В данной статье мы расскажем о методах, видах, условиях и определениях исследований решений систем линейных уравнений, что такое метод Кронекера-Капели, а также приведем примеры.
Общие сведения (определения, условия, методы, виды)
Системы линейных алгебраических уравнений с n неизвестными могут иметь:
- единственное решение;
- бесконечное множество решение (неопределенные СЛАУ);
- ни одного решения (несовместные СЛАУ).
Система x+y+z=12x+2y+2z=3не имеет решений, поэтому она несовместна.
Система x+y=12x+7y=-3имеет единственное решение x=2; y=1.
Система x+y=12x+2y=23x+3y=3имеет бесконечное множество решений x=ty=1-tпри -∞<t<∞.
Перед решением системы уравнений необходимо исследовать систему, т.е. ответить на следующие вопросы:
- Совместна ли система?
- Если система совместна, то, какое количество решений она имеет — одно или несколько?
- Как найти все решения?
Если система малоразмерна при m=n, то ответить на поставленные вопросы можно при помощи метода Крамера:
- если основной определитель системы, то система совместна и имеет единственное решение, которое вычисляется методом Крамера;
- если, и один из вспомогательных определителей, то система не является совместной, т.е. не имеет решений;
- если и все, и один из коэффициентов СЛАУ, то система не является определенной и имеет бесконечное множество решений.
Ранг матрицы и его свойства
Бывают случаи, которые выбиваются из представленных вариантов решения СЛАУ, например, линейные уравнения с большим количеством уравнений и неизвестных.
Для такого варианта решения существует ранг матрицы, который представляет собой алгоритм действий в случае решения системы матрицы, когда
В математике выделяют следующие подходы к определению ранга матрицы:
- при помощи понятия линейной зависимости/независимости строк/столбцов матрицы. Ранг равен максимальному количеству независимых строк (столбцов) матрицы
- при помощи понятия минора матрицы в качестве наивысшего порядка минора, который отличается от нуля. Минор матрицы порядка k — определитель k-го порядка, составленный из элементов, которые стоят на пересечении вычеркиваемых k-строк и k-столбцов матрицы;
- при помощи метода Гаусса. По завершении прямого хода ранг матрицы равняется количеству ненулевых строк.
Обозначение ранга матрицы: r(A), rg(A), rA.
Свойства ранга матрицы:
- квадратная невырожденная матрица обладает рангом, который отличается от нуля;
- если транспонировать матрицу, то ранг матрицы не изменяется;
- если поменять местами 2 параллельные строки или 2 параллельных столбца, ранг матрицы не изменяется;
- при удалении нулевого столбца или строки ранг матрицы не изменяется;
- ранг матрицы не изменяется, если удалить строку или столбец, которые являются линейной комбинацией других строк;
- при умножении все элементов строки/столбца на число k не равно нулю ранг матрицы не изменяется;
- ранг матрицы не больше меньшего из ее размеров: r(А)≤min (m; n) ;
- когда все элементы матрицы равны нулю, то только тогда r(A)=0 .
А1=111222333, B1=100000
r(A1)=1, r(B1)=1
А2=123405670000; В2=11312143125054136
r(A2)=2; r(B2)=2
А3=111123149
r(A3)=3
Ранг матрицы А1 вычислен на основании свойства определителя, который содержит строки с пропорциональными элементами, поскольку любой минор второго или третьего порядка матрицы А1 равняется нулю.
Ранги матриц В1, А2 вычислены при помощи вычеркивания нулевых строк, поскольку в матрице А2 минор отличается от нуля на пересечении 2-х первых строк и 2-х первых столбцов.
Матрица А3 — невырожденная, поскольку ее ранг равняется 3. (Можно проверить условие ∆=А3 не равно нулю).
Теперь вычислим ранг матрицы В2 при помощи элементарных преобразований:
- элементы 1-ой строки умножим на (-2) и прибавим к соответствующим элементам 2-ой строки;
- элементы 1-ой строки умножим на (-1) и прибавим к соответствующим элементам 3-ей строки;
- элементы 1-ой строки умножим на (-5) и прибавим к соответствующим элементам 4-ой строки:
В2=11312143125054136 (-2)(-1)(-5)+++⇒11310-1-21012-10-1-21⇒
3-ю строку прибавим ко 2-ой и 4-ой строкам:
⇒11310000012-10000⇒1131012-1
Таким образом, число ненулевых строк равно 2 или минор 2-го порядка в левом углу матрицы:
М(2)=1101=10 не равно нулю⇒r(B2)=2
ч.т.д.
Теорема Кронеккера-Капелли (о разрешимости СЛАУ)
Теорема Кронеккера-Капелли — теорема, которая доказывает: чтобы СЛАУ была совместной, необходимым и достаточным условием является равенство ранга r матрицы рангу расширенной матрицы.
