Задание B14 в ЕГЭ по математике завершает первую его часть, представляющую собой, по сути, итоговую контрольную работу по курсу математики 11 класса. К выполнению заданий только первой части ЕГЭ репетиторы по математике готовят учащихся, цель которых — спокойная сдача экзамена и получение хорошей отметки по математике в аттестат. Во второй части ЕГЭ по математике присутствуют задания, умение решать которые понадобится выпускникам, собирающимся поступать в вузы, учебная программа которых в той или иной мере связана с математикой, на что обращает внимание при подготовке своих занятий профессиональный репетитор.
Задача B14 из ЕГЭ 2012 по математике соответствует задаче B11 из ЕГЭ 2011 по математике и представляет собой задание на исследование элементарных функций (дробно-рациональных, иррациональных, тригонометрических, показательных, логарифмических). Чаще всего это исследование сводится к нахождению наибольшего (наименьшего) значения функции на отрезке или же максимума (минимума) функции. Существует два различных подхода к решению этих задач: с использованием и без использования понятия производной функции. В статье представлен краткий обзор каждого из них.
Решение задач B14 с помощью производных
Что нужно знать для решения задач на исследование функций с помощью понятия производной из ЕГЭ по математике. Выделим здесь три основных пункта:
1. Безупречное знание производных элементарных функций, изучаемых в школьном курсе математики. Обязательно выучите из наизусть!
Таблица производных элементарных функций
Функция | Производная |
Постоянная | |
Степенная | |
Показательная | |
Экспоненциальная | |
Синус | |
Косинус | |
Тангенс | |
Котангенс | |
Логарифмическая | |
Натуральный логарифм | |
Арксинус | |
Арккосинус | |
Арктангенс | |
Арккотангенс |
2. Безупречное знание и умение применить на практике основные правила вычисления производных. Это одно из основополагающих обстоятельств, определяющих математическую грамотность человека.
Основные правила вычисления производных
Правило вычисления производной произведения имеет полезное следствие, которое также требуется запомнить: если то (постоянный множитель можно выносить за знак производной).
3. Знание и понимание алгоритмов нахождения наибольшего (наименьшего) значения функции, а также максимума (минимума) функции с использованием понятия производной функции (подробнее об этом читайте в статье «Решаем задачи B14 из ЕГЭ»). Когда дело доходит до алгоритмов, без конкретных примеров не обойтись, разбором которых мы сейчас и займемся.
Алгоритм нахождения наименьшего или наибольшего значения функции на отрезке
Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке
Задача для самостоятельного решения №1. Найдите наибольшее значение функции на отрезке
Показать ответ
Ответ:
Алгоритм нахождения точки максимума или минимума функции
Алгоритм нахождения максимума или минимума функции
Задача для самостоятельного решения №2. Найдите точку минимума функции
Показать ответ
Ответ:
Задачи, подобные данным, предлагаются выпускникам школ в заданиях B14 на ЕГЭ по математике. Это, скажет так, тот «минимум», который должен, по мнению составителей ЕГЭ, освоить каждый современный человек. Ну и ни для кого не секрет, что этим минимумом большинство и ограничивается. Мы же с вами не будем уподобляться «читателям газет» из замечательного стихотворения Марины Цветаевой и решим еще одну задачу, связанную с исследованием функции на максимальное значение с использованием понятия производной.
Пример 1. Докажите, что прямоугольник с данной диагональю имеет наибольшую площадь, если он квадрат.
Решение. Обозначим одну из сторон такого прямоугольника за Тогда длина второй стороны может быть определена из теоремы Пифагора и будет равна Тогда его площадь равна Фактически это функция от переменной Определим при каком значении эта функция принимает наибольшее значение.
Область определения данной функции определяется промежутком . Находим производную.
В области определения функции производная обращается в ноль в точке при этом знак производной меняется с плюса на минус. Следовательно, это единственная точка максимума, и максимальное значение данная функция принимает именно в ней. Но прямоугольник с диагональною и стороной — это квадрат (следует из теоремы Пифагора). Что и требовалось доказать.
Задача для самостоятельного решения №3. Из всех прямоугольников, у которых две вершины лежат на оси «внутри параболы», а две другие — на параболе выбран прямоугольник с наибольшей площадью. Найти эту площадь.
