Как найти минимум максимум квадратичной функции


Загрузить PDF


Загрузить PDF

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: f(x)=ax^{2}+bx+c или через координаты вершины параболы: f(x)=a(x-h)^{2}+k. Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

  1. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 1

    1

    Запишите функцию в стандартном виде. Квадратичная функция – это функция, уравнение которой включает переменную x^{2}. Уравнение может включать или не включать переменную x. Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.[1]

  2. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 2

    2

  3. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 3

    3

  4. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 4

    4

    Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

  5. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 5

    5

    Реклама

  1. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 6

    1

    Запишите квадратичную функцию через координаты вершины параболы. Такое уравнение имеет следующий вид:[3]

  2. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 7

    2

  3. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 8

    3

    Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k. В приведенных выше примерах:

  4. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 9

    4

    Реклама

  1. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 10

    1

    Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f(x)=ax^{2}+bx+c. Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.[5]

    • Например: f(x)=2x^{2}-4x+1.
  2. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 11

    2

    Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f^{{prime }}(x)=2ax+b.[6]

  3. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 12

    3

    Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере:[7]

    • f^{{prime }}(x)=4x-4
    • 0=4x-4
  4. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 13

    4

  5. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 14

    5

  6. Изображение с названием Find the Maximum or Minimum Value of a Quadratic Function Easily Step 15

    6

    Запишите ответ. Вы вычислили максимум или минимум функции. В нашем примере f(x)=2x^{2}-4x+1 координаты вершины равны (1,-1). Коэффициент a положительный, поэтому парабола направлена вверх. Следовательно, минимальное значение функции – это координата «у» вершины, которая равна -1.[10]

    Реклама

Советы

  • Ось симметрии параболы описывается уравнением x=h.

Реклама

Об этой статье

Эту страницу просматривали 95 930 раз.

Была ли эта статья полезной?


Download Article


Download Article

For a variety of reasons, you may need to be able to define the maximum or minimum value of a selected quadratic function. You can find the maximum or minimum if your original function is written in general form, f(x)=ax^{2}+bx+c, or in standard form, f(x)=a(x-h)^{2}+k. Finally, you may also wish to use some basic calculus to define the maximum or minimum of any quadratic function.

  1. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 1

    1

  2. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 2

    2

    Advertisement

  3. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 3

    3

  4. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 4

    4

    Find the corresponding f(x) value. Insert the value of x that you just calculated into the function to find the corresponding value of f(x). This will be the minimum or maximum of the function.

  5. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 5

    5

  6. Advertisement

  1. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 6

    1

    Write your quadratic function in standard or vertex form. The standard form of a general quadratic function, which can also be called the vertex form, looks like this:[4]

  2. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 7

    2

  3. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 8

    3

    Identify the minimum or maximum value. When the function is written in standard form, finding the minimum or maximum value is as simple as stating the value of the variable k. For the two example functions given above, these values are:

  4. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 9

    4

  5. Advertisement

  1. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 10

    1

    Start with the general form. Write your quadratic function in general form, f(x)=ax^{2}+bx+c. If necessary, you may need to combine like terms and rearrange to get the proper form.[7]

    • Begin with the sample function f(x)=2x^{2}-4x+1.
  2. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 11

    2

    Use the power rule to find the first derivative. Using basic first-year calculus, you can find the first derivative of the general quadratic function to be f^{{prime }}(x)=2ax+b.[8]

  3. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 12

    3

    Set the derivative equal to zero. Recall that derivative of a function tells you the slope of the function at that selected point. The minimum or maximum of a function occurs when the slope is zero. Therefore, to find where the minimum or maximum occurs, set the derivative equal to zero. Continue with the sample problem from above:[9]

    • f^{{prime }}(x)=4x-4
    • 0=4x-4
  4. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 13

    4

  5. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 14

    5

  6. Image titled Find the Maximum or Minimum Value of a Quadratic Function Easily Step 15

    6

    Report your solution. The solution gives you the vertex of the maximum or minimum point. For this sample function, f(x)=2x^{2}-4x+1, the vertex occurs at (1,-1). The coefficient a is positive, so the function opens upward. Therefore, the minimum value of the function is the y-coordinate of the vertex, which is -1.[12]

  7. Advertisement

Practice Problems and Answers

Add New Question

  • Question

    How do you tell if a parabola is maximum or minimum?

    Jake Adams

    Jake Adams

    Academic Tutor & Test Prep Specialist

    Jake Adams is an academic tutor and the owner of Simplifi EDU, a Santa Monica, California based online tutoring business offering learning resources and online tutors for academic subjects K-College, SAT & ACT prep, and college admissions applications. With over 14 years of professional tutoring experience, Jake is dedicated to providing his clients the very best online tutoring experience and access to a network of excellent undergraduate and graduate-level tutors from top colleges all over the nation. Jake holds a BS in International Business and Marketing from Pepperdine University.

    Jake Adams

    Academic Tutor & Test Prep Specialist

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    First solve for a. If the value of a is a positive number, you’ll have an upward-facing parabola and you’ll need to find its minimum value. If a is a negative number, you’ll have a downward-facing parabola and you’ll need to find its maximum value.

  • Question

    How do you tell if a parabola is up or down?

    Jake Adams

    Jake Adams

    Academic Tutor & Test Prep Specialist

    Jake Adams is an academic tutor and the owner of Simplifi EDU, a Santa Monica, California based online tutoring business offering learning resources and online tutors for academic subjects K-College, SAT & ACT prep, and college admissions applications. With over 14 years of professional tutoring experience, Jake is dedicated to providing his clients the very best online tutoring experience and access to a network of excellent undergraduate and graduate-level tutors from top colleges all over the nation. Jake holds a BS in International Business and Marketing from Pepperdine University.

