точку максимума функции с помощью производной. Найдем производную и приравняем ее к нулю.
Найдем знаки производной.
В точке производная равна нулю и меняет знак с “+” на “-“. Значит, x = – 2 — точка максимума функции . Поскольку при функция убывает, В этой задаче значение функции на концах отрезка искать не нужно.
Ответ: 12.
6. Найдите наименьшее значение функции на отрезке
Найдем производную функции и приравняем ее к нулю.
при
Найдем знаки производной.
Точка — точка минимума функции . Точка не лежит на отрезке Поэтому
и Значит, наименьшее значение функции на отрезке достигается при Найдем это значение.
Ответ: -11.
7. Найдите наименьшее значение функции на отрезке
Иногда перед тем, как взять производную, формулу функции полезно упростить.
Мы применили формулу для логарифма произведения. при
Если то Если , то
Значит, — точка минимума функции . В этой точке и достигается наименьшее значение функции на отрезке
Ответ: 4.
8. Найдите наибольшее значение функции на отрезке
Найдем производную функции
Приравняем производную к нулю:
. Поскольку если
Найдем знаки производной на отрезке
При знак производной меняется с «плюса» на «минус». Значит, — точка максимума функции
Мы нашли точку максимума, но это еще не все. Сравним значения функции в точке максимума и на конце отрезка, то есть при и
Мы нашли, что
Заметим, что если вам попадется такая задача в первой части ЕГЭ по математике, то находить значение функции при не обязательно. Как мы видим, это значение — число иррациональное. А в первой части ЕГЭ по математике ответом может быть только целое число или конечная десятичная дробь.
Ответ: 4.
9. Найдите наименьшее значение функции на отрезке [0;2].
Снова сложная функция. Запишем полезные формулы:
Найдем производную функции
если Тогда
При знак производной меняется с «минуса» на «плюс». Значит, — точка минимума функции
Ответ: -7.
10. Найдите наибольшее значение функции на отрезке
Как всегда, возьмем производную функции и приравняем ее к нулю.
По условию, . На этом отрезке условие выполняется только для Найдем знаки производной слева и справа от точки
В точке производная функции меняет знак с «плюса» на «минус». Значит, точка — точка максимума функции . Других точек экстремума на отрезке функция не имеет, и наибольшее значение функции на отрезке достигается при
Ответ: 12.
11.Найдите наименьшее значение функции на отрезке
Найдем производную функции и приравняем ее к нулю. — нет решений.
Что это значит? Производная функции не равна нулю ни в какой точке. Это значит, что знак производной в любой точке одинаков, а функция не имеет экстремумов и является монотонной.
Поскольку , получим, что для всех , и функция монотонно возрастает при
Значит, наименьшее свое значение функция принимает в левом конце отрезка , то есть при
Ответ: 6
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задание 11 Профильного ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Добрый день, дорогие друзья!
Решил в этой небольшой статье предложить пошаговый план решения задач на поиск либо точек экстремумов, либо на максимальные и минимальные значения функций. Хотел сделал в формате галереи на Дзене, но что-то не получилось, поэтому пусть будет статья.
Итак, вот он, пошаговый алгоритм:
Давайте разберем одну функцию как пример.
Начинаем с ОДЗ. Если нужно. Про ОДЗ уже делал разбор здесь >>
Следующий шаг – найти производную функции. Важно знать как минимум таблицу производных. Хорошо бы понимать поглубже, но для начала знания таблицы будет достаточно.
Производная от “икса” – это единичка, а от натурального логарифма – это “один делить на икс”. Далее приравниваем к нулю:
Итак, корень уравнения – это Х = 1. Но нам важно проверить, будет ли он минимумом, или максимумом. Для этого – следующий шаг:
Если производная отрицательна, значит сама функция убывает, если производная положительна, то функция растет. Если же производная в точке Х=1 меняет знак с минуса на плюс, следовательно функция убывала, а с этой точки начался рост, то есть это точка минимума.
Определив это, подставляем полученное значение в изначальную функцию:
Итак, минимум функции – это “единичка”. И еще несколько важных моментов:
Еще один момент по поводу именно этой функции, которая была в примере. Точка Х=0 является точкой смены знака, поэтому мы ее используем в методе интервалов. Но также это “запрещенная точка”, поскольку пока нам “на ноль делить нельзя”, верно? В реальности подобные точки дают нам понимание о том, что здесь у функции так называемая “ассимптота”. То есть левее этой точки функция улетает в “плюс бесконечность” вверх, а правее этой точки она убывает также из “плюс бесконечности” вниз. Но как такового “максимума” в точке нет. О подобных тонкостях анализа функций мы еще поговорим в статьях и в видео.
То, что я на последнем слайде написал про интересные случаи, когда есть точки, в которых производная обращается в ноль, но это не максимум, мы тоже разберем в отдельной статье позже. Такова, например, функция у = sinX + X. Можете попробовать сами ее поисследовать. Подобные примеры в ЕГЭ в 12-й задаче встречаются редко, но понимать их также важно.
Пожалуй, на этом все. Если есть вопросы, пишите! И до встречи в новых заметках и роликах.
Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.
Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.
Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.
Минимумы и максимумы вместе именуют экстремумами функции.
Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.
В точках экстремумов (т.е. максимумов и минимумов) производная
равна нулю.
Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.
Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).
Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?
Давайте вместе найдем количество точек экстремума функции по графику производной на примере:
У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).
Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).
Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:
– Производная положительна там, где функция возрастает.
– Производная отрицательна там, где функция убывает.
С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.
Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).
Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.
Начнем с (-13): до (-13) производная положительна т.е. функция растет, после – производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.