Показать ответ
Ответ:
Решение задач B14 без использования понятия производной
Возможно некоторым школьникам, привыкшим решать задачи по математике исключительно по отработанному алгоритму, изложенное далее покажется излишним, ведь все предлагаемые в B14 задания из ЕГЭ можно решить с помощью производной. Однако, это вовсе не означает, что данный способ во всех случаях оказывается простейшим из возможных. Чтобы в этом убедиться, предлагаю вам самостоятельно выполнить следующие несложные задания:
1) найдите наименьшее и наибольшее значения функции на отрезке
Показать решение
Эта функция возрастает на данном отрезке (коэффициент при положителен), поэтому наименьшего в нем значения она достигает на его левом конце а наибольшего — на правом
2) для функции найдите наибольшее и наименьшее значения на отрезке
Показать решение
Графиком данной квадратичной функции является парабола, ветви которой направлены вверх (коэффициент при положителен), а абсцисса ее вершины равна Эта точка принадлежит отрезку в ней функция достигает своего наименьшего значения на этом отрезке Наибольшее значение на рассматриваемом отрезке функция достигает в том из его концов, который наиболее удален от то есть
3) найдите наименьшее и наибольшее значения функции на отрезке
Показать решение
Длина рассматриваемого отрезка больше (основного периода синусоиды). Следовательно, на отрезке функция принимает свое наибольшее и наименьшее значения. Вместе с тем свои наибольшее и наименьшее значения принимает и исходная функция.
Замена переменной
Пример 2. Найдите наименьшее значение функции на отрезке
Решение. Используя основное тригонометрическое тождество, преобразуем функцию к виду: Используем замену Так как то
Ищем тогда наименьшее значение функции на отрезке Оно достигается в вершине данной параболы, ветви которой направлены вверх (коэффициент при положителен), то есть в точке исходная переменная принимает при этом значение
Соответствующее значение функции равно
Ответ:
Задача для самостоятельного решения №4. Найдите наибольшее и наименьшее значения функции на отрезке
Показать ответ
Ответ:
Использование монотонности функций
Пример 3. Найдите точку максимума функции
Решение. Логарифмическая функция является возрастающей (большему значению аргумента соответствует большее значение функции), поэтому достаточно найти максимум функции он же будет являться максимумом для исходной функции.
Максимума данная квадратичная функция достигает в точке Соответствующее значение входит в область определения исходной функции.
Ответ:
Задача для самостоятельного решения №5. Найдите точку максимума функции
Показать ответ
Ответ:
Задача для самостоятельного решения №6. В центре квадратной комнаты площадью м2 висит лампа. На какой высоте от пола должна находиться лампа, чтобы освещенность в углах комнаты была наибольшей? Освещенность от точечного источника света вычисляется по формуле:
где — сила света (постоянная в данной задаче величина), — расстояние от источника, — угол падения лучей света относительно нормали к поверхности.
Показать ответ
Ответ: м.
Не сходится с ответом?
Показать решение
Как репетитор по физике и математике, занимающийся подготовкой школьников к сдаче ЕГЭ и ГИА, могу сказать, что ученики, которое ориентируются на поступление в вуз (в особенности это касается математических вузов) должны понимать, что им нужно решать безошибочно все задания части B. Потеря баллов по невнимательности за неверное выполнение несложных заданий первой части ЕГЭ — непозволительная для них роскошь. Поэтому я всегда советую проверять свои решения. Не пренебрегайте этой возможностью, она позволит вам улучшить свои результаты на экзамене.
Репетитор по математике на Юго-Западной
Сергей Валерьевич
Единственный способ освоить язык программирования — это писать на нем программы. © Д. М. Ричи
В этой статье мы разберём базовый алгоритм решения номера 12 из профиля ЕГЭ по математике!
Итак, перед нами условие:
В заданиях 12 основное умение, которое вам пригодится – умение брать производную. В данном номере надо найти минимум функции. Для того чтобы найти минимум (или максимум) функции необходимо:
1) Найти производную функции
2) Найти нули производной
3) Найти промежутки возрастания или убывания функции
4) Определить точки минимума или максимума функции
5) На основе полученных данных записать ответ и ВСЁ!