    Jake Adams

    Academic Tutor & Test Prep Specialist

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    You can remember this concept by thinking about smiles and frowns. If someone is positive they smile, and if someone is negative, they frown. Similarly, a positive number will have an upward-facing parabola, and a negative number will have a downward-facing parabola.

  • Question

    How do I graph a quadratic function?

    Community Answer

    First, create a data table with multiple experimental values for x. Sub in those x coordinates and get y coordinates. Plot these along the x and y axis and join the dots with a smooth curve.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

  • The parabola’s axis of symmetry is x = h.

Advertisement

References

About This Article

Article SummaryX

To find the maximum or minimum value of a quadratic function, start with the general form of the function and combine any similar terms. For example, if you’re starting with the function f(x) = 3x + 2x – x^2 + 3x^2 + 4, you would combine the x^2 and x terms to simplify and end up with f(x) = 2x^2 + 5x + 4. Now figure out which direction the parabola opens by checking if a, or the coefficient of x^2, is positive or negative. If it’s positive, the parabola opens upward. If it’s negative, the parabola opens downward. In the function f(x) = 2x^2 + 5x + 4, the coefficient of x^2 is positive, so the parabola opens upward. Next, find the x value of the vertex by solving -b/2a, where b is the coefficient in front of x and a is the coefficient in front of x^2. In the function f(x) = 2x^2 + 5x + 4, b = 5 and a = 2. Therefore, you would divide -5 by 2 times 2, or 4, and get -1.25. Finally, plug the x value into the function to find the value of f(x), which is the minimum or maximum value of the function. The function f(x) = 2x^2 + 5x + 4 would become f(-1.25) = 2(-1.25)^2 + 5(-1.25) + 4, or f(-1.25) = 0.875. If the parabola opens upward, your answer will be the minimum value. If the parabola opens downward, your answer is the maximum value. In this example, since the parabola opens upward, f(-1.25) = 0.875 is the minimum value of the function. If you want to learn how to use standard or vertex form for your formula, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 2,391,372 times.

Reader Success Stories

  • FantageGamer

    FantageGamer

    Apr 13, 2017

    “Unlike other sites or even YouTube videos, this website will break it down for you like you’re a six-year-old.…” more

Did this article help you?

Главная

» 2015 » Октябрь » 1 » Как найти максимум или минимум квадратичной функции


03:35

Как найти максимум или минимум квадратичной функции

Как найти максимум или минимум квадратичной функции

3 методика:Квадратичная функция вида y = ax2 + bx + cКвадратичная функция вида y = a(x-h)2 + kПримеры

Координата «у» вершины параболы и есть максимум или минимум квадратичной функции (график которой – парабола).

Шаги

Метод 1 из 3: Квадратичная функция вида y = ax2 + bx + c

  1. 1
    Определите, что вы ищите – максимум или минимум, так как вы не можете искать сразу оба значения.

Метод 2 из 3: Квадратичная функция вида y = a(x-h)2 + k


  1. 1
    В случае квадратичной функции вида y = a(x-h)2 + k коэффициент «k» и есть максимум или минимум функции.

    • «k» является максимумом, если коэффициент «а» – отрицательный; «k» является минимумом, если коэффициент «а» – положительный.

Метод 3 из 3: Примеры


  1. 1
    Найдите максимум или минимум функции f(x) = x2 + x + 1.

    • так как а=1, то вы ищите минимум. Подставляете b=1 и c=1 в формулу (c – b2/4a) и находите, что минимум данной функции равен 3/4.

  2. 2
    Найдите максимум или минимум функции f(x) = -2(x-1)2 + 3.

    • так как а=-2, то вы ищите максимум, который равен значению коэффициента k. Ответ: максимум данной функции равен 3.

Советы

  • Ось симметрии параболы: х = h.
  • Значение коэффициента «k» соответствует максимальному или минимальному значению функции.
  • 1
  • 2
  • 3
  • 4
  • 5

Категория: Вопросы и ответы |
Просмотров: 3260 |

| Рейтинг: 0.0/0

Добавлять комментарии могут только зарегистрированные пользователи.

[

Регистрация

|

Вход

]

Во многих задачах требуется вычислить максимальное или минимальное значение квадратичной функции. Максимум или минимум можно найти, если исходная функция записана в стандартном виде: f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c} или через координаты вершины параболы: f(x)=a(x−h)2+k{displaystyle f(x)=a(x-h)^{2}+k} . Более того, максимум или минимум любой квадратичной функции можно вычислить с помощью математических операций.

Квадратичная функция записана в стандартном виде

  1. Запишите функцию в стандартном виде. Квадратичная функция – это функция, уравнение которой включает переменную x2{displaystyle x^{2}}. Уравнение может включать или не включать переменную x{displaystyle x}. Если уравнение включает переменную с показателем степени больше 2, оно не описывает квадратичную функцию. Если нужно, приведите подобные члены и переставьте их, чтобы записать функцию в стандартном виде.