Для совместных СЛАУ справедливой считается следующая теорема.
Пусть ранг матрицы, которая составлена из коэффициентов СЛАУ, равен рангу расширенной матрицы. В таком случае, если r=n (где n — число неизвестных системы), то система имеет единственное решение, если r<n, то система имеет бесконечное множество решений.
Если система определена, то для ее решения подходят методы Крамера, Гаусса и матричный метод.
Если система не определена, то некоторым (n-r) неизвестным (свободным) можно давать произвольные значения, а r неизвестных (базисных) определяются через свободные единственным способом.
При этом базисными становятся те, чей определитель, который составлен из коэффициентов при них и отличен от нуля. Выражения главных переменных, которые получены через свободные, объявляются решением системы.
Исследуем и решаем матрицу:
x -2x -x + 2x =12x – x + 4x +4x =5 +4x -2x +x =54x +x +4x +9x =2
Составляем расширенную матрицу системы и приводим ее к ступенчатому виду методом Гаусса.
Определяем ее ранг, а ранг основной матрицы определяем закрытием столбца правых частей.
1-2-1212-144504-21541492(-2)(-4)++⇒1-2-1210360304-2150981-2÷(3)⇒
⇒1-2-121012010-2-2150881-2(-4)(-9)++1-2-1210120100-101100-101-11(-1)+⇒
⇒0-2-1210120100-10110000-12⇒r(A)=31(Ap)=41r(A) не равно r(Ap).
Ответ: система не совместна.
Рассматриваем систему линейных уравнений и находим ранг матрицы:
n=4, m=3:x1-3×2+4×3-x4=13×1+7×2-10×3+5×4=52×1+2x-3x32x4=3
A=1-34-137-10522-32(-3)(-2)++⇒1-34-1016-22808-11412+⇒
⇒1-34-1016-2280000⇒r(A)=2
Составляем расширенную матрицу системы и находим ее ранг:
Ap=1-34-137-10522-32153(-3)(-2)++⇒1-34-1016-22808-11412112+⇒
⇒1-34-1016-2280000120⇒r(Ap)=2
r(A)=r(Ap)=2 — система совместная, r=2<n=4 ⇒ — система неопределенная.
Решаем систему методом Гаусса: преобразования расширенной матрицы системы приводят к системе уравнений вида:
x1-3×2+4×3-x4=116×2-22×3+8×4=2; ∆=1-3016=16 не равно нулю.
Главные переменные — x1 и x2. Свободные переменные — неизвестные x3 и x4. Записываем систему уравнений в виде:
x1-3×2=1-4×3+x48x2=1+11×3-4×4
С помощью обратного хода находим:
x=118x-12x+18.
Из 1-го уравнения:
x1=3×2-4×3+x4+1=338×3-32×4+38-4×3+x4+1=18×3-12×4+118
Ответ: система неопределенная.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Содержание:
Базисные и свободные переменные:
Пусть задана система
Элементарными преобразованиями системы линейных уравнений называются следующие преобразования:
- исключение из системы уравнения вида
- умножение обеих частей одного из уравнений системы на любое действительное число ;
- перестановка местами уравнений системы;
- прибавление к обеим частям одного из уравнений системы соответствующих частей другого уравнения, умноженных на любое действительное число не равное нулю.
Элементарные преобразования преобразуют данную систему уравнений в эквивалентную систему, т.е. в систему, которая имеет те же решения, что и исходная.
Для решения системы т линейных уравнений с т неизвестными удобно применять метод Гаусса, называемый методом последовательного исключения неизвестных, который основан на применении элементарных преобразований системы. Рассмотрим этот метод.
Предположим, что в системе (6.1.1). Если это не так, то переставим уравнения системы так, чтобы .
На первом шаге метода Гаусса исключим неизвестное из всех уравнений системы (6.1.1), начиная со второго. Для этого последовательно умножим первое уравнение системы на множители
и вычтем последовательно преобразованные уравнения из второго, третьего, …, последнего уравнения системы (6.1.1). В результате получим эквивалентную систему:
(6.1.2)
в которой коэффициенты вычислены по формулам:
На втором шаге метода Гаусса исключим неизвестное из всех уравнений системы (6.1.2) начиная с третьего, предполагая, что (в противном случае, переставим уравнения системы (6.1.2)
чтобы это условие было выполнено). Для исключения неизвестного последовательно умножим второе уравнение системы (6.1.2) на множетели и вычтем последовательно преобразованные уравнения из третьего, четвёртого, последнего,…,уравнения системы (6.1.2). В результате получим эквивалентную систему:
в которой коэффициенты вычислены по формулам:
Продолжая аналогичные преобразования, систему (6.1.1) можно привести к одному из видов:
или
Совокупность элементарных преобразований, приводящих систему (6.1.1) к виду (6.1.4) или (6.1.5) называется прямым ходом метода Гаусса.