Итак, следуем алгоритму. Запишем производную данной функции (про производные скоро выйдет отдельная статья):
Далее находим нули получившейся производной. У нас дробь, поэтому числитель должен быть равен 0, а знаменатель не равен 0. Получаем икс, равное -5. На всякий случай подставим его в знаменатель, чтобы убедиться, что у нас там не выйдет 0. К счастью, такого не случилось, поэтому теперь определяем возрастание и убывание функции.
Чтобы определить возрастание или убывание функции надо воспользоваться методом интервалов. Для этого изобразим прямую, отметим на ней наши нули функции:
Далее найдём промежутки возрастания и убывания функции. Для этого можно просто подставлять любые значения из получившихся промежутков (до 5 и после 5) в ПРОИЗВОДНУЮ(!) Большая ошибка подставлять значения в функцию вместо производной, может получиться неверный знак! Итак, подставляя значения правее и левее пятёрки в производную, получаем знак “плюс” справа (так как производная положительна) и знак “минус” слева (производная отрицательная):
Что мы таким образом получили? Мы получили знаки производной! А эти знаки означают, убывает ли функция или возрастает. Когда знак производной положителен, функция возрастает; когда знак производной отрицателен, функция убывает. Отметим условными стрелочками возрастание или убывание функции под прямой:
Ну что же, теперь видно невооружённым взглядом – точка -5 является точкой, где функция переходит от убывания к возрастанию! Также несложно догадаться, что она является минимумом функции, который нам надо найти. Если бы функция шла вверх, а потом начала бы убывать, то этой была бы точка максимума. Таким образом, мы нашли точку минимума функции, чего мы и добивались. Поэтому смело можем записать ОТВЕТ: -5.
Следует сказать, что этот алгоритм универсален для решения всех 12-х номеров, они все нацелены на нахождение минимумов или максимумов функции. Поэтому основной навык, который вам может пригодиться при решении этих задач – это умение искать производную.
ПОНРАВИЛАСЬ СТАТЬЯ? ОБЯЗАТЕЛЬНО ПОДПИШИСЬ И ПОСТАВЬ ЛАЙК! ТАКЖЕ ПОДПИСЫВАЙСЯ НА МЕНЯ ВКОНТАКТЕ ПО ССЫЛКЕ: https://vk.com/hello_there_2021 Удачи!
P.S. Пишите в комментарии или в личку задачи, которые были бы Вам интересны для разбора или которые вызывают трудности. Постараюсь всем ответить!
Алгебра и начала математического анализа, 11 класс
Урок № 16. Экстремумы функции.
Перечень вопросов, рассматриваемых в теме
1) Определение точек максимума и минимума функции
2) Определение точки экстремума функции
3) Условия достаточные для нахождения точек экстремума функции
Глоссарий по теме
Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Максимум функции. Значение функции в точке максимума называют максимумом функции
Минимум функции. Значение функции в точке минимума называют минимумом функции
Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).
Точка максимума функции. Точку х0 называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точка минимума функции. Точку х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство .
Точки экстремума функции. Точки минимума и максимума называют точками экстремума.
Убывание функции. Функция y = f(x) убывает на интервале X, если для любых х1 и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.
Алгоритм исследования функции на монотонность и экстремумы:
1) Найти область определения функции D(f)
2) Найти f’ (x).
3) Найти стационарные (f'(x) = 0) и критические (f'(x) не
существует) точки функции y = f(x).
4) Отметить стационарные и критические точки на числовой
прямой и определить знаки производной на получившихся
промежутках.
5) Сделать выводы о монотонности функции и точках ее
экстремума.
Основная литература:
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Дополнительная литература:
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Точки, в которых происходит изменение характера монотонности функции – это ТОЧКИ ЭКСТРЕМУМА.
- Точку х = х0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≥ f(x0).
- Точку х = х0 называют точкой максимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой выполняется неравенство f(x) ≤ f(x0).
Точки максимума и минимума – точки экстремума.
Функция может иметь неограниченное количество экстремумов.
Критическая точка – это точка, производная в которой равна 0 или не существует.
Важно помнить, что любая точка экстремума является критической точкой, но не всякая критическая является экстремальной.