(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.
(- 9): функция возрастает, а потом убывает – максимум.
(-7): минимум.
(3): максимум.
Все вышесказанное можно обобщить следующими выводами:
– Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
– Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.
Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?
Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:
- Найдите производную функции (f'(x)).
- Найдите корни уравнения (f'(x)=0).
- Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
- Определите знак производной в каждом промежутке (методом интервалов).
- Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
- Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
– если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
– если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
– если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.
Всё! Точки максимумов и минимумов найдены.
Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.
Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:
(15x^4-60x^2=0) (|:15)
(x^4-4x^2=0)
(x^2 (x^2-4)=0)
(x=0) (x^2-4=0)
(x=±2)
3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:
Теперь очевидно, что точкой максимума является (-2).
Ответ. (-2).
Смотрите также:
Связь функции и её производной | 7 задача ЕГЭ
Разбор задач на поиск экстремумов, минимумов и максимумов
Скачать статью
Значения функции: наибольшее и наименьшее
В задании №12 ЕГЭ по математике профильного уровня нам необходимо найти наибольшее или наименьшее значение функции. Для этого необходимо воспользоваться, очевидно, производной. Посмотрим на типовом примере.
Разбор типовых вариантов заданий №12 ЕГЭ по математике профильного уровня
Первый вариант задания (демонстрационный вариант 2018)
[su_note note_color=”#defae6″]
Найти точку максимума функции y = ln(x+4)2+2x+7.
[/su_note]
Алгоритм решения:
- Определяем область определения функции.
- Находим производную.
- Определяем, в каких точках производная равна 0.
- Исключаем точки, не принадлежащие области определения.
- Среди оставшихся точек ищем значения х, в которых функция имеет максимум.
- Записываем ответ.
Решение:
1. Ищем значения х, при которых логарифм имеет смысл. Для этого решаем неравенство:
(x+4)2 > 0
Поскольку квадрат любого числа неотрицателен. Решением неравенства будет лишь то значение х, при котором х+4≠ 0, т.е. при х≠-4.
2. Находим производную:
у’=(ln(x+4)2 + 2x + 7)’
По свойству логарифма получаем:
у’=(ln(x+4)2 )’+(2x)’+(7)’.
По формуле производной сложной функции:
(lnf)’=(1/f)∙f’. У нас f=(x+4)2
у, = (ln(x+4)2 )’+ 2 + 0 = (1/(x+4)2 )∙((x+4)2)’ + 2=(1/(x+4)2 2)∙(х2 + 8х + 16)’ +2=2(х + 4) /((х + 4)2) + 2
у’= 2/(х + 4) + 2
3. Приравниваем производную к нулю:
у, = 0 → (2+2∙(х + 4))/(х + 4)=0,
2 +2х +8 =0, 2х + 10 = 0,
2х = -10,
х = -5
Ответ: -5.
Второй вариант задания (из Ященко, №1)
[su_note note_color=”#defae6″]
Найдите точку минимума функции y = x – ln(x+6) + 3.
[/su_note]
Алгоритм решения:
- Определяем область определения функции.
- Находим производную.
- Определяем, в каких точках производная равна 0.
- Исключаем точки, не принадлежащие области определения.
- Среди оставшихся точек ищем значения х, в которых функция имеет минимум.
- Записываем ответ.
Решение:
1. ОДЗ: .
2. Найдем производную функции:
3. Приравниваем полученное выражение к нулю:
4. Получили одну точку x=-5, принадлежащую области определения функции.
5. В этой точке функция имеет экстремум. Проверим, минимум ли это. При х=-4
При х=-5,5 производная функции отрицательна, так как
Значит, точка х=-5 является точкой минимума.
Ответ: -5.
Третий вариант задания (из Ященко, №12)
[su_note note_color=”#defae6″]
Найдите наибольшее значение функции на отрезке [-3; 1].
[/su_note]
Алгоритм решения:.
- Находим производную.
- Определяем, в каких точках производная равна 0.
- Исключаем точки, не принадлежащие заданному отрезку.
- Среди оставшихся точек ищем значения х, в которых функция имеет максимум.
- Находим значения функции на концах отрезка.
- Ищем среди полученных значений наибольшее.
- Записываем ответ.
Решение:
1. Вычисляем производную от функции, получим
2. Приравниваем производную к нулю:
Решение уравнения дает два корня
– не принадлежит множеству действительных чисел
.
3. Значение и остается одна точка .
4. Вычисляем значения функции в точке -2 и на концах отрезка -3 и 1, получим:
Наибольшее значение функции на заданном отрезке равно 48 в точке х=-2.
Ответ: 48.
Даниил Романович | Просмотров: 12k
было в ЕГЭ
в условии
в решении
в тексте к заданию
в атрибутах
Категория
Атрибут
Всего: 229 1–20 | 21–40 | 41–60 | 61–80 …
Добавить в вариант
Найдите точку минимума функции
Найдите точку минимума функции
Найдите точку минимума функции
Найдите наименьшее значение функции на отрезке [−2,5; 0].
Найдите наименьшее значение функции на отрезке
Найдите наименьшее значение функции на отрезке
Найдите наименьшее значение функции на отрезке
Найдите точку минимума функции
Найдите точку минимума функции
Найдите точку минимума функции
Найдите точку минимума функции
На рисунке изображен график функции y=f(x), определенной на интервале (−3; 9). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 12 или совпадает с ней.
Найдите наименьшее значение функции на отрезке
Найдите точку минимума функции
Найдите точку минимума функции
Найдите наименьшее значение функции на отрезке [−2,5; 0].
Всего: 229 1–20 | 21–40 | 41–60 | 61–80 …