Отметим, что если на каком-то шаге прямого хода метода Гаусса получим уравнение вида:
, то это означает, что система (6.1.1) несовместна.
Итак, предположим, что в результате прямого хода метода Гаусса мы получили систему (6.1.4), которая называется системой треугольного вида. Тогда из последнего уравнения находим значение подставляем найденное значение в предпоследнее уравнение системы (6.1.4) и находим значение ; и т.д. двигаясь снизу вверх в системе (6.1.4) находим единственные значения неизвестных которые и определяют единственное решение системы (6.1.1). Построение решения системы (6.1.4) называют обратным ходом метода Гаусса.
Если же в результате прямого хода метода Гаусса мы получим систему (6.1.5), которая называется системой ступенчатого вида, то из последнего уравнения этой системы находим значение неизвсстного которое выражается через неизвестные . Найденное выражение подставляем в предпоследнее уравнение системы (6.1.5) и выражаем неизвестное через неизвестные и т.д. Двигаясь снизу вверх в системе (6.1.5) находим выражения неизвестных через неизвестные При этом неизвестные называются базисными неизвестными, а неизвестные – свободными. Так как свободным неизвестным можно придавать любые значения и получать соответствующие значения базисных неизвестных, то система (6.1.5), а, следовательно, и система (6.1.1) в этом случае имеет бесконечное множество решений. Полученные выражения базисных неизвестных через свободные неизвестные называются общим решением системы уравнений (6.1.1).
Таким образом, если система (6.1.1) путём элементарных преобразований приводится к треугольному виду (6.1.4), то она имеет единственное решение, если же она приводится к системе ступенчатого вида (6.1.5), то она имеет бесконечное множество решений. При этом неизвестные , начинающие уравнения ступенчатой системы, называются базисными, а остальные неизвестные – свободными.
Практически удобнее преобразовывать не саму систему уравнений (6.1.1), а расширенную матрицу системы, соединяя последовательно получающиеся матрицы знаком эквивалентности.
Формализовать метод Гаусса можно при помощи следующего алгоритма.
Алгоритм решения системы m линейных уравнений с n неизвестными методом Гаусса
1. Составьте расширенную матрицу коэффициентов системы уравнений так, чтобы было не равно нулю:
2. Выполните первый шаг метода Гаусса: в первом столбце начиная со второй строки, запишите нули, а все другие элементы вычислите по формуле
Матрица после первого шага примет вид
3. Выполните второй шаг метода Гаусса, предполагая, что : во втором столбце начиная с третьей строки, запишите нули, а все другие элементы вычислите по формуле
После второго шага матрица примет вид
4. Продолжая аналогичные преобразования, придёте к одному из двух случаев:
а) либо в ходе преобразований получим уравнение вида
тогда данная система несовместна;
б) либо придём к матрице вида:
где . Возможное уменьшение числа строк
связано с тем, что в процессе преобразований матрицы исключаются строки, состоящие из нулей.
5. Использовав конечную матрицу, составьте систему, при этом возможны два случая:
5.1. r=n:
Система имеет единственное,решение , которое находим из системы обратным ходом метода Гаусса. Из последнего уравнения находите . Из предпоследнего уравнения находите затем из третьего от конца – и т.д., двигаясь снизу вверх, найдём все неизвестные .
5.2. :
Тогда r неизвестных будут базисными, а остальные (n-r) – свободными. Из последнего уравнения выражаете неизвестное через . Из предпоследнего уравнения находите и т.д.
Система имеет в этом случае бесконечное множество решений.
Приведенный алгоритм можно несколько видоизменить и получить алгоритм полного исключения, состоящий в выполнении следующих шагов. На первом шаге:
- составляется расширенная матрица;
- выбирается разрешающий элемент расширенной матрицы (если , строки матрицы можно переставить так, чтобы выполнялось условие );
- элементы разрешающей строки (строки, содержащей разрешающий элемент) оставляем без изменения; элементы разрешающего столбца (столбца, содержащего разрешающий элемент), кроме разрешающего элемента, заменяем нулями;
- все другие элементы вычисляем по правилу прямоугольника: преобразуемый элемент равен разности произведений элементов главной диагонали (главную диагональ образует разрешающий элемент и преобразуемый) и побочной диагонали (побочную диагональ образуют элементы, стоящие в разрешающей строке и разрешающем столбце): – разрешающий элемент (см. схему).