    • Например, дана функция f(x)=3x+2x−x2+3×2+4{displaystyle f(x)=3x+2x-x^{2}+3x^{2}+4}. Сложите члены с переменной x2{displaystyle x^{2}} и члены с переменной x{displaystyle x}, чтобы записать уравнение в стандартном виде:
      • f(x)=2×2+5x+4{displaystyle f(x)=2x^{2}+5x+4}
  2. Определите направление параболы. График квадратичной функции представляет собой параболу. Ветви параболы направлены вверх или вниз. Если коэффициент a{displaystyle a} при переменной x2{displaystyle x^{2}} положительный, парабола направлена вверх. Если коэффициент a{displaystyle a} отрицательный, парабола направлена вниз. Например:

    • f(x)=2×2+4x−6{displaystyle f(x)=2x^{2}+4x-6}. Здесь a=2{displaystyle a=2}, поэтому парабола направлена вверх.
    • f(x)=−3×2+2x+8{displaystyle f(x)=-3x^{2}+2x+8}. Здесь a=−3{displaystyle a=-3}, поэтому парабола направлена вниз.
    • f(x)=x2+6{displaystyle f(x)=x^{2}+6}. Здесь a=1{displaystyle a=1}, поэтому парабола направлена вверх.
    • Если парабола направлена вверх, нужно искать ее минимум. Если парабола направлена вниз, ищите ее максимум.
  3. Вычислите -b/2a. Значение −b2a{displaystyle -{frac {b}{2a}}} – это координата x{displaystyle x} вершины параболы. Если квадратичная функция записывается в стандартном виде ax2+bx+c{displaystyle ax^{2}+bx+c}, воспользуйтесь коэффициентами при x{displaystyle x} и x2{displaystyle x^{2}} следующим образом:

    • В функции f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1} коэффициенты a=1{displaystyle a=1} и b=10{displaystyle b=10}. Поэтому координату «x» вершины параболы вычислите так:
      • x=−b2a{displaystyle x=-{frac {b}{2a}}}
      • x=−10(2)(1){displaystyle x=-{frac {10}{(2)(1)}}}
      • x=−102{displaystyle x=-{frac {10}{2}}}
      • x=−5{displaystyle x=-5}
    • В качестве второго примера рассмотрим функцию f(x)=−3×2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}. Здесь a=−3{displaystyle a=-3} и b=6{displaystyle b=6}. Поэтому координату «x» вершины параболы вычислите так:
      • x=−b2a{displaystyle x=-{frac {b}{2a}}}
      • x=−6(2)(−3){displaystyle x=-{frac {6}{(2)(-3)}}}
      • x=−6−6{displaystyle x=-{frac {6}{-6}}}
      • x=−(−1){displaystyle x=-(-1)}
      • x=1{displaystyle x=1}
  4. Найдите соответствующее значение f(x). Подставьте найденное значение «x» в исходную функцию, чтобы найти соответствующее значение f(x). Так вы найдете минимум или максимум функции.

    • В первом примере f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1} вы вычислили, что координата «х» вершины параболы равна x=−5{displaystyle x=-5}. В исходной функции вместо x{displaystyle x} подставьте −5{displaystyle -5}, чтобы найти ее максимальное значение:
      • f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1}
      • f(x)=(−5)2+10(−5)−1{displaystyle f(x)=(-5)^{2}+10(-5)-1}
      • f(x)=25−50−1{displaystyle f(x)=25-50-1}
      • f(x)=−26{displaystyle f(x)=-26}
    • Во втором примере f(x)=−3×2+6x−4{displaystyle f(x)=-3x^{2}+6x-4} вы нашли, что координата «х» вершины параболы равна x=1{displaystyle x=1}. В исходной функции вместо x{displaystyle x} подставьте 1{displaystyle 1}, чтобы найти ее максимальное значение:
      • f(x)=−3×2+6x−4{displaystyle f(x)=-3x^{2}+6x-4}
      • f(x)=−3(1)2+6(1)−4{displaystyle f(x)=-3(1)^{2}+6(1)-4}
      • f(x)=−3+6−4{displaystyle f(x)=-3+6-4}
      • f(x)=−1{displaystyle f(x)=-1}
  5. Запишите ответ. Перечитайте условие задачи. Если нужно найти координаты вершины параболы, в ответе запишите оба значения x{displaystyle x} и y{displaystyle y} (или f(x){displaystyle f(x)}). Если необходимо вычислить максимум или минимум функции, в ответе запишите только значение y{displaystyle y} (или f(x){displaystyle f(x)}). Еще раз посмотрите на знак коэффициента a{displaystyle a}, чтобы проверить, что вы вычислили: максимум или минимум.

    • В первом примере f(x)=x2+10x−1{displaystyle f(x)=x^{2}+10x-1} значение a{displaystyle a} положительное, поэтому вы вычислили минимум. Вершина параболы лежит в точке с координатами (−5,−26){displaystyle (-5,-26)}, а минимальное значение функции равно −26{displaystyle -26}.
    • Во втором примере f(x)=−3×2+6x−4{displaystyle f(x)=-3x^{2}+6x-4} значение a{displaystyle a} отрицательное, поэтому вы нашли максимум. Вершина параболы лежит в точке с координатами (1,−1){displaystyle (1,-1)}, а максимальное значение функции равно −1{displaystyle -1}.

Квадратичная функция записана через координаты вершины параболы

  1. Запишите квадратичную функцию через координаты вершины параболы. Такое уравнение имеет следующий вид:

    • f(x)=a(x−h)2+k{displaystyle f(x)=a(x-h)^{2}+k}
    • Если функция уже записана в таком виде, просто найдите значения коэффициентов a{displaystyle a},h{displaystyle h} и k{displaystyle k}. Если функция дана в стандартном виде f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}, дополните ее до полного квадрата и запишите через координаты вершины параболы.
    • Чтобы узнать, как дополнять до полного квадрата, прочитайте эту статью.
  2. Определите направление параболы. Для этого посмотрите на знак коэффициента a{displaystyle a}. Если коэффициент a{displaystyle a} положительный, парабола направлена вверх. Если коэффициент a{displaystyle a} отрицательный, парабола направлена вниз. Например:

    • f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}. Здесь a=2{displaystyle a=2}, то есть коэффициент положительный, поэтому парабола направлена вверх.
    • f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}. Здесь a=−3{displaystyle a=-3}, то есть коэффициент отрицательный, поэтому парабола направлена вниз.
    • Если парабола направлена вверх, нужно вычислить минимальное значение функции. Если парабола направлена вниз, необходимо найти максимальное значение функции.
  3. Найдите минимальное или максимальное значение функции. Если функция записана через координаты вершины параболы, минимум или максимум равен значению коэффициента k{displaystyle k}. В приведенных выше примерах:

