Как найти мнимую полуось гиперболы онлайн

Каноническое уравнение гиперболы по двум точкам

Две точки с координатами

Первая координата

Вторая координата

Каноническое уравнение гиперболы
Большая полуось гиперболы
Малая/мнимая полуось гиперболы
Эксцентриситет гиперболы
Фокальный параметр
Фокальное расстояние
Перицентрическое расстояние

Уравнение гиперболы в каноническом виде имеет вот такой вид.

?frac{x^2}{a^2}-frac{y^2}{b^2}=1

Так же как и при расчете  уравнения эллипса по двум точкам, мы можем по двум точкам однозначно построить гиперболу, выраженную через вышеуказанную формулу.

Используя универсальный калькулятор расчет кривой второго порядка на плоскости по точкам, мы легко определим  значения  a и b

Кроме этого, зная эти параметры можно рассчитать следующее:

Большая  полуось   a – расстояние от центра гиперболы, до одной из вершин

Фокальное расстояние c расстояние от центра гиперболы до одного из фокусов

Мнимая полуось   b  – расстояние от вершины гиперболы до асимптоты вдоль направления параллельного оси ординат

Связь между тремя параметрами выражена в одной формуле

c^2=a^2+b^2

Эксцентриситет – коэффициент, численно равный, отношению фокусного расстояния к большой полуоси гиперболы

e=frac{c}{a}

Фокальный параметр –расстояние от фокуса до гиперболы вдоль прямой, параллельной оси ординат 

p=frac{b^2}{a}

Прицельный параметр  –  расстояние от фокуса до асимптоты. Численно равен малой полуоси гиперболы.

Перицентрическое расстояние –расстояние от фокуса до ближайшей вершины гиперболы

Ra=cfrac{1+e}{e}

Примеры задач

Cоставить каноническое уравнение гиперболы по двум точкам Ra=cfrac{1+e}{e}

Вводим данные в поля ввода. Можем писать как выражение, учитвая что квадратный корень обозначается sqrt, а можем сначала получить численные  значения и подставить уже окончательные результаты.

В результате получим

Каноническое уравнение гиперболы
Введенное выражение
Большая полуось гиперболы

4.47213595499958

Малая/мнимая полуось гиперболы

3.4641016147913444

Эксцентриситет гиперболы

1.1661903789073205

Фокальный параметр

1.79999999928

Фокальное расстояние

5.830951894536603

Перицентрическое расстояние

0.8309518945366023

Есть небольшая погрешность в вычислениях, вместо 2.9999999999  должно быть 3. Но думаю, что клиенты отнесутся с снисхождением, к  одной десяти миллионной погрешности.

Удачных расчетов!

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Radians} mathrm{Degrees} square! ( ) % mathrm{clear}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Subscribe to verify your answer

Subscribe

Sign in to save notes

Sign in

Number Line

Examples

  • axis:frac{y^2}{25}-frac{x^2}{9}=1

  • axis:frac{(x+3)^2}{25}-frac{(y-4)^2}{9}=1

  • axis:4x^2-9y^2-48x-72y+108=0

  • axis:x^2-y^2=1

  • Show More

Description

Calculate hyperbola axis given equation step-by-step

hyperbola-axis-calculator

en

Related Symbolab blog posts

  • Practice Makes Perfect

    Learning math takes practice, lots of practice. Just like running, it takes practice and dedication. If you want…

    Read More

  • Enter a problem

    Save to Notebook!

    Sign in

    Уравнение линии второго порядка:

    LaTeX formula: Ax^2+By^2+Cxy+Dx+Ey+F=0 . (4.15)

    Рассмотрим некоторые виды линий второго порядка.

    1. Окружность – это геометрическое место точек, равноудаленных от данной точки, называемой центром. 

    В случае окружности уравнение 4.15 примет вид: 

    LaTeX formula: Ax^2+By^2+Dx+Ey+F=0 .

    Если центр окружности находится в точке LaTeX formula: O(0;0) , а ее радиус равен LaTeX formula: R (рис. 4.1), то уравнение окружности имеет вид:

    LaTeX formula: x^2+y^2=R^2 . (4.16)

    Если центр окружности находится в точке LaTeX formula: O'(a;b) , а ее радиус равен LaTeX formula: R (рис. 4.2), то уравнение окружности имеет вид:

    LaTeX formula: (x-a)^2+(y-b)^2=R^2 . (4.17)

    Например, запишем уравнение окружности с центром в точке LaTeX formula: O'(-1;6) и радиусом LaTeX formula: R=3 . Согласно формуле 4.17 получим: LaTeX formula: (x+1)^2+(y-6)^2=9 . 