Последующие шаги выполняем по правилам:
1) выбирается разрешающий элемент (диагональный элемент матрицы);
2) элементы разрешающей строки оставляем без изменения;
3) все элементы разрешающего столбца, кроме разрешающего элемента, заменяем нулями; • •
4) все другие элементы матрицы пересчитываем по правилу прямоугольника.
На последнем шаге делим элементы строк на диагональные элементы матрицы, записанные слева от вертикальной черты, и получаем решение системы.
Пример:
Решить систему уравнений:
Решение:
Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом
Из последней матрицы находим следующее решение системы
уравнении:
Ответ:
Пример:
Решить систему уравнений:
Решение:
Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом
Система привелась к ступенчатому виду (трапециевидной форме):
в которой неизвестные – базисные, а – свободные. Из второго уравнения системы (6.1.6) находим выражение через . Из первого уравнений найдём выражение через и . Система имеет бесконечное множество решений. Общее решение системы имеет вид:
в котором принимают любые значения из множества действительных чисел.
Если в общем решении положить , то получим решение , которое называется частным решением заданной системы.
Ответ: система имеет бесконечное множество решений, общее решение которой записывается в виде:
Пример:
Решить систему уравнений:
Решение:
Составим расширенную матрицу системы, и применим алгоритм полного исключения, обозначая разрешающий элемент символом В последней матрице мы получили четвёртую строку, которая равносильна уравнению . Это означает, что заданная система не имеет решений.
Ответ: система несовместна.
Замечание 1. Если дана система уравнений (6.1.1), в которой число уравнений m равно числу неизвестных n (m=n) и определитель этой системы не равен нулю , то система имеет единственное решение, которое можно найти по формулам Крамера: , где определитель получен из определи-теля заменой j-ro столбца столбцом свободных членов.
Если же такую систему (m-n) записать в матричной форме AX=F, то её решение можно найти по формуле и оно является единственным.
Замечание 2. Используя метод Гаусса, тем самым и алгоритм полного исключения, можно находить обратную матрицу. Для этого составляется расширенная матрица, в которой слева от вертикальной черты записана матрица А, а справа – единичная матрица. Реализовав алгоритм полного исключения, справа от вертикальной черты получаем обратную матрицу, а слева – единичную.
Пример:
Найти обратную матрицу для матрицы:
Решение:
Так как
то обратная матрица существует. Составим расширенную мат-рицу и применим алгоритм полного исключения:
тогда
Покажем, что
ответ
Исследование совместности и определённости системы. Теорема Кронекера-Капелли
Рассмотрим систему (6.1.1) m линейных уравнений с n неизвестными при любых m и n (случай m=n не исключается). Вопрос о совместности системы решается следующим критерием.
Теорема 6.2.1. (критерий Кронкера-Капелли). Для того, чтобы система линейных уравнений(6.1.1) была совместна, необходимо и достаточно, чтобы ранг матрицы А системы был равен рангу расширенной матрицы .
Доказательство и Необходимость:
Предположим, что система (6.1.1) совместна и – какое-либо её решение (возможно единственное). По определению решения системы получаем:
Из этих равенств следует, что последний столбец матрицы есть линейная комбинация остальных ее столбцов с коэффициентами , то есть система вектор-столбцов матрицы линейно зависима (свойство 3 п.2.5) и значит последний столбец матрицы не изменяет ранга матрицы А, т.е.
.
Достаточность. Пусть . Рассмотрим r базисных
столбцов матрицы А, которые одновременно будут базисными столбцами и матрицы . В этом случае последний столбец матрицы можно представить как линейную комбинацию базисных столбцов, а следовательно, и как линейную комбинацию всех столбцов матрицы А, то есть
где – коэффициенты линейных комбинаций. А это означает, что – решение системы (6.1.1), следовательно,
эта система совместна.
Совместная система линейных уравнений (6.1.1) может быть либо определенной, либо неопределенной.
Следующая теорема даст критерий определенности.
Теорема 6.2.2. Совместная система линейных уравнений имеет единственное решение тогда и только тогда, когда ранг матрицы А системы равен числу п ее неизвестных.
Таким образом, если число уравнений m системы (6.1.1) меньше числа ее неизвестных n и система совместна, то ранг матрицы системы . Значит система неопределенная.
В случае по теореме 6.2.2 получаем, что система имеет единственное решение. Так как , то определитель и квадратная матрица А имеет обратную x матрицу и её решение можно найти по формуле: , где Х- столбец неизвестных, F— столбец свободных членов, или по формулам Крамера.
Следует отметить, что, решая систему (6.1.1) методом Гаусса, мы определяем и совместность, и определённость системы.