    • f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}. Здесь k=−4{displaystyle k=-4}. Это минимальное значение функции, потому что парабола направлена вверх.
    • f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}. Здесь k=2{displaystyle k=2}. Это максимальное значение функции, потому что парабола направлена вниз.
  4. Найдите координаты вершины параболы. Если в задаче требуется найти вершину параболы, ее координаты равны (h,k){displaystyle (h,k)}. Обратите внимание, когда квадратичная функция записана через координаты вершины параболы, в скобки должна быть заключена операция вычитания (x−h){displaystyle (x-h)}, поэтому значение h{displaystyle h} берется с противоположным знаком.

    • f(x)=2(x+1)2−4{displaystyle f(x)=2(x+1)^{2}-4}. Здесь в скобки заключена операция сложения (x+1), которую можно переписать так: (x-(-1)). Таким образом, h=−1{displaystyle h=-1}. Поэтому координаты вершины параболы этой функции равны (−1,−4){displaystyle (-1,-4)}.
    • f(x)=−3(x−2)2+2{displaystyle f(x)=-3(x-2)^{2}+2}. Здесь в скобках находится выражение (x-2). Следовательно, h=2{displaystyle h=2}. Координаты вершины равны (2,2).

Как вычислить минимум или максимум с помощью математических операций

  1. Сначала рассмотрим стандартный вид уравнения. Запишите квадратичную функцию в стандартном виде: f(x)=ax2+bx+c{displaystyle f(x)=ax^{2}+bx+c}. Если нужно, приведите подобные члены и переставьте их, чтобы получить стандартное уравнение.

    • Например: f(x)=2×2−4x+1{displaystyle f(x)=2x^{2}-4x+1}.
  2. Найдите первую производную. Первая производная квадратичной функции, которая записана в стандартном виде, равна f′(x)=2ax+b{displaystyle f^{prime }(x)=2ax+b}.

    • f(x)=2×2−4x+1{displaystyle f(x)=2x^{2}-4x+1}. Первая производная этой функции вычисляется следующим образом:
      • f′(x)=4x−4{displaystyle f^{prime }(x)=4x-4}
  3. Производную приравняйте к нулю. Напомним, что производная функции равна угловому коэффициенту функции в определенной точке. В минимуме или максимуме угловой коэффициент равен нулю. Поэтому, чтобы найти минимальное или максимальное значение функции, производную нужно приравнять к нулю. В нашем примере:

    • f′(x)=4x−4{displaystyle f^{prime }(x)=4x-4}
    • 0=4x−4{displaystyle 0=4x-4}
  4. Найдите «x». С помощью математических операций изолируйте «x», чтобы найти значение этой переменной, когда производная равна нулю. Так вы вычислите координату «x» вершины параболы, в которой находится ее максимум или минимум.

    • 0=4x−4{displaystyle 0=4x-4}
    • 4=4x{displaystyle 4=4x}
    • 1=x{displaystyle 1=x}
  5. Полученное значение «x» подставьте в исходную функцию. Минимальное или максимальное значение функции равно значению f(x){displaystyle f(x)} при полученном x{displaystyle x}. Значение x{displaystyle x} подставьте в исходную функцию и решите уравнение, чтобы найти минимум или максимум.

    • В нашем примере f(x)=2×2−4x+1{displaystyle f(x)=2x^{2}-4x+1} при x=1{displaystyle x=1},
      • f(1)=2(1)2−4(1)+1{displaystyle f(1)=2(1)^{2}-4(1)+1}
      • f(1)=2−4+1{displaystyle f(1)=2-4+1}
      • f(1)=−1{displaystyle f(1)=-1}
  6. Запишите ответ. Вы вычислили максимум или минимум функции. В нашем примере f(x)=2×2−4x+1{displaystyle f(x)=2x^{2}-4x+1} координаты вершины равны (1,−1){displaystyle (1,-1)}. Коэффициент a{displaystyle a} положительный, поэтому парабола направлена вверх. Следовательно, минимальное значение функции – это координата «у» вершины, которая равна −1{displaystyle -1}.

Советы

  • Ось симметрии параболы описывается уравнением x=h.

Эта статья — о числовой функции одной переменной. О функции второй степени с несколькими переменными см. Квадратичная форма; о геометрическом месте точек см. Парабола.

График функции {displaystyle f(x)=x^{2}-x-2}

Квадратичная функция — целая рациональная функция второй степени вида {displaystyle f(x)=ax^{2}+bx+c}, где a neq 0 и a,b,cin mathbb {R} . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.

Обзор основных свойств[править | править код]

Многие свойства квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} зависят от значения коэффициента a. В следующей таблице приводится обзор основных свойств квадратичной функции[1]. Их доказательство рассматривается в статье в соответствующих разделах.