Алгоритм нахождения максимума/минимума функции на отрезке:
- найти экстремальные точки функции, принадлежащие отрезку,
- найти значение функции в экстремальных точках из пункта 1 и в концах отрезка,
- выбрать из полученных значений максимальное и минимальное.
Примеры и разбор решения заданий тренировочного модуля
№1. Определите промежуток монотонности функции у=х2 -8х +5
Решение: Найдем производную заданной функции: у’=2x-8
2x-8=0
х=4
Определяем знак производной функции и изобразим на рисунке, следовательно, функция возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
Ответ: возрастает при хϵ (4;+∞); убывает при хϵ (-∞;4)
№2. Найдите точку минимума функции у= 2х-ln(х+3)+9
Решение: Найдем производную заданной функции:
Найдем нули производной:
х=-2,5
Определим знаки производной функции и изобразим на рисунке поведение функции:
Ответ: -2,5 точка min
№3. Материальная точка движется прямолинейно по закону x(t) = 10t2 − 48t + 15, где x – расстояние от точки отсчета в метрах, t – время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t = 3с.
Решение: Если нас интересует движение автомобиля, то, принимая в качестве функции зависимость пройденного расстояния от времени, с помощью производной мы получим зависимость скорости от времени.
V=х'(t)= 20t – 48. Подставляем вместо t 3c и получаем ответ. V=12 мc
Ответ: V=12 мc
№4. На рисунке изображен график функции. На оси абсцисс отмечены семь точек: x1, x2, x3, x4, x5, x6, x7. Определите количество целых точек, в которых производная функции отрицательна.
Решение: Производная функции отрицательна на тех интервалах, на которых функция убывает. В данном случае это точки х3,х5,х7. Следовательно, таких точек 3
Ответ: 3
Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.
Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.
Возрастание и убывание функции на интервале
Функция y=f(x) будет возрастать на интервале x, когда при любых x1∈X и x2∈X , x2>x1неравенство f(x2)>f(x1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.
Функция y=f(x) считается убывающей на интервале x, когда при любых x1∈X, x2∈X, x2>x1 равенство f(x2)>f(x1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.
Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где х=а, х=b, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.
Основные свойства элементарных функций типа y=sinx – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале -π2; π2, тогда возрастание на отрезке имеет вид -π2; π2.
Точки экстремума, экстремумы функции
Точка х0 называется точкой максимума для функции y=f(x), когда для всех значений x неравенство f(x0)≥f(x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается ymax.
Точка х0 называется точкой минимума для функции y=f(x), когда для всех значений x неравенство f(x0)≤f(x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида ymin.
Окрестностями точки х0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.
Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.
Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [a;b]. Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х=b.
Достаточные условия возрастания и убывания функции
Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.
Первое достаточное условие экстремума
Пусть задана функция y=f(x), которая дифференцируема в ε окрестности точки x0, причем имеет непрерывность в заданной точке x0. Отсюда получаем, что
- когда f'(x)>0 с x∈(x0-ε; x0) и f'(x)<0 при x∈(x0; x0+ε), тогда x0 является точкой максимума;
- когда f'(x)<0 с x∈(x0-ε; x0) и f'(x)>0 при x∈(x0; x0+ε), тогда x0 является точкой минимума.
Иначе говоря, получим их условия постановки знака:
- когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком, то есть с + на -, значит, точка называется максимумом;
- когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком с – на +, значит, точка называется минимумом.
Алгоритм для нахождения точек экстремума
Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:
- найти область определения;
- найти производную функции на этой области;
- определить нули и точки, где функция не существует;
- определение знака производной на интервалах;
- выбрать точки, где функция меняет знак.
Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.
Найти точки максимума и минимума заданной функции y=2(x+1)2x-2.
Решение
Область определения данной функции – это все действительные числа кроме х=2. Для начала найдем производную функции и получим:
y’=2x+12x-2’=2·x+12’·(x-2)-(x+1)2·(x-2)'(x-2)2==2·2·(x+1)·(x+1)’·(x-2)-(x+1)2·1(x-2)2=2·2·(x+1)·(x-2)-(x+2)2(x-2)2==2·(x+1)·(x-5)(x-2)2
Отсюда видим, что нули функции – это х=-1, х=5, х=2, то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:
Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х=-2, х=0, х=3, х=6.