Пример:
Исследовать на совместность и определённость следующую систему линейных уравнений:
Решение:
Составим расширенную матрицу заданной системы. Определяя её ранг, находим тем самым и ранг матрицы системы. Для нахождения ранга матрицы применим алгоритм метода Гаусса.
Из последней матрицы следует, что ранг расширенной матрицы не может быть больше ранга матрицы А системы. Так как
, то заданная система совместная и неопределённая.
- Заказать решение задач по высшей математике
Однородные системы линейных уравнений
Система линейных уравнений (6.1.1) называется однородной, если все свободные члены равны нулю, то есть система имеет следующий вид:
Эта система всегда совместна, так как очевидно, что она имеет нулевое решение
Для однородной системы важно установить, имеет ли она ненулевые решения. Этот факт устанавливается следующей теоремой.
Теорема 6.3.1. Для того, чтобы однородная система имела ненулевые решения, необходимо и достаточно, чтобы ранг г матрицы А системы был меньше числа неизвестных n (rn).
Доказательство. Необходимость. Пусть система (6.3.1) имеет ненулевое решение. Тогда она неопределённая, т.к. имеет еще и нулевое решение. В силу теоремы 6.2.2 ранг матрицы неопределённой системы не может равняться n потому что при r(А)=n система определённая. Следовательно, и так как он не может быль больше n то .
Достаточность. Если , то в силу теоремы 6.2.2 система (6.3.1) имеет бесчисленное множество решений. А так как только одно решение является нулевым, то все остальные решения ненулевые.
Следствие 1. Если число неизвестных в однородной системе больше числа уравнений, то однородная система имеет ненулевые решения.
Доказательство. Действительно, ранг матрицы системы (6.3.1) не может превышать m. Но так как по условию, то и . Следовательно, в силу теоремы 6.3.1 система имеет ненулевые решения.
Следствие 2. Для того, чтобы однородная система с квадрат-ной матрицей имела ненулевые решения, необходимо и достаточно, чтобы её определитель равнялся нулю.
Доказательство. Рассмотрим однородную систему с квадратной матрицей:
(6.3.2)
Если определитель матрицы системы , то ранг матрицы , тогда в силу теоремы 6.3.1 система (6.3.2) имеет ненулевое решение, так как условие является необходимым и достаточным условием для существования ненулевого решения. Заметим, что если определитель матрицы системы (6.3.2) не равен нулю, то в силу теоремы 6.3.1 она имеет только нулевое решение.
Пример:
Решить систему однородных линейных уравнений:
Решение:
Составим матицу системы и применим алгоритм полного исключения:
Из последней матрицы следует, что и система имеет бесчисленное множество решений.
Используя последнюю матрицу, последовательно находим общее решение:
Неизвестные – базисные, – свободная неизвестная, .
Фундаментальная система решений. Общее решение неоднородной системы линейных уравнений
Рассмотрим систему однородных линейных уравнений
(6.4.1)
Любое решение
системы m линейных однородных уравнений с n неизвестными можно рассматривать как вектор-строку или как вектор-столбец . Поэтому имеют смысл такие понятия, как сумма двух решений, произведение решения на число, линейная комбинация решений, линейная зависимость или независимость системы решений. Непосредственной подстановкой в систему (6.4.1) можно показать, что:
1) сумма двух решений также является решением системы, т.е.
если – решения системы
(6.4.1), то и – решение системы (6.4.1);
2) произведение решенийна любое число есть решение системы, т.е. – решение системы.
Из приведенных свойств следует, что
3) линейная комбинация решений системы (6.4.1) является решением этой системы.
В частности, если однородная система (6.4.1) имеет хотя бы одно ненулевое решение, то из него умножением на произвольные числа, можно получить бесконечное множество решений.
Определение 6.4.1. Фундаментальной системой решений для системы однородных линейных уравнений (6.4.1) называется линейно независимая система решений, через которую линейно выражается любое решение системы (6.4.1).
Заметим, что если ранг матрицы системы (6.4.1) равен числу неизвестных n (r(А)=n), то эта система не имеет фундаментальной системы решений, так как единственным решением будет нулевое решение, составляющее линейно зависимую систему. Существование и число фундаментальных решений определяется следующей теоремой.
Теорема 6.4.1. Если ранг матрицы однородной системы уравнений (6.4.1) меньше числа неизвестных (r(А)n), то система (6.4.1) имеет бесконечное множество фундаментальных систем решений, причём каждая из них состоит из n-r решений и любые n-r линейно независимые решения составляют фундаментальную систему.
Сформулируем алгоритм построения фундаментальной системы решений:
- Выбираем любой определитель порядка n-r, отличный от нуля, в частности, определитель порядка n-r, у которого элементы главной диагонали равны единице, а остальные – нули.
