Экстремумы функции
С помощью данного сервиса можно найти наибольшее и наименьшее значение функции одной переменной f(x) с оформлением решения в Word. Если же задана функция f(x,y), следовательно, необходимо найти экстремум функции двух переменных. Также можно найти интервалы возрастания и убывания функции.
- Решение онлайн
- Видеоинструкция
- Оформление Word
- Также решают
Необходимое условие экстремума функции одной переменной
Уравнение f’0(x*) = 0 – это необходимое условие экстремума функции одной переменной, т.е. в точке x* первая производная функции должна обращаться в нуль. Оно выделяет стационарные точки xс, в которых функция не возрастает и не убывает.
Достаточное условие экстремума функции одной переменной
Пусть f0(x) дважды дифференцируемая по x, принадлежащему множеству D. Если в точке x* выполняется условие:
f’0(x*) = 0
f”0(x*) > 0
то точка x* является точкой локального (глобального) минимума функции.
Если в точке x* выполняется условие:
f’0(x*) = 0
f”0(x*) < 0
то точка x* – локальный (глобальный) максимум.
Пример №1. Найти наибольшее и наименьшее значения функции:
на отрезке [1; 3].
Решение.
Критическая точка одна x1 = 2 (f’(x)=0). Эта точка принадлежит отрезку [1;3]. (Точка x=0 не является критической, так как 0∉[1;3]).
Вычисляем значения функции на концах отрезка и в критической точке.
f(1)=9, f(2)=5/2, f(3)=3 8/81
Ответ: fmin=5/2 при x=2; fmax=9 при x=1
Пример №2. С помощью производных высших порядков найти экстремум функции y=x-2sin(x)
.
Решение.
Находим производную функции: y’=1-2cos(x)
. Найдем критические точки: 1-cos(x)=2, cos(x)=½, x=±π/3+2πk, k∈Z. Находим y’’=2sin(x), вычисляем , значит x=π/3+2πk, k∈Z – точки минимума функции; , значит x=-π/3+2πk, k∈Z – точки максимума функции.
Пример №3. Исследовать на экстремум фцнкцию в окрестностях точки x=0.
Решение. Здесь необходимо найти экстремумы функции. Если экстремум x=0
, то выяснить его тип (минимум или максимум). Если среди найденных точек нет x = 0, то вычислить значение функции f(x=0).
Следует обратить внимание, что когда производная с каждой стороны от данной точки не меняет своего знака, не исчерпываются возможные ситуации даже для дифференцируемых функций: может случиться, что для сколь угодно малой окрестности по одну из сторон от точки x0 или по обе стороны производная меняет знак. В этих точках приходится применять другие методы для исследования функций на экстремум.
Пример №4. Разбить число 49 на два слагаемых, произведение которых будет наибольшим.
Решение. Обозначим x – первое слагаемое. Тогда (49-x) – второе слагаемое.
Произведение будет максимальным: x·(49-x) → max
или
49x – x2
Наибольший объем цилиндра
Найти размеры цилиндра наибольшего объема, изготовленного из заготовки в форме шара радиуса R.
Решение:
Объем цилиндра равен: V = πr2H
где H = 2h,
Подставим эти значения в целевую функцию.
V → max
Найдем экстремум функции. Поскольку функция объема V(h) зависит только от одной переменной, то найдем производную с помощью сервиса Производная онлайн
и приравняем ее к нулю.
dV/dh = 2πR2 – 6πh2
dV/dh = 0
2πR2 – 6πh2 = 0 или R2 = 3h2
Откуда
При высоте и радиусе основания размеры цилиндра будут наибольшими.
Найти экстремумы функции
Данный калькулятор предназначен для нахождения экстремумов функции.
Следует различать понятия точек экстремума и экстремумов функции. Точки экстремума – точки максимума и минимума функции, это значения на оси Ox. Точка x0 является точкой максимума функции y=f(x), если для всех x из ее окрестности выполняется неравенство f(x0)≥f(x). Точка x0 является точкой минимума функции y=f(x), если из ее окрестности для всех x выполняется неравенство f(x0)≤f(x). Значения функции, которые соответствуют точкам экстремума, называются экстремумами функции, это значения на оси Oy.
Для того чтобы найти экстремумы функции можно использовать любой из трех условий экстремума, если функция удовлетворяет эти условиям.
Первым достаточным условием экстремума являются следующие утверждения: если в точке x0 функция непрерывна, и в ней производная меняет знак с плюса на минус, то точка x0 является точкой максимума, а если в данной точке производная меняет знак с минуса на плюс, то x0 – точка минимума.
Вторым признаком экстремума является следующее утверждение: если производная второго порядка от x0 больше нуля, то x0 – точка минимума; если меньше нуля, то x0 – точка максимума.