Получаем, что
y'(-2)=2·(x+1)·(x-5)(x-2)2x=-2=2·(-2+1)·(-2-5)(-2-2)2=2·716=78>0, значит, интервал -∞; -1 имеет положительную производную. Аналогичным образом получаем, что
y'(0)=2·(0+1)·0-50-22=2·-54=-52<0y'(3)=2·(3+1)·(3-5)(3-2)2=2·-81=-16<0y'(6)=2·(6+1)·(6-5)(6-2)2=2·716=78>0
Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.
Получим, что в точке х=-1 функция будет непрерывна, значит, производная изменит знак с + на -. По первому признаку имеем, что х=-1 является точкой максимума, значит получаем
ymax=y(-1)=2·(x+1)2x-2x=-1=2·(-1+1)2-1-2=0
Точка х=5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид
ymin=y(5)=2·(x+1)2x-2x=5=2·(5+1)25-2=24
Графическое изображение
Ответ: ymax=y(-1)=0, ymin=y(5)=24.
Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x0, этим и упрощает вычисление.
Найти точки максимума и минимума функции y=16×3=2×2+223x-8.
Решение.
Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:
-16×3-2×2-223x-8, x<016×3-2×2+223x-8, x≥0
После чего необходимо найти производную:
y’=16×3-2×2-223x-8′, x<016×3-2×2+223x-8′, x>0y’=-12×2-4x-223, x<012×2-4x+223, x>0
Точка х=0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:
lim y’x→0-0=lim yx→0-0-12×2-4x-223=-12·(0-0)2-4·(0-0)-223=-223lim y’x→0+0=lim yx→0-012×2-4x+223=12·(0+0)2-4·(0+0)+223=+223
Отсюда следует, что функция непрерывна в точке х=0, тогда вычисляем
lim yx→0-0=limx→0-0-16×3-2×2-223x-8==-16·(0-0)3-2·(0-0)2-223·(0-0)-8=-8lim yx→0+0=limx→0-016×3-2×2+223x-8==16·(0+0)3-2·(0+0)2+223·(0+0)-8=-8y(0)=16×3-2×2+223x-8x=0=16·03-2·02+223·0-8=-8
Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:
-12×2-4x-223, x<0D=(-4)2-4·-12·-223=43×1=4+432·-12=-4-233<0x2=4-432·-12=-4+233<0
12×2-4x+223, x>0D=(-4)2-4·12·223=43×3=4+432·12=4+233>0x4=4-432·12=4-233>0
Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x=-6, x=-4, x=-1, x=1, x=4, x=6. Получим, что
y'(-6)=-12×2-4x-223x=-6=-12·-62-4·(-6)-223=-43<0y'(-4)=-12×2-4x-223x=-4=-12·(-4)2-4·(-4)-223=23>0y'(-1)=-12×2-4x-223x=-1=-12·(-1)2-4·(-1)-223=236<0y'(1)=12×2-4x+223x=1=12·12-4·1+223=236>0y'(4)=12×2-4x+223x=4=12·42-4·4+223=-23<0y'(6)=12×2-4x+223x=6=12·62-4·6+223=43>0
Изображение на прямой имеет вид
Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что
x=-4-233, x=0, x=4+233, тогда отсюда точки максимума имеют значениx=-4+233, x=4-233
Перейдем к вычислению минимумов:
ymin=y-4-233=16×3-22+223x-8x=-4-233=-8273ymin=y(0)=16×3-22+223x-8x=0=-8ymin=y4+233=16×3-22+223x-8x=4+233=-8273
Произведем вычисления максимумов функции. Получим, что
ymax=y-4+233=16×3-22+223x-8x=-4+233=8273ymax=y4-233=16×3-22+223x-8x=4-233=8273
Графическое изображение
Ответ:
ymin=y-4-233=-8273ymin=y(0)=-8ymin=y4+233=-8273ymax=y-4+233=8273ymax=y4-233=8273
Второй признак экстремума функции
Если задана функция f'(x0)=0, тогда при ее f”(x0)>0 получаем, что x0 является точкой минимума, если f”(x0)<0, то точкой максимума. Признак связан с нахождением производной в точке x0.
Найти максимумы и минимумы функции y=8xx+1.