- Свободным неизвестным придаём поочерёдно значения, равные элементам первой, второй и т.д. строк определителя, и каждый раз из общего решения находим соответствующие значения базисных неизвестных.
- Из полученных n-r решений составляют фундаментальную систему решений.
Меняя произвольно определитель , можно получать всевозможные фундаментальные системы решений.
Пример:
Найти общее решение и фундаментальную систему решений для однородной системы уравнений:
Решение:
Составим матрицу системы и применим алгоритм полного исключения.
Для последней матрицы составляем систему:
,
, из которой находим общее решение:
в котором — базисные неизвестные, а – свободные неизвестные.
Построим фундаментальную систему решений. Для этого выбираем определитель и свободным неизвестным придаём поочерёдно значения, равные элементам первой, а затем второй строк, т.е. положим вначале и получим из общего решения ; затем полагаем , из общего решения находим: .
Таким образом, построенные два решения (1; -1; 1; 0) и (-6; 4; 0; 1) составляют фундаментальную систему решений.
Если ранг матрицы системы однородных линейных уравнений (6.4.1) на единицу меньше числа неизвестных: то , и значит, фундаментальная система состоит из одного решения. Следовательно, любое ненулевое решение образует фундаментальную систему. В этом случае любые два решения различаются между собой лишь числовыми множителями.
Рассмотрим теперь неоднородную систему m линейных уравнений с n неизвестными (6.1.1). Если в системе (6.1.1) положить , то полученная однородная система называется приведенной для системы (6.1.1).
Решения системы (6.1.1) и её приведенной системы удовлетворяют свойствам:
- Сумма и разность любого решения системы (6.1.1) и любого решения её приведенной системы является решением неоднородной системы.
- Все решения неоднородной системы можно получить, прибавляя к одному (любому) её решению поочерёдно все решения её приведенной системы.
Из этих свойств следует теорема.
Теорема 6.4.2. Общее решение неоднородной системы (6.1.1.) определяется суммой любого частного решения этой системы и общего решения её приведенной системы.
Пример:
Найти общее решение системы:
Решение:
Составим расширенную матрицу (A|F) заданной системы и применим алгоритм полного исключения:
,
Преобразованной матрице соответствует система уравнений:
из которой находим общее решение системы:
, где — базисные неизвестные, а – свободные неизвестные.
Покажем, что это общее решение определяется суммой любого частного решения заданной системы и общего решения приведенной системы.
Подставляя вместо свободных неизвестных в общее решение системы нули, получаем частное решение исходной системы: .
Очевидно, что общее решение приведенной системы имеет вид:
Суммируя частное решение заданной системы и общее решение приведенной системы, получим общее решение (6.4.2) исходной системы.
Отметим, что общее решение системы (6.1.1) можно представить в векторном виде:
где – • некоторое решение (вектор-строка) системы (6.1.1);
– фундаментальная система решений системы (6.4.1);
– любые действительные числа.
Формула (6.4.4) называется общим решением системы (6.1.1) в векторной форме.
Запишем общее решение системы примера 6.4.1 в векторной форме. Для этого определим фундаментальную систему решений приведенной системы. Возьмём определитель и придадим поочерёдно свободным неизвестным значения, равные элементам строк. Пусть тогда из общего решения (6.4.3) приведенной системы находим ; если же , то . Следовательно, фундаментальную систему решений образуют решения: и . Тогда общее решение заданной системы в векторной форме имеет вид: , где – частное решение заданной системы; .
Определение метода Гаусса
Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.
Пример:
Решить систему уравнений методом Гаусса:
Решение:
Выпишем расширенную матрицу данной системы и произведем следующие элементарные преобразования над ее строками:
а) из ее второй и третьей строк вычтем первую, умноженную соответственно на 3 и 2:
б) третью строку умножим на (-5) и прибавим к ней вторую:
В результате всех этих преобразований данная система приводится к треугольному виду:
Из последнего уравнения находим Подставляя это значение во второе уравнение, имеем Далее из первого уравнения получим
Вычисление метода Гаусса
Этот метод основан на следующей теореме.
Теорема:
Элементарные преобразования не изменяют ранга матрицы.
К элементарным преобразованиям матрицы относят:
- перестановку двух параллельных рядов;
- умножение какого-нибудь ряда на число, отличное от нуля;
- прибавление к какому-либо ряду матрицы другого, параллельного ему ряда, умноженного на произвольное число.
Путем элементарных преобразований исходную матрицу можно привести к трапециевидной форме
где все диагональные элементы отличны от нуля. Тогда ранг полученной матрицы равен рангу исходной матрицы и равен k.
Пример:
Найти ранг матрицы
1) методом окаймляющих миноров;
2 ) методом Гаусса.
Указать один из базисных миноров.