Свойство a>0 a<0
Область определения функции {displaystyle D(f)=mathbb {R} }
Множество значений функции {displaystyle E(f)=left[-{frac {b^{2}-4ac}{4a}};+infty right)} {displaystyle E(f)=left(-infty ;-{frac {b^{2}-4ac}{4a}}right]}
Чётность функции Чётная функция при b=0; ни чётная, ни нечётная при bneq 0
Периодичность функции Непериодическая функция
Непрерывность функции Всюду непрерывная функция, точек разрыва нет
Нули функции {displaystyle x_{1,2}={frac {-bpm {sqrt {D}}}{2a}}}, если {displaystyle D=b^{2}-4acgeq 0}
нет действительных нулей, если {displaystyle D=b^{2}-4ac<0}
Предел функции при {displaystyle xto pm infty } {displaystyle f(x)to +infty } при {displaystyle xto pm infty } {displaystyle f(x)to -infty } при {displaystyle xto pm infty }
Дифференцируемость функции Всюду многократно дифференцируема:
{displaystyle f'(x)=2ax+b,f''(x)=2a,f'''(x)=0}
Точки экстремума (абсолютный экстремум) {displaystyle x_{min}={frac {-b}{2a}}} (минимум) {displaystyle x_{max}={frac {-b}{2a}}} (максимум)
Интервалы строгой монотонности убывает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
возрастает на {displaystyle left[-{frac {b}{2a}};+infty right)}
возрастает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
убывает на {displaystyle left[-{frac {b}{2a}};+infty right)}
Выпуклость функции Всюду выпуклая вниз функция Всюду выпуклая вверх функция
Точки перегиба Точки перегиба отсутствуют
Ограниченность функции Ограничена снизу Ограничена сверху
Наибольшее значение функции Отсутствует (неограничена сверху) {displaystyle y_{max}=-{frac {b^{2}-4ac}{4a}}}
Наименьшее значение функции {displaystyle y_{min}=-{frac {b^{2}-4ac}{4a}}} Отсутствует (неограничена снизу)
Положительные значения функции {displaystyle (-infty ;x_{1})cup (x_{2};+infty )} {displaystyle (x_{1};x_{2})}
Отрицательные значения функции {displaystyle (x_{1};x_{2})} {displaystyle (-infty ;x_{1})cup (x_{2};+infty )}

Влияние коэффициентов на трансформацию графика[править | править код]

Стандартная запись уравнения квадратичной функции[править | править код]

Влияние коэффициентов a, b и c на параболу

Действительные числа a, b и c в общей записи квадратичной функции называются её коэффициентами. При этом коэффициент a принято называть старшим, а коэффициент c — свободным. Изменение каждого из коэффициентов приводит к определённым трансформациям параболы.

По значению коэффициента a можно судить о том, в какую сторону направлены её ветви (вверх или вниз) и оценить степень её растяжения или сжатия относительно оси ординат:

  • Если a>0, то ветви параболы направлены вверх, то есть её вершина расположена снизу.
  • Если a<0, то ветви параболы направлены вниз, то есть её вершина расположена сверху.
  • Если {displaystyle |a|<1}, то парабола сжата по оси ординат, то есть кажется более широкой и плоской.
  • Если {displaystyle |a|>1}, то парабола растянута по оси ординат, то есть кажется более узкой и крутой.

Влияние значения коэффициента a наиболее просто позволяет проиллюстрировать квадратичная функция вида {displaystyle f(x)=ax^{2}}, то есть в случае b=0 и c=0. В случае a=0 квадратичная функция превращается в линейную.

Изменение коэффициента b повлечёт за собой сдвиг параболы как относительно оси абсцисс, так и относительно оси ординат. При увеличении значения b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} влево и одновременно на {displaystyle (2b+1)/4a} вниз. При уменьшении b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} вправо и одновременно на {displaystyle (2b-1)/4a} вверх. Такие трансформации объясняются тем, что коэффициент b характеризует угловой коэффициент касательной к параболе в точке пересечения с осью ординат (то есть при x=0).

Коэффициент c характеризует параллельный перенос параболы относительно оси ординат (то есть вверх или вниз). При увеличении значения этого коэффициента на 1, парабола переместится на 1 вверх. Соответственно, если уменьшить коэффициент c на 1, то и парабола сместится на 1 вниз. Так как коэффициент b также влияет на положение вершины параболы, то по одному лишь значению коэффициента c нельзя судить о том, расположена ли вершина выше оси абсцисс или ниже неё.

Запись квадратичной функции через координаты вершины параболы[править | править код]

Любая квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} может быть получена с помощью растяжения/сжатия и параллельного переноса простейшей квадратичной функции f(x)=x^{2}. Так, график функции вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} получается путём сжатия (при a<0) или растяжения (при a>0) графика функции f(x)=x^{2} в a раз с последующем его параллельным переносом на x_{0} единиц вправо и y_0 единиц вверх (если эти значения являются отрицательными числами тогда, соответственно, влево и вниз). Очевидно, что при проделанной трансформации вершина параболы функции f(x)=x^{2} переместится из точки (0;0) в точку (x_{0};y_{0}). Этот факт даёт ещё один способ вычисления координат вершины параболы произвольной квадратичной функции путём приведения её уравнения к виду {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, позволяющему сразу увидеть координаты вершины параболы — (x_{0};y_{0}).

Влияние коэффициентов в записи вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} на параболу

Преобразовать произвольную квадратичную функцию вида {displaystyle f(x)=ax^{2}+bx+c} к форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} позволяет метод выделения полного квадрата, использующий формулы сокращённого умножения биномов:

{displaystyle f(x)=ax^{2}+bx+c}

{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot xright)+c}
{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot x+{frac {b^{2}}{4a^{2}}}-{frac {b^{2}}{4a^{2}}}right)+c}
{displaystyle =acdot left(x^{2}+2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)-{frac {b^{2}}{4a}}+c}
{displaystyle =acdot left(x+{frac {b}{2a}}right)^{2}+{frac {-b^{2}}{4a}}+{frac {4ac}{4a}}}
{displaystyle =acdot left(x-{frac {-b}{2a}}right)^{2}+{frac {-b^{2}+4ac}{4a}}}
{displaystyle =acdot left(x-x_{0}right)^{2}+y_{0}}, где {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}={frac {-b^{2}+4ac}{4a}}}