    2. Эллипс – это геометрическое место точек, для каждой из которых сумма расстояний до двух данных точек, называемых фокусами, есть величина постоянная. Расстояние от точки эллипса до фокуса называют фокальным радиусом.

    На рисунке 4.3 изображен эллипс: точка LaTeX formula: O – центр эллипса; точки LaTeX formula: F_1 и LaTeX formula: F_2 – его фокусы; LaTeX formula: MF_1 и LaTeX formula: MF_2 – фокальные радиусы; LaTeX formula: A_1A_2=2a – большая ось эллипса; LaTeX formula: B_1B_2=2b – малая ось эллипса; LaTeX formula: F_1F_2=2c – расстояние между фокусами. 

    Каноническое уравнение эллипса: 

    LaTeX formula: frac{x^2}{a^2}+frac{y^2}{b^2}=1 , (4.18)

    где LaTeX formula: a – большая полуось; LaTeX formula: b – меньшая полуось. 

    Фокусы имеют координаты

    LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , (4.19)

    где 

    LaTeX formula: c=sqrt{a^2-b^2} . (4.19.1) 

    Эксцентриситет эллипса находят по формуле:

    LaTeX formula: varepsilon =frac{c}{a}<1 . (4.20)

    3. Гипербола – это геометрическое место точек, для каждой из которых модуль разностей расстояний до двух данных точек, называемых фокусами, есть величина постоянная.

    На рисунке 4.4 изображена гипербола: точки LaTeX formula: A_1 и LaTeX formula: A_2 – ее вершины; точки LaTeX formula: F_1 и LaTeX formula: F_2 – ее фокусы; LaTeX formula: A_1A_2=2a – действительная ось гиперболы; LaTeX formula: B_1B_2=2b – мнимая ось; LaTeX formula: F_1F_2=2c – расстояние между фокусами; прямые (1) и (2) – асимптоты.

    Каноническое уравнение гиперболы:

    LaTeX formula: frac{x^2}{a^2}-frac{y^2}{b^2}=1 , (4.21)

    где LaTeX formula: a – действительная полуось; LaTeX formula: b – мнимая полуось.

    Фокусы имеют координаты LaTeX formula: F_1(-c;0) и LaTeX formula: F_2(c;0) , где 

    LaTeX formula: c=sqrt{a^2+b^2} . (4.22)

    Эксцентриситет гиперболы находят по формуле:

    LaTeX formula: varepsilon =frac{c}{a}>1 . (4.23)

    Уравнения асимптот гиперболы:

    LaTeX formula: y=pm frac{bx}{a} . (4.24)

    4. Парабола – это геометрическое место точек, равноудаленных от фокуса и прямой, называемой директрисой.

    Каноническое уравнение параболы: 

    LaTeX formula: y^2=2px . (4.25)

    где ось LaTeX formula: OX – ось симметрии параболы; LaTeX formula: p – расстояние от фокуса до директрисы LaTeX formula: d (рис. 4.5). 

    Фокус имеет координаты:

    LaTeX formula: Fleft ( frac{p}{2};0 right ). (4.25.1)

    Уравнение директрисы параболы имеет вид:

    LaTeX formula: x=-frac{p}{2} . (4.25.2)

    Если осью симметрии параболы является ось LaTeX formula: OY (рис.4.6), то каноническое уравнение параболы имеет вид: 

    LaTeX formula: x^2=2py . (4.26)

    В этом случае фокус имеет координаты:

    LaTeX formula: Fleft ( 0;frac{p}{2} right ) . (4.26.1) 

    Уравнение директрисы LaTeX formula: d параболы имеет вид:

     LaTeX formula: y=-frac{p}{2} . (4.26.2) 

    Пример 1. Найдите большую и меньшую полуоси, фокусы и эксцентриситет эллипса LaTeX formula: frac{x^2}{16}+frac{y^2}{9}=1 .