Решение:
1. Найдем ранг матрицы методом окаймляющих миноров. Выберем минор второго порядка, отличный от нуля. Например,
Существуют два минора третьего порядка, окаймляющих минор
Т.к. миноры третьего порядка равны нулю, ранг матрицы равен двум. Базисным минором является, например, минор
2. Найдем ранг матрицы методом Гаусса. Производя последовательно элементарные преобразования, получим:
- переставили первую и третью строки;
- первую строку умножили на 2 и прибавили ко второй, первую строку умножили на 8 и прибавили к третьей;
- вторую строку умножили на -3 и прибавили к третьей.
Последняя матрица имеет трапециевидную форму и ее ранг равен двум. Следовательно, ранг исходной матрицы также равен двум.
- Прямая линия на плоскости и в пространстве
- Плоскость в трехмерном пространстве
- Функция одной переменной
- Производная функции одной переменной
- Дифференциальные уравнения с примерами
- Обратная матрица – определение и нахождение
- Ранг матрицы – определение и вычисление
- Определители второго и третьего порядков и их свойства
-
Постановка задачи.
Начать изучение
-
Основной случай.
Начать изучение
-
Правило Крамера.
Начать изучение
-
Формулы для элементов обратной матрицы.
Начать изучение
Постановка задачи.
Систему уравнений вида tag{1}begin{matrix} a_{1}^{1}x^{1}+a_{2}^{1}x^{2}+…+a_{n}^{1}x^{n}=b^{1},\a_{1}^{2}x^{1}+a_{2}^{2}x^{2}+…+a_{n}^{2}x^{n}=b^{2},\cdots\a_{1}^{m}x^{1}+a_{2}^{m}x^{2}+…+a_{n}^{m}x^{n}=b^{m}end{matrix} мы будем называть системой m линейных уравнений с n неизвестными x^{1},…, x^{n}. Коэффициенты этих уравнений мы будем записывать в виде матрицы A=begin{Vmatrix} a_{1}^{1}& a_{2}^{1}&…& a_{n}^{1}\cdots\a_{1}^{m}& a_{2}^{m}&…& a_{n}^{m}end{Vmatrix}, называемой матрицей системы. Числа, стоящие в правых частях уравнений, образуют столбец boldsymbol{b}, называемый столбцом свободных членов.
Матрица системы, дополненная справа столбцом свободных членов, называется расширенной матрицей системы и в этой главе обозначается A^{*}: A^{*}=begin{Vmatrix} a_{1}^{1}& a_{2}^{1}&…& a_{n}^{1}& b^{1}\cdots\a_{1}^{m}& a_{2}^{m}&…& a_{n}^{m}& b^{m}end{Vmatrix}.
Если свободные члены всех уравнений равны нулю, то система называется однородной.
Определение.
Совокупность n чисел alpha^{1},…, alpha^{n} называется решением системы (1), если каждое уравнение системы обращается в числовое равенство после подстановки в него чисел alpha^{1},…, alpha^{n} вместо соответствующих неизвестных x^{1},…, x^{n}.
Пользуясь определением линейных операций со столбцами, мы можем записать систему (1) в виде x^{1} begin{Vmatrix} a_{1}^{1}\ vdots\ a_{1}^{m} end{Vmatrix}+…+x^{n} begin{Vmatrix} a_{n}^{1}\ vdots\ a_{n}^{m} end{Vmatrix}=begin{Vmatrix} b^{1}\ vdots\ b^{m} end{Vmatrix}, или, короче, x^{1}boldsymbol{a}_{1}+…+x^{n}boldsymbol{a}_{n}=boldsymbol{b}, где boldsymbol{a}_{1},…, boldsymbol{a}_{n} — столбцы матрицы системы, а boldsymbol{b} — столбец свободных членов. Отсюда сразу вытекает следующая интерпретация решения системы линейных уравнений.
Утверждение 1.
Решение системы линейных уравнений — это совокупность коэффициентов, с которыми столбец свободных членов раскладывается по столбцам матрицы системы.
Используя умножение матриц, можно записать систему (1) еще короче: Aboldsymbol{x}=boldsymbol{b}. Выбор обозначений определяется решаемой задачей.
Наша цель состоит в нахождении всех решений системы (1), причем мы не делаем заранее никаких предположений относительно коэффициентов и свободных членов системы и даже относительно числа уравнений и неизвестных. Поэтому могут представиться различные возможности. Система может вообще не иметь решения, как система x^{1}+x^{2}=1,\x^{1}+x^{2}=0, определяющая две параллельные прямые. Система может иметь бесконечное множество решений, как система (n=2, m=1) x^{1}+x^{2}=0, решением которой является любая пара чисел, равных по модулю и отличающихся знаком. Примеры систем, имеющих одно-единственное решение, в изобилии встречаются в школьном курсе.
Системы, имеющие решения, называются совместными, а не имеющие решений — несовместными.
Как следствие утверждения 1 и утверждения, которое мы доказывали ранее мы получаем
Утверждение 2.
Если столбцы матрицы системы линейно независимы, то система не может иметь двух различных решений: она или несовместна, или имеет единственное решение.
Основным средством исследования и решения систем линейных уравнений для нас будут элементарные преобразования матриц. Причину этого показывает
Утверждение 3.
Элементарным преобразованиям строк расширенной матрицы системы (1) соответствуют преобразования системы уравнений, не меняющие множества ее решений.
Доказательство.
Действительно, если строка матрицы A^{*} умножается на число lambda neq 0, то преобразованная матрица является расширенной матрицей для системы, получаемой из (1) умножением соответствующего уравнения на lambda. Если в матрице i-я строка прибавляется к j-й, то в системе уравнений i-e уравнение прибавляется к j-му. В любом случае преобразованная система является следствием исходной. Но элементарные преобразования обратимы, а значит, и исходная система может быть получена из преобразованной и является ее следствием. Поэтому множества решений обеих систем совпадают.
Основной случай.
В этом параграфе мы рассмотрим основной случай, когда число уравнений равно числу неизвестных: m=n. Кроме того, мы наложим определенные ограничения на коэффициенты системы. Если этого не сделать, то нам придется изучать здесь, например, и систему из одного уравнения, повторенного n раз.
Мы хотим, чтобы ни одно уравнение не было следствием остальных. Для этого во всяком случае необходимо, чтобы ни одно из них не было линейной комбинацией остальных (в действительности, этого и достаточно, но мы можем не вникать сейчас в этот вопрос). В случае m=n для линейной независимости уравнений необходимо потребовать, чтобы матрица системы была невырожденной, или, что то же, чтобы ее детерминант был отличен от нуля. Действительно, если одно из уравнений — линейная комбинация остальных с коэффициентами alpha_{1},…, alpha_{n-1}, то соответствующая строка расширенной матрицы есть линейная комбинация остальных строк с теми же коэффициентами. То же относится и к матрице системы.
Теорема 1.
Пусть дана система из n уравнений с n неизвестными tag{2} begin{matrix}a_{1}^{1}x^{1}+a_{2}^{1}x^{2}+…+a_{n}^{1}x^{n}=b^{1},\a_{1}^{2}x^{1}+a_{2}^{2}x^{2}+…+a_{n}^{2}x^{n}=b^{2},\cdots\a_{1}^{n}x^{1}+a_{2}^{n}x^{2}+…+a_{n}^{n}x^{n}=b^{n}end{matrix}. Если детерминант матрицы системы отличен от нуля, то система имеет решение, и притом только одно.
Доказательство.
В самом деле, зная утверждение 1, мы можем сформулировать эту теорему иначе. Пусть A — квадратная матрица порядка n и det A neq 0. Тогда любой столбец boldsymbol{b} высоты n раскладывается по столбцам A, и коэффициенты разложения определены однозначно. Так как отличие детерминанта от нуля равносильно невырожденности матрицы, это утверждение совпадает с теоремой 1, которую мы доказывали здесь.
Правило Крамера.
Правилом Крамера называются формулы для нахождения решения системы из n уравнений с n неизвестными и детерминантом, отличным от нуля.
Для того, чтобы найти значения неизвестных, составляющие решение, выберем произвольный номер неизвестной j и рассмотрим детерминант матрицы, получаемой из матрицы системы заменой ее i-го столбца столбцом свободных членов boldsymbol{b}: vartriangle^{i}=det begin{Vmatrix} boldsymbol{a}_{1},…, boldsymbol{a}_{i-1} boldsymbol{b} boldsymbol{a}_{i+1},…, boldsymbol{a}_{n} end{Vmatrix}. Если x^{1},…, x^{n} — решение, то boldsymbol{b}=x^{1}boldsymbol{a}_{1}+…+x^{n}boldsymbol{a}_{n}, и в силу линейности детерминанта по столбцу vartriangle^{i}=x^{1} det begin{Vmatrix} boldsymbol{a}_{1},…, boldsymbol{a}_{i-1} boldsymbol{a}_{1} boldsymbol{a}_{i+1},…, boldsymbol{a}_{n} end{Vmatrix}+…\…+x^{i} begin{Vmatrix} boldsymbol{a}_{1},…, boldsymbol{a}_{i-1} boldsymbol{a}_{i} boldsymbol{a}_{i+1},…, boldsymbol{a}_{n} end{Vmatrix}+x^{n} det begin{Vmatrix} boldsymbol