Сравнивая значения для x_{0} и y_0, вычисленные дифференциальным методом (см. соответствующий раздел статьи), можно также убедиться, что они являются координатами вершины параболы. В конкретных случаях вовсе не требуется запоминать приведённые громоздкие формулы, удобней всякий раз выполнять преобразования многочлена к желаему виду непосредственно. На конкретном примере этот метод выглядит так:

{displaystyle f(x)=2x^{2}+8x+5=2cdot left(x^{2}+4cdot xright)+5}

{displaystyle =2cdot left(x^{2}+4cdot x+4-4right)+5}
{displaystyle =2cdot left(left(x+2right)^{2}-4right)+5}
{displaystyle =2cdot left(x+2right)^{2}-8+5}
{displaystyle =2cdot left(x+2right)^{2}-3Rightarrow S(-2;-3)}

Недостатком данного метода является его громоздкость, особенно в случае, когда в результате вынесения за скобки приходится работать с дробями. Также он требует определённого навыка в обращении с формулами сокращённого умножения.

Однако, рассмотренное выше доказательство в общем виде приводит к более простому способу вычисления координат вершины параболы с помощью формул {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}=f(x_{0})}. Например, для той же функции {displaystyle f(x)=2x^{2}+8x+5} имеем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3}.

Нули функции[править | править код]

Число нулей квадратичной функции[править | править код]

Число действительных нулей квадратичной функции в случае a>0

Квадратичная функция является целой рациональной функцией второй степени, поэтому она может иметь не более двух нулей в действительной области. В случае расширения на комплексную область можно говорить о том, что квадратичная функция в любом случае имеет ровно два комплексных нуля, которые могут быть строго действительными числами или содержать мнимую единицу.

Определить число нулей квадратичной функции без решения соответствующего квадратного уравнения можно с помощью вычисления дискриминанта. При этом имеются различные вариации его вычисления: обычный (применим всегда), сокращённый (удобен в случае чётного коэффициента b) и приведённый (применим только для приведённого многочлена). При этом числовые значения в каждом случае будут отличаться, однако знак дискриминанта будет совпадать независимо от вариации.

Полный дискриминант Сокращённый дискриминант Приведённый дискриминант
{displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=x^{2}+px+q}
{displaystyle D=b^{2}-4ac} {displaystyle D=left({frac {b}{2}}right)^{2}-ac} {displaystyle D=left({frac {p}{2}}right)^{2}-q}

Независимо от вычисления дискриминанта будут справедливы следующие утверждения:

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} с использованием стандартной формулы для дискриминанта получаем:

{displaystyle D=b^{2}-4ac=8^{2}-4cdot 2cdot 5=64-40=24>0}.

Это означает, что данная функция имеет два действительных нуля, то есть её парабола пересекает ось абсцисс в двух точках.

Методы вычисления нулей квадратичной функции[править | править код]

Нахождение нулей квадратичной функции сводится к решению квадратного уравнения {displaystyle ax^{2}+bx+c=0}, где a neq 0. Конкретный метод, наиболее подходящий для конкретной квадратичной функции, во многом зависит от его коэффициентов. Во всех специальных случаях кроме специальных формул и методов всегда применима также и универсальная формула. Во всех перечисленных формулах, содержащих квадратный корень, следует учитывать, что если подкоренное выражение является отрицательным числом, то квадратичная функция не имеет нулей в действительной области, а обладает двумя комплексными нулями.

  • В наиболее общем случае применяется универсальная формула:
{displaystyle x_{1,2}={frac {-bpm {sqrt {b^{2}-4ac}}}{2a}}}
{displaystyle x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}}
Получить приведённую форму из общей можно, поделив исходное уравнение {displaystyle ax^{2}+bx+c=0} на a. При этом, очевидно, {displaystyle p=b/a} и {displaystyle q=c/a}.
{displaystyle x_{1,2}=pm {sqrt {frac {-c}{a}}}}
{displaystyle x_{1}=0}
{displaystyle x_{2}={frac {-b}{a}}}

Чётность и симметрия квадратичной функции[править | править код]

Симметрия относительно оси ординат[править | править код]

График функции f(x)=x^{2} (b=0 и c=0) симметричен относительно оси ординат

Квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} является целой рациональной функцией второй степени, поэтому для неё справедливы все соответствующие свойства целой рациональной функции. В частности, она является чётной только тогда, когда в записи её многочлена присутствуют лишь чётные показатели степени, и нечётной — если она содержит только нечётные показатели. Из этого следует, что никакая квадратичная функция не может быть нечётной ввиду того, что на неё изначально накладывается условие aneq 0, а следовательно она всегда будет содержать чётный показатель 2.

Кроме того, очевидно, что квадратичная функция является чётной только при отсутствии показателя 1, что означает b=0. Этот факт легко доказывается и непосредственно. Так, очевидно, что функция {displaystyle f(x)=ax^{2}+c} является чётной, так как справедливо:

{displaystyle f(-x)=acdot (-x)^{2}+c=ax^{2}+c=f(x)}, то есть {displaystyle f(-x)=f(x)}.

Таким образом, квадратичная функция является симметричной относительно оси ординат только тогда, когда b=0. Конкретные значения коэффициентов a и c на этот факт абсолютно не влияют. В частности, c может быть также равно нулю, то есть отсутствовать в записи формулы. В этом случае вершина параболы будет совпадать с началом системы координат.

Во всех других случаях квадратичная функция не будет ни чётной, ни нечётной, то есть является функцией общего вида. Это также легко можно показать с помощью определения чётности функции:

{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+cneq f(x)}, то есть {displaystyle f(-x)neq f(x)}.
{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+c=-(-ax^{2}+bx-c)neq -f(x)}, то есть {displaystyle f(-x)neq -f(x)}.

Осевая симметрия в общем случае[править | править код]

Осью симметрии любой параболы является прямая, проходящая через её вершину параллельно оси ординат

В то же время график любой квадратичной функции обладает осевой симметрией. Как известно, если для некоторой функции f(x) для некоторого числа {displaystyle x_{0}in mathbb {R} } справедливо равенство {displaystyle f(x_{0}+x)=f(x_{0}-x)}, то график этой функции f(x) обладает осевой симметрией по отношению к прямой x = x_0. В отношении квадратичной функции таким числом x_{0} является абсцисса вершины её параболы. Таким образом, график любой квадратичной функции симметричен по отношению к оси, параллельной оси ординат и проходящей через вершину параболы, а осью симметрии функции {displaystyle f(x)=ax^{2}+bx+c} является прямая {displaystyle x=-b/2a}.

Доказательство этого факта также не является сложным:

{displaystyle f(x_{0}+x)=f(x+x_{0})=fleft(x-{frac {b}{2a}}right)=aleft(x-{frac {b}{2a}}right)^{2}+bleft(x-{frac {b}{2a}}right)+c}

{displaystyle =aleft(x^{2}-2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)+bleft(x-{frac {b}{2a}}right)+c}
{displaystyle =ax^{2}-bx+{frac {b^{2}}{4a}}+bx-{frac {b^{2}}{2a}}+c=ax^{2}-{frac {b^{2}}{4a}}+c=ax^{2}+{frac {4ac-b^{2}}{4a}}}

К аналогичному результату приводит и преобразование:

{displaystyle f(x_{0}-x)=f(-x+x_{0})=fleft(-x-{frac {b}{2a}}right)=dotsb =ax^{2}+{frac {4ac-b^{2}}{4a}}}

Таким образом, {displaystyle fleft({frac {-b}{2a}}+xright)=fleft({frac {-b}{2a}}-xright)}, поэтому график функции симметричен относительно прямой {displaystyle x={frac {-b}{2a}}}.

Вычисление вершины параболы с помощью нулей функции[править | править код]

Нули функции расположены симметрично к оси, проходящей через вершину параболы параллельно оси ординат

Так как ось симметрии параболы всегда проходит через её вершину, то, очевидно, что нули квадратичной функции также всегда симметричны относительно абсциссы вершины параболы. Этот факт позволяет легко вычислить координаты вершины параболы с помощью известных нулей функции. В поле действительных чисел этот способ действует только тогда, когда парабола пересекает ось абсцисс или касается её, то есть имеет нули из действительной области.

В случае, когда квадратичная функция имеет лишь один нуль (кратности 2), то он, очевидно, сам и является вершиной параболы. Если же парабола имеет нули x_{1} и x_{2}, то абсцисса x_{0} её вершины легко вычисляется как среднее арифметическое нулей функции. Ордината вершины вычисляется путём подстановки её абсциссы в исходное уравнение функции:

{displaystyle x_{0}={frac {x_{1}+x_{2}}{2}}}
{displaystyle y_{0}=f(x_{0})}

Особенно удобным этот способ будет в случае, когда квадратичная функция заданна в её факторизированном виде. Так, например, парабола функции {displaystyle f(x)=2(x-1)(x+3)} будет иметь вершину со следующими координатами:

{displaystyle x_{0}={frac {1+(-3)}{2}}=-1}
{displaystyle y_{0}=f(-1)=2(-1-1)(-1+3)=-8}

При этом даже не требуется преобразовывать уравнение функции к общему виду.

Исследование методами дифференциального и интегрального анализа[править | править код]

Производная и первообразная[править | править код]

Квадратичная функция (красный график), её производная (синий) и первообразная (чёрный)

Угловой коэффициент касательной параболы в точке x=0 равен коэффициенту b в записи уравнения квадратичной функции; в данном случае b=1

Как и любая целая рациональная функция квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} дифференцируема во всей своей области определения. Её производная легко находится с помощью элементарных правил дифференцирования: {displaystyle f'(x)=2ax+b}. Таким образом, видим, что производной квадратичной функции является линейная функция, которая либо строго монотонно возрастает (если a>0), либо строго монотонно убывает (если a<0) на всей области определения. При этом также нетрудно заметить, что {displaystyle f'(0)=b}, что означает, что коэффициент {displaystyle f'(0)=b} в уравнении исходной функции равен угловому коэффициенту параболы в начале координат.

Квадратичная функция как и любая целая рациональная функция также и интегрируема во всей своей области определения. Её первообразная, очевидно, является кубической функцией:

{displaystyle F(x)=int (ax^{2}+bx+c)dx={frac {a}{3}}x^{3}+{frac {b}{2}}x^{2}+cx+d}, где {displaystyle din mathbb {R} }.

Монотонность и точки экстремума[править | править код]

Очевидно, что вершина параболы является её наивысшей или наинизшей точкой, то есть абсолютным экстремумом квадратичной функции (минимумом при a>0 и максимумом при a<0). Поэтому абсцисса вершины параболы разбивает область определения функции на два монотонных интервала, на одном из которых функция возрастает, а на другом — убывает. Воспользовавшись методами дифференциального исчисления, с помощью этого факта можно легко вывести простую формулу для вычисления координат вершины параболы, заданной общим уравнением {displaystyle f(x)=ax^{2}+bx+c}, через его коэффициенты.