    Решение. 1. С учетом 4.18, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем большую и меньшую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

    2. По формуле 4.19.1 получим: LaTeX formula: c=sqrt{16-9}=sqrt{7} . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(sqrt{-7};0) и LaTeX formula: F_2(sqrt{7};0) .

    3. По формуле 4.20 найдем эксцентриситет: LaTeX formula: varepsilon =frac{sqrt{7}}{4} .

    Пример 2. Найдите действительную и мнимую полуоси, фокусы, эксцентриситет и асимптоты гиперболы LaTeX formula: frac{x^2}{16}-frac{y^2}{9}=1 . 

    Решение. 1. С учетом 4.21, зная, что LaTeX formula: a^2=16 , а LaTeX formula: b^2=9 , найдем действительную и мнимую полуоси: LaTeX formula: a=4 , LaTeX formula: b=3 . 

    2. По формуле 4.22 получим: LaTeX formula: c=sqrt{16+9}=5 . По формулам 4.19 запишем фокусы: LaTeX formula: F_1(-5;0) и LaTeX formula: F_2(5;0) .

    3. По формуле 4.23 найдем эксцентриситет: LaTeX formula: varepsilon =frac{5}{4} .

    4. По формуле 4.24 запишем уравнения асимптот: LaTeX formula: y=pm frac{3}{4}x . 

    Пример 3. Найдите фокус и директрису параболы LaTeX formula: y^2=x .

    Решение. С учетом 4.25, так как LaTeX formula: 2p=1 , то LaTeX formula: p=0,5 .По формуле 4.25.1 запишем фокус: LaTeX formula: F(0,25;0) . По формуле 4.25.2 запишем уравнение директрисы: LaTeX formula: x=-0,25 .

    Пример 4. Найдите фокус и директрису параболы LaTeX formula: x^2=8y . 

    Решение. С учетом 4.26, так как LaTeX formula: 2p=8 , то LaTeX formula: p=4 . По формуле 4.26.1 запишем фокус: LaTeX formula: F(0;2) . По формуле 4.26.1 запишем уравнение директрисы: LaTeX formula: y=-2 . 

    Решение задач по математике онлайн

    //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

    Калькулятор онлайн.
    Построение графика
    дробно-линейной функции (гиперболы).

    Если вам нужно просто построить график любой функции, то для этого у нас есть отдельная программа.

    Эта математическая программа для построения графика дробно-линейной функции (гиперболы) сначала делает преобразование вида
    $$ y= frac ; rightarrow ; y= frac +q $$
    а затем последовательно строит графики функций:
    $$ y= frac<1> $$
    $$ y= frac $$
    $$ y= frac +q $$

    Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

    Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

    Если вы не знакомы с правилами ввода дробно-линейной функции, рекомендуем с ними ознакомиться.

    В качестве переменной можно использовать только x
    Все остальные буквы недопустимы.

    При вводе можно использовать только целые числа.

    Приведение кривой второго порядка к каноническому виду

    Пример №1 . Привести уравнение второго порядка к каноническому виду с помощью поворота и параллельного переноса осей координат. Построить кривую.

    Пример №2 . Выполнив последовательно преобразования координат: поворот, а затем параллельный перенос координатных осей, преобразовать к каноническому виду уравнение кривой второго порядка и построить ее в исходной системе координат, а также найти параметры кривой.

    Алгоритм перехода кривой второго порядка к каноническому виду

    Пример №1 . 4y=-6-sqrt(4x-x 2 )
    sqrt(4x-x 2 ) = -(4y+6)
    Возведем в квадрат
    4x-x 2 = (4y+6) 2
    Раскрывая скобки, получаем:
    16y 2 +48y + 36 +x 2 -4x = 0

    Далее решается калькулятором. Если самостоятельно решать, то получим:
    4x-x 2 = (4y+6) 2
    -(x 2 – 4x) = 2(y+3/2) 2
    -(x 2 – 4x + 4) = (y+3/2) 2
    -(x – 2) 2 = (y+3/2) 2
    (y+3/2) 2 + (x – 2) 2 = 0

    Пример №2 . x=1-2/3 sqrt(y 2 -4y-5)
    Здесь надо сначала привести к нормальному виду.
    3/2(x-1)=sqrt(y 2 -4y-5)
    Возводим в квадрат
    9/4(x-1) 2 =y 2 -4y-5
    9/4x 2 -9/4*2x+9/4-y 2 +4y+5=0
    9/4x 2 -9/2x-y 2 +4y+29/4=0