Третье достаточное условие экстремума функции заключается в следующем. Пусть функция y=f(x) имеет производные до n-ого порядка в окрестности точки x0 и производные до n+1-ого порядка в самой точке x0; пусть f’(x0)= f’’(x0)= f’’’(x0)=…=f(n)( x0)=0 и f(n+1)( x0)≠0. Тогда, если n – нечетное, то x0 – точка экстремума. Если f(n+1)( x0)>0, то x0 – точка минимума, а, если f(n+1)( x0)<0, то x0 – точка максимума.
Для того чтобы найти экстремумы функции, введите эту функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.
Для получения полного хода решения нажимаем в ответе Step-by-step.
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Экстремумом функции
называется точка минимума или максимума функции. Рассмотрим функцию, график которой приведен на рисунке:
Из графика видно, что точки
(x1,
y1),
(x3,
y3)
являются точками максимума функции, точки
(x2,
y2),
(x4,
y4)
– точками минимума функции. Вместе эти точки, называются точками экстремума функции.
Характерной особенностью является тот факт, что касательная к функции в точках экстремума параллельна оси абсцисс (геометрический смысл точек экстремума). Отсюда немедленно следует, что производная функции в точках экстремума равна нулю (необходимое условие экстремума). Кроме того, в точках экстремума функция может быть не дифференцируемой.
Иногда, требуется найти минимальное (максимальное) значение функции на некотором интервале
[a,
b].
В этом случае необходимо найти точки
экстремума функции
принадлежащие этому интервалу, а также проверить значения функции на концах интервала.
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
absolute:крайние:точки:y=frac{x^{2}+x+1}{x}
-
absolute:крайние:точки:f(x)=x^3
-
absolute:крайние:точки:f(x)=ln (x-5)
-
absolute:крайние:точки:f(x)=frac{1}{x^2}
-
absolute:крайние:точки:y=frac{x}{x^2-6x+8}
-
absolute:крайние:точки:f(x)=sqrt{x+3}
-
absolute:крайние:точки:f(x)=cos(2x+5)
-
absolute:крайние:точки:f(x)=sin(3x)
- Показать больше
Описание
Пошаговый поиск абсолютных экстремумов функций
function-absolute-extreme-points-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
Functions
A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Исследование функции по-шагам
Примеры исследуемых функций
- График логарифмической функции
-
y = log(x)/x
- График показательной функции
-
y = 2^x - 3^x
- График степенной функции
-
f(x) = x^5 - x^4 + x^2 - x + 1
- График гиперболы
-
f(x) = (x - 1)/(x + 1)
-
y = 1/x
- График квадратичной функции
-
x^2 - x + 5
- График тригонометрической функции
-
sin(x) - 2*cos(x) + 3*sin(2*x)
- Функция Гомпертца
-
e/2*e^(-e^-x)
-
e^(-e^-x)
-
-1/2*e^(-e^-x)
-
e^(-1/4*e^(-x))
-
e^(-e^(-2*x))
- Логистическая кривая
-
1/(1 + exp(-x))
Что исследует?
- Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
- Умеет определять точки пересечения графика функции с осями координат
- Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
- Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
- Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
- Горизонтальные асимптоты графика функции
- Наклонные асимптоты графика функции
- Четность и нечетность функции
Подробнее про Исследование функции
.
Указанные выше примеры содержат также:
- модуль или абсолютное значение: absolute(x) или |x|
-
квадратные корни sqrt(x),
кубические корни cbrt(x) -
тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
-
обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
арккотангенс acot(x) -
натуральные логарифмы ln(x),
десятичные логарифмы log(x) -
гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x),
гиперболический тангенс и котангенс tanh(x), ctanh(x) -
обратные гиперболические функции:
гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x) -
другие тригонометрические и гиперболические функции:
секанс sec(x), косеканс csc(x), арксеканс asec(x),
арккосеканс acsc(x), гиперболический секанс sech(x),
гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
гиперболический арккосеканс acsch(x) -
функции округления:
в меньшую сторону floor(x), в большую сторону ceiling(x) -
знак числа:
sign(x) -
для теории вероятности:
функция ошибок erf(x) (интеграл вероятности),
функция Лапласа laplace(x) -
Факториал от x:
x! или factorial(x) - Гамма-функция gamma(x)
- Функция Ламберта LambertW(x)
-
Тригонометрические интегралы: Si(x),
Ci(x),
Shi(x),
Chi(x)
Правила ввода
Можно делать следующие операции
- 2*x
- – умножение
- 3/x
- – деление
- x^2
- – возведение в квадрат
- x^3
- – возведение в куб
- x^5
- – возведение в степень
- x + 7
- – сложение
- x – 6
- – вычитание
- Действительные числа
- вводить в виде 7.5, не 7,5
Постоянные
- pi
- – число Пи
- e
- – основание натурального логарифма
- i
- – комплексное число
- oo
- – символ бесконечности