Согласно необходимому и достаточному условию для существования экстремума, получаем: {displaystyle f'(x)=2ax+b}. При этом f'(x)=0, если {displaystyle x=-b/2a}. Функция {displaystyle f''(x)=2a} является константной функцией, при этом {displaystyle f''>0} при a>0 и {displaystyle f''<0} при a<0. Таким образом, необходимый и достаточный критерий существования экстремума выполняется в точке {displaystyle x_{0}=-b/2a}. Следовательно, имеем координаты вершины:

{displaystyle x_{0}={frac {-b}{2a}}}
{displaystyle y_{0}=f(x_{0})=aleft({frac {-b}{2a}}right)^{2}+bleft({frac {-b}{2a}}right)+c={frac {4ac-b^{2}}{4a}}}

Вершина параболы разбивает область определения квадратичной функции на два монотонных интервала: {displaystyle left(-infty ;{frac {-b}{2a}}right)} и {displaystyle left({frac {-b}{2a}};+infty right)}. При a>0 функция на первом из них является строго монотонно убывающей, а на втором — строго монотонно возрастающей. В случае a<0 — в точности наоборот.

При этом можно вовсе не запоминать данные формулы, а просто каждый раз пользоваться критериями существования экстремума для каждой конкретной квадратичной функции. Или же рекомендуется запоминать только формулу {displaystyle x_{0}=-b/2a} для вычисления абсциссы вершины параболы. Её ордината легко вычисляется в результате подстановки вычисленной абсциссы в конкретное уравнение функции.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} получаем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, вершина параболы данной функции имеет координаты {displaystyle (-2;-3)}. При этом функция строго монотонно убывает на интервале {displaystyle (-infty ;-2)} и строго монотонно возрастает на интервале {displaystyle (-2;+infty )}

Выпуклость и точки перегиба[править | править код]

Так как вторая производная квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} является константной линейной функцией {displaystyle f''(x)=2a}, то она не имеет точек перегиба, так как её значение постоянно, а соответственно достаточный критерий не будет выполняться ни для какой её точки. Более того, очевидно, что при a>0 исходная квадратичная функция будет всюду выпуклой вниз (ввиду того, что её вторая производная всюду положительна), а при a<0 — всюду выпуклой вверх (её вторая производная будет всюду отрицательной).

Обратимость квадратичной функции[править | править код]

Функция f(x)=x^{2} и обратная ей {displaystyle f^{-1}(x)={sqrt {x}}} на интервале [0, +infty)

Так как квадратичная функция не является строго монотонной функцией, то она является необратимой. Так как любую непрерывную функцию, однако, можно обратить на её интервалах строгой монотонности, то для любой квадратичной функции существуют две обратные функции, соответствующие двум её интервалам монотонности. Обратными для квадратичной функции на каждом из её интервалов монотонности являются функции арифметического квадратного корня[2].

Так, функция арифметического квадратного корня {displaystyle f^{-1}(x)={sqrt {x}}} является обратной к квадратной функции f(x)=x^{2} на интервале [0, +infty). Соответственно, функция {displaystyle f^{-1}(x)=-{sqrt {x}}} является обратной к функции f(x)=x^{2} на интервале {displaystyle (-infty ;0]}. Графики функций f(x) и {displaystyle f^{-1}(x)} будут симметричными друг другу относительно прямой y=x.

Функция {displaystyle f(x)=2x^{2}+8x+5} и обратная к ней на интервале {displaystyle [-2;+infty )} функция {displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2}

Для нахождения обратных функций для произвольной квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} удобнее представить её в форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, где (x_{0};y_{0}) — вершина её параболы. Далее воспользуемся известным методом для нахождения обратных функций — поменяем местами переменные x и y и снова выразим y через x:

{displaystyle y=a(x-x_{0})^{2}+y_{0}}
{displaystyle x=a(y-x_{0})^{2}+y_{0}}
{displaystyle x-y_{0}=a(y-x_{0})^{2}}
{displaystyle {frac {x-y_{0}}{a}}=(y-x_{0})^{2}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}=y-x_{0}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}+x_{0}=y}

Таким образом, обратной к f(x) на интервале {displaystyle [x_{0};+infty )} является функция {displaystyle f^{-1}(x)={sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

На интервале {displaystyle (-infty ;x_{0}]} обратной к f(x) является функция {displaystyle f^{-1}(x)=-{sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3} с вершиной {displaystyle (-2;-3)} получаем:

{displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle [-2;+infty )}.
{displaystyle f^{-1}(x)=-{sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle (-infty ;-2]}.

Примеры появления на практике[править | править код]

  • Зависимость высоты свободно падающего тела от времени.
  • Зависимость площади круга от её линейных размеров (например, радиуса).
  • Зависимость расстояния от времени при равноускоренном движении.
  • Зависимость напора от расхода (напорная характеристика центробежного насоса).

Обобщение[править | править код]

Обобщение на случай многих переменных служат поверхности второго порядка, в общем виде такое уравнение можно записать, как:

f({vec  {x}})={vec  {x}}^{T}A{vec  {x}}+{vec  {b}}cdot {vec  {x}}+c.

Здесь: A — матрица квадратичной формы, {vec  {b}} — постоянный вектор, c — константа.
Свойства функции, так же как и в одномерном случае, определяются главным коэффициентом — матрицей A.

См. также[править | править код]

  • Аффинно-квадратичная функция

Примечания[править | править код]

  1. Квадратичная функция // Большая школьная энциклопедия. — М. : «Русское энциклопедическое товарищество», 2004. — С. 118—119.
  2. Rolf Baumann. Quadratwutzelfunktion // Algebra: Potenzfunktionen, Exponential- und Logarithmusgleichungen, Stochastik : [нем.]. — München : Mentor, 1999. — Т. 9. — С. 17—19. — 167 с. — ISBN 3-580-63631-6.

Литература[править | править код]

  • Сканави М.И. График квадратного трёхчлена // Элементарная математика. — 2-е изд., перераб. и доп. — М., 1974. — С. 130—133. — 592 с.
  • Каплан И.А. Тридцать третье практическое занятие (экстремум квадратичной функции) // Практические занятия по высшей математике. — 3-е изд. — Харьков, 1974. — С. 449—451.

Добавить комментарий