    Далее можно решать как с калькулятором, так и без него:
    9/4(x-1) 2 =y 2 -4y-5
    9/4(x-1) 2 =y 2 -4y+4-4-5
    9/4(x-1) 2 =(y 2 -2)-9
    9/4(x-1) 2 -(y 2 -2) = -9
    -1/4(x-1) 2 +1/9(y 2 -2) = 1

    Каноническое уравнение гиперболы по двум точкам

    Две точки с координатами
    Первая координата
    Вторая координата
    Каноническое уравнение гиперболы
    Большая полуось гиперболы
    Малая/мнимая полуось гиперболы
    Эксцентриситет гиперболы
    Фокальный параметр
    Фокальное расстояние
    Перицентрическое расстояние

    Уравнение гиперболы в каноническом виде имеет вот такой вид.

    Так же как и при расчете уравнения эллипса по двум точкам, мы можем по двум точкам однозначно построить гиперболу, выраженную через вышеуказанную формулу.

    Используя универсальный калькулятор расчет кривой второго порядка на плоскости по точкам, мы легко определим значения и

    Кроме этого, зная эти параметры можно рассчитать следующее:

    Большая полуось – расстояние от центра гиперболы, до одной из вершин

    Фокальное расстояние – расстояние от центра гиперболы до одного из фокусов

    Мнимая полуось – расстояние от вершины гиперболы до асимптоты вдоль направления параллельного оси ординат

    Связь между тремя параметрами выражена в одной формуле

    Эксцентриситет – коэффициент, численно равный, отношению фокусного расстояния к большой полуоси гиперболы

    Перицентрическое расстояние – расстояние от фокуса до ближайшей вершины гиперболы

    Примеры задач

    Cоставить каноническое уравнение гиперболы по двум точкам

    Вводим данные в поля ввода. Можем писать как выражение, учитвая что квадратный корень обозначается sqrt, а можем сначала получить численные значения и подставить уже окончательные результаты.

    В результате получим

    Каноническое уравнение гиперболы
    Большая полуось гиперболы
    Малая/мнимая полуось гиперболы
    Эксцентриситет гиперболы
    Фокальный параметр
    Фокальное расстояние
    Перицентрическое расстояние

    Есть небольшая погрешность в вычислениях, вместо 2.9999999999 должно быть 3. Но думаю, что клиенты отнесутся с снисхождением, к одной десяти миллионной погрешности.

    [spoiler title=”источники:”]

    http://math.semestr.ru/line/curve.php

    http://abakbot.ru/online-2/365-giper-poin

    [/spoiler]

    Что такое гипербола

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Понятие гиперболы

    Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

    Каноническое уравнение гиперболы в алгебре выглядит так:

    , где a и b — положительные действительные числа.

    Кстати, канонический значит принятый за образец.

    В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

    Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

    Вспомним особенности математической гиперболы:

    • Две симметричные ветви.
    • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

    Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

    Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.

      Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

    Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
  • Выделяем квадраты в знаменателях:
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.


    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      • Найдем асимптоты гиперболы. Вот так:
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    на черновике выражаем:

    Уравнение распадается на две функции:

    — определяет верхние дуги гиперболы (то, что ищем);

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Запишем это уравнение в координатной форме:

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    На самом деле для фокуса F2 и директрисы d2 условие

    можно записать в координатной форме так:

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Гипербола — определение и вычисление с примерами решения

    Гипербола:

    Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

    Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

    Рис. 31. Вывод уравнения гиперболы.

    Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

    Следовательно, согласно определению имеем

    Возведем обе части равенства в квадрат, получим

    Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

    Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

    Рис. 32. Асимптоты и параметры гиперболы

    Определение: Найденные точки называются вершинами гиперболы.

    Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

    Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

    В данном конкретном случае параметр а называется действительной, а параметр b — мнимой полуосями гиперболы.

    Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

    Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

    Пример:

    Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

    Решение:

    Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

    Следовательно, каноническое уравнение гиперболы имеет вид

    Пример:

    Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы — в вершинах эллипса

    Решение:

    Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

    Рис. 33. Параметры эллипса и гиперболы

    Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

    Гипербола в высшей математике

    Решая его относительно , получим две явные функции

    или одну двузначную функцию

    Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

    При получаем.

    При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

    Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

    Гипербола в силу симметрии имеет вид, указанный на рис. 37.

    Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

    Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

    Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

    Умножим и разделим правую часть на

    Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

    Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

    Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

    Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

    Рекомендую подробно изучить предметы:
    • Геометрия
    • Аналитическая геометрия
    • Начертательная геометрия
    Ещё лекции с примерами решения и объяснением:
    • Парабола
    • Многогранник
    • Решение задач на вычисление площадей
    • Тела вращения: цилиндр, конус, шар
    • Правильные многогранники в геометрии
    • Многогранники
    • Окружность
    • Эллипс

    При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

    Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

    Сайт пишется, поддерживается и управляется коллективом преподавателей

    Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

    Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

    Математический портал

    Nav view search

    Navigation

    Search

    • Вы здесь:
    • Home

    Эллипс, гипербола, парабола. Директориальное свойство эллипса и гиперболы.

    Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.

    Эллипс.

    Эллипс с каноническим уравнением $frac+frac=1, ageq b>0,$ и меет форму изображенную на рисунке.

    Параметры $a$ и $b$ называются полуосями эллипса (большой и малой соответственно). Точки $A_1(-a, 0),$ $A_2(a, 0), $ $B_1(0, -b), $ и $B_2(0, b), $ его вершинами. Оси симметрии $Ox$ и $Oy$ — главными осями а центр симметрии $O -$ центром эллипса.

    Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами эллипса векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей эллипсу. В частном случае $a=b$ фокусы $F_1$ и $F_2$ совпадают с центром, а каноническое уравнение имеет вид $frac+frac=1,$ или $x^2+y^2=a^2,$ т.е. описывает окружность радиуса $a$ с центром в начале координат.

    Прямые $D_1: x=-a/e$ и $D_2: x=a/e,$ перпендикулярные главной оси и проходящей на расстоянии $a/e$ от центра, называются директрисами эллипса.

    Теорема. ( Директориальное свойство эллипса)

    Эллипс является множеством точек, отноше ние расстояний от которых до фокуса и до соответствующей директрисы постоянно и равно $e.$

    Примеры.

    2.246. Построить эллипс $9x^2+25y^2=225.$ Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения директрис.

    Приведем уравнение эллипса к каноническому виду:

    а) Находим полуоси $a=5,$ $b=3.$

    б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$

    $c=sqrt<5^2-3^2>=sqrt<16>=4Rightarrow F_1(-4, 0),qquad F_2(4, 0).$

    г) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    Ответ: а) $a=5,$ $b=3;$ б) $ F_1(-4, 0),qquad F_2(4, 0);$ в) $e=frac<4><5>;$ г) $D_1: x=-frac<25><4>$ и $D_2: x=frac<25><4>.$

    2.249 (a). Установить, что уравнение $5x^2+9y^2-30x+18y+9=0$ определяет эллипс, найти его центр $C,$ полуоси, эксцентриситет и уравнения директрис.

    Приведем уравнение эллипса к каноническому виду, для этого выделим полные квадраты:

    Это уравнение эллипса. Центр имеет координаты $C=(x_0, y_0)=(-3, -1);$ полуоси $a=3,$ $b=sqrt 5.$

    Уравнения директрис для эллипса с центром в начале координат находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    $D_1: x=-frac<3><2/3>=-frac<9> <2>$ и $D_2: x=frac<3><2/3>=frac<9><2>.$ Поскольку у заданного эллипса центр смещен, то директриссы будут иметь уравнения $D_1: x=x_0-a/e$ и $D_2: x=x_0+a/e:$

    Ответ: $C=(x_0, y_0)=(-3, -1);$ $a=3,$ $b=sqrt 5;$ $ e=frac<2><3>.$ $D_1:2x+3=0, $ $D_2: 2x-15=0.$

    2.252. Эллипс, главные оси которого совпадают с координатными осми, проходят через точки $M_1(2, sqrt 3)$ и $M_2(0, 2).$ Написать его уравнение, найти фокальные радиусы точки $M_1$ и расстояния этой точки до директрис.

    Решение.

    Поскольку оси эллипса совпадают с координатными осями, то центр эллипса совпадает с началом координат. Следовательно, из того, что точка $(0, 2)$ принадлежит эллипсу, можно сделать вывод, что $b=2.$

    Далее, чтобы найти $a,$ подставим найденное значение $b$ и координаты точки $M_1(2, sqrt 3)$ в каноническое уравнение эллипса $frac+frac=1:$

    Таким образом, уравнение эллипса $frac<16>+frac<4>=1.$

    Далее найдем координаты фокусов:

    $c=sqrt=sqrt<16-4>=2sqrt 3Rightarrow F_1(-2sqrt 3, 0),,,, F_2(2sqrt 3, 0).$

    Отсюда находим $overline =(2+2sqrt 3, sqrt 3),$ $overline=(2-2sqrt 3, sqrt 3).$

    Чтобы найти расстояния от точки $M_1$ до директрис, найдем уравнения директрис по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$

    Таким образом, расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_1: sqrt 3 x+8=0$

    расстояние от точки $M_1(2, sqrt 3)$ до прямой $D_2: sqrt 3 x-8=0$

    Параметры $a$ и $b$ называются полуосями гиперболы. Точки $A_1(-a, 0),$ $A_2(a, 0) — $ ее вершинами. Оси симметрии $Ox$ и $Oy$ — действительной и мнимой осями а центр симметрии $O -$ центром гиперболы.

    Точки $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrtgeq 0,$ называются фокусами гиперболы, векторы $overline$ и $overline -$ фокальными радиус-векторами, а числа $r_1=|overline|$ и $r_2=|overline| -$ фокальными радиусами точки $M,$ принадлежащей гиперболе.

    Прямые $D_1: x=-a/e$ и $D_2:x=a/e,$ перпендикулярные главной оси и проходящей на расстоянии $a/e$ от центра, называются директрисами гиперболы.

    Теорема. (Директориальное свойство гиперболы).

    Гипербола является геометрическим местом точек, отношение расстояний от которых до фокуса и до соответствующей дирек трисы постоянно и равно $e.$

    Примеры.

    2.265. Построить гиперболу $16x^2-9y^2=144.$ Найти: а) полуоси; б) координаты фокусов; в) эксцентриситет; г) уравнения асимптот; д) уравнения директрис.

    Приведем уравнение гиперболы к каноническому виду:

    а) Находим полуоси $a=3,$ $b=4.$

    б) Фокусы найдем по формулам $F_1(-c, 0)$ и $F_2(c, 0),$ где $c=sqrt:$

    $c=sqrt<3^2+4^2>=sqrt<25>=5Rightarrow F_1(-5, 0),qquad F_2(5, 0).$

    г) Асимптоты гиперболы находим по формулам $y=pmfracx:$

    д) Уравнения директрис находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    Ответ: а) $a=3,$ $b=4;$ б) $ F_1(-5, 0),qquad F_2(5, 0);$ в) $e=frac<5><3>;$ г) $y=pmfrac<4><3>x;$ д ) $D_1: x=-frac<9><5>$ и $D_2: x=frac<9><5>.$

    2.269 (a). Установить, что уравнение $16x^2-9y^2-64x-54y-161=0$ определяет гиперболу, найти ее центр $C,$ полуоси, эксцентриситет, уравнения асимптот и директрис.

    Приведем заданное уравнение к каноническому виду, для этого выделим полные квадраты:

    Это уравнение гиперболы. Центр имеет координаты $C=(x_0, y_0)=(2,-3);$ полуоси $a=3,$ $b=4.$

    Асимптоты гиперболы c центром в начале координат, находим по формулам $y=pmfracx,$ а с центром в точке $C=(x_0, y_0) -$ по формуле $y-y_0=pmfrac(x-x_0),$

    $$y+3=frac<4><3>(x-2)Rightarrow 3y+9=4x-8Rightarrow 4x-3y-17=0.$$

    $$y+3=-frac<4><3>(x-2)Rightarrow 3y+9=-4x+8Rightarrow 4x+3y+1=0.$$

    Уравнения директрис для эллипса с центром в начале координат находим по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    $D_1: x=-frac<3><5/3>=-frac<9> <5>$ и $D_2: x=frac<3><5/3>=frac<9><5>.$ Поскольку у заданного эллипса центр смещен, то директриссы будут иметь уравнения $D_1: x=x_0-a/e$ и $D_2: x=x_0+a/e:$

    Ответ: $C=(2, -3);$ $a=3,$ $b=4;$ $ e=frac<5><3>,$ $4x-3y-17=0,$ $4x+3y+1=0,$ $D_1:5x-1=0, $ $D_2: 5x-19=0.$

    2.272. Убедившись, что точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1,$ найти фокальные радиусы этой точки и расстояния этой точки до директрис.

    Решение.

    Проверим, что заданная точка лежит на гиперболе:

    Следовательно, точка $M(-5, 9/4)$ лежит на гиперболе $frac<16>-frac<9>=1.$

    Для того, чтобы найти фокальные радиусы, найдем фокусы гиперболы:

    $c=sqrtRightarrow c=sqrt<16+9>=sqrt <25>=5$ Следовательно, фокусы имеют координаты $F_1(-5, 0), F_2(5, 0).$

    Фокальные радиусы точки, можно найти по формулам $r_1=|overline|$ и $r_2=|overline|.$

    Чтобы найти расстояния от точки $M$ до директрис, найдем уравнения директрис по формулам $D_1: x=-a/e$ и $D_2: x=a/e:$

    $D_1: x=-frac<4><5/4>Rightarrow x=-frac<16><5>Rightarrow 5x+16=0;$

    $D_2: x=frac<4><5/4>Rightarrow x=frac<16><5>Rightarrow 5x-16=0;$

    Расстояние от точки $P(x_0, y_0)$ до прямой $L: Ax+By+C=0$ вычисляется по формуле $$d=left|frac<sqrt>right|.$$

    Таким образом, расстояние от точки $M(5, 9/4)$ до прямой $D_1: sqrt 5x+16=0$

    расстояние от точки $M(5, 9/4)$ до прямой $D_2: sqrt 5x-16=0$

    Ответ: $r_1=9/4,$ $r_2=frac<41><4>;$ $d_1=frac<41><5>;$ $d_2=frac<9><5>.$

    2.273. Найти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1.$

    Решение.

    Из уравнения гиперболы находим полуоси: $a=3, , b=4.$ Следовательно, $c=sqrtRightarrow c=sqrt<9+16>=sqrt <25>=5.$

    Отсюда находим $F_1=(-5, 0).$

    Геометрическое место точек, расположенных на расстоянии $7$ от фокуса $F_1,$ это окружность с центром в точке $F_1=(-5, 0)$ и радиусом $r=7:$

    Чтобы н айти точки гиперболы $frac<9>-frac<16>=1,$ находящиеся на расстоянии $7$ от фокуса $F_1,$ решим систему уравнений

    Решим уравнение $5x^2+18x-72=0:$

    Находим соответствующие координаты $y:$ $y_1=pmsqrt<24-2,4^2-10cdot 2,4>=sqrt<-5,76>$ — нет корней .

    Ответ: $(-6, pm4sqrt 3).$

    Парабола.

    Парабола с каноническим уравнением $y^2=2px, p>0,$ и меет форму изображенную на рисунке.

    Число $p$ называется параметром параболы. Точка $O -$ ее вершиной, а ось $Ox$ — осью параболы.

    Точка $Fleft(frac

    <2>, 0right)$ называется фокусом параболы, вектор $overline -$ фокальным радиус-векторам, а число $r=|overline| -$ фокальным радиусом точки $M,$ принадлежащей параболе.

    Прямая $D: x=-p/2$ перпендикулярная оси и проходящая на расстоянии $p/2$ от вершины параболы, называется ее директрисой.

    Примеры.

    2.285 (а). Построить параболу $y^2=6x$ и найти ее параметры.

    Решение.

    Параметр $p$ параболы можно найти из канонического уравнения $y^2=2px: $

    $$y^2=6xRightarrow y^2=2cdot 3xRightarrow p=2.$$

    Ответ: $p=3.$

    2.286 (а). Написать уравнение параболы с вершиной в начале координат, если известно, что парабола расположена в левой полуплоскости, симметрично относительно оси $Ox$ и $p=1/2.$

    Решение.

    Поскольку парабола расположена в левой полуплоскости, симметрично относительно оси $Ox,$ то уравнение параболы будет иметь вид $y^2=-2px.$ Подставляя заданное значение параметра, находим уравнение параболы:

    Ответ: $y^2=-x.$

    2.288 (а). Установить, что уравнение $y^2=4x-8$ определяет параболу, найти координаты ее вершины $A$ и величину параметра $p.$

    Решение.

    Уравнение параболы, центр которой сдвинут в точку $(x_0, y_0),$ имеет вид $(y-y_0)^2=2p(x-x_0)^2.$

    Приведем заданное уравнние к такому виду:

    Таким образом, $y^2=4(x^2-2)$ — парабола с центром в точке $(0, 2).$ Параметр $p=2.$

    Ответ: $C(0, 2),$ $p=2.$

    2.290. Вычислить фокальный параметр точки $M$ параболы $y^2=12x,$ если $y(M)=6.$

    Решение.

    Чтобы найти фокальный параметр точки $M,$ найдем ее координаты. Для этого подставим в уравнение параболы координату $y:$ $$6^2=12xRightarrow 36=12xRightarrow x=3.$$

    Таким образом, точка $M$ имеет координаты $(3, 6).$

    Из уравнения параболы $y^2=12x$ находим параметр параболы: $y^2=2cdot 6xRightarrow p=6.$ Следовательно фокус параболы имеет координаты $F(3, 0).$

    Далее находим фокальный параметр точки:

    Ответ: $6.$

    2.298. Из фокуса параболы $y^2=12x$ под острым углом $alpha$ к оси $Ox$ направлен луч света, причем $tgalpha=frac<3><4>.$ Написать уравнение прямой, на которой лежит луч, отраженный от параболы.

    Решение.

    Найдем координаты фокуса. Из канонического уравнения параболы $y^2=2px$ находим параметр: $y^2=12x=2cdot 6xRightarrow p=6.$

    Координаты фокуса $F(p/2, 0)Rightarrow F(3,0).$

    Далее находим уравнение прямой, которая проходит через точку $(3, 0)$ под углом $alpha: tgalpha=frac<3><4>$ к оси $OX.$ Уравнение ищем в виде $y=kx+b,$ где $k=tgalpha=frac<3><4>.$

    Чтобы найти $b,$ в уравнение прямой подставим координаты точки $(3, 0):$

    $0=frac<3><4>cdot 3+bRightarrow b=-frac<9><4>.$ Таким образом, уравнение луча, направленного из фокуса $y=frac<3><4>x-frac<9><4>.$

    Далее, найдем точку пересечения найденной прямой с параболой:

    Поскольку по условию луч падает под острым углом, то мы рассматриваем только положительную координату $y=18.$ Соответствующее значение $x=frac<18^2><12>=frac<324><12>=27.$

    Таким образом, луч пересекает параболу в точке $(27, 18).$

    Далее найдем уравнение касательной к параболе в найденной точке $(27, 18)$ по формуле $(y-y_0)=y'(x_0)(x-x_0):$

    Подставляем все найденные значения в уравнение касательной:

    $y-18=frac<1><3>(x-27)Rightarrow 3y-54=x-27Rightarrow x-3y+27=0.$

    Далее, найдем угол $beta$ между лучем $y=frac<3><4>x-frac<9><4>$ и касательной $x-3y+27=0.$ Для этого оба уравнения запишем в виде $y=k_1x+b_1$ и $y=k_2+b_2$ угол вычислим по формуле $tg(L_1, L_2)=frac<1+k_1cdot k_2>$

    $$L_2: x-3y+27=0Rightarrow y=frac<1><3>x+9Rightarrow k_2=frac<1><3>.$$

    Легко увидеть, что угол между лучем $L_1,$ направленным из фокуса и его отражением равен $pi-2beta,$ а угол между отраженным лучем и осью $Ox$ $pi-(pi-2beta)-alpha=2beta-alpha.$

    Зная $tgbeta=frac<1><3>$ и $tgalpha=k_1=frac<3><4>$ и вспоминая формулы для двойного угла тангенса и тангенс разности, находим $tg(2beta-alpha):$

    $$tg(2beta-alpha)=frac<1+tg2beta tgalpha>=frac<frac<3><4>-frac<3><4>><1+frac<3><4>frac<3><4>>=0.$$ Следовательно, прямая, содержащая отраженный луч параллельна оси $Ox.$ Так как она проходит через точку $(27, 18),$ то можно записать ее уравнение $y=18.$

    источники:

    http://www.evkova.org/giperbola

    http://mathportal.net/index.php/component/content/article/87-visshaya-matematika/analiticheskaya-geometriya/154-ellips-giperbola-parabola-direktorialnoe-svojstvo-ellipsa-i-giperboly-polyarnyj-parametr

    Добавить комментарий