Решение
Для начала находим область определения. Получаем, что
D(y): x≥0x≠-1⇔x≥0
Необходимо продифференцировать функцию, после чего получим
y’=8xx+1’=8·x’·(x+1)-x·(x+1)'(x+1)2==8·12x·(x+1)-x·1(x+1)2=4·x+1-2x(x+1)2·x=4·-x+1(x+1)2·x
При х=1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение при х=1. Получаем:
y”=4·-x+1(x+1)2·x’==4·(-x+1)’·(x+1)2·x-(-x+1)·x+12·x'(x+1)4·x==4·(-1)·(x+1)2·x-(-x+1)·x+12’·x+(x+1)2·x'(x+1)4·x==4·-(x+1)2x-(-x+1)·2x+1(x+1)’x+(x+1)22x(x+1)4·x==-(x+1)2x-(-x+1)·x+1·2x+x+12x(x+1)4·x==2·3×2-6x-1x+13·x3⇒y”(1)=2·3·12-6·1-1(1+1)3·(1)3=2·-48=-1<0
Значит, использовав 2 достаточное условие экстремума, получаем, что х=1 является точкой максимума. Иначе запись имеет вид ymax=y(1)=811+1=4.
Графическое изображение
Ответ: ymax=y(1)=4..
Третье достаточное условие экстремума
Функция y=f(x) имеет ее производную до n-го порядка в ε окрестности заданной точки x0 и производную до n+1-го порядка в точке x0. Тогда f'(x0)=f”(x0)=f”'(x0)=…=fn(x0)=0.
Отсюда следует, что когда n является четным числом, то x0 считается точкой перегиба, когда n является нечетным числом, то x0 точка экстремума, причем f(n+1)(x0)>0, тогда x0 является точкой минимума, f(n+1)(x0)<0, тогда x0 является точкой максимума.
Найти точки максимума и минимума функции yy=116(x+1)3(x-3)4.
Решение
Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что
y’=116x+13′(x-3)4+(x+1)3x-34’==116(3(x+1)2(x-3)4+(x+1)34(x-3)3)==116(x+1)2(x-3)3(3x-9+4x+4)=116(x+1)2(x-3)3(7x-5)
Данная производная обратится в ноль при x1=-1, x2=57, x3=3. То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что
y”=116x+12(x-3)3(7x-5)’=18(x+1)(x-3)2(21×2-30x-3)y”(-1)=0y”57=-368642401<0y”(3)=0
Значит, что x2=57 является точкой максимума. Применив 3 достаточный признак, получаем, что при n=1 и f(n+1)57<0.
Необходимо определить характер точек x1=-1, x3=3. Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что
y”’=18(x+1)(x-3)2(21×2-30x-3)’==18(x-3)(105×3-225×2-45x+93)y”'(-1)=96≠0y”'(3)=0
Значит, x1=-1 является точкой перегиба функции, так как при n=2 и f(n+1)(-1)≠0. Необходимо исследовать точку x3=3. Для этого находим 4 производную и производим вычисления в этой точке:
y(4)=18(x-3)(105×3-225×2-45x+93)’==12(105×3-405×2+315x+57)y(4)(3)=96>0
Из выше решенного делаем вывод, что x3=3 является точкой минимума функции.
Графическое изображение
Ответ: x2=57 является точкой максимума, x3=3 – точкой минимума заданной функции.
найти экстремумы функции
f(x)=x2x−1
.
Производная этой функции —
f′(x)=xx−2(x−1)2
, значит, критические точки функции — это (x=0) и (x=2). Точка (x=1) не принадлежит области определения функции.
Они делят реальную числовую прямую на четыре интервала:
−∞;0∪0;1∪1;2∪2;+∞
. Знак первого интервала положительный (например,
f′
((-1)=0.75)). Второго — отрицательный, третьего — отрицательный, четвёртого — положительный.
−∞;0 |
0;1 |
1;2 |
2;+∞ |
(+) |
(-) |
(-) |
(+) |
Значит, производная меняет знак только в точках (x=0) и (x=2).
В точке (x=0) она меняет знак с положительного на отрицательный, значит, это точка локального максимума со значением функции (f(0)=0).
В точке (x=2) она меняет знак с отрицательного на положительный, значит, это точка локального минимума со значением функции (f(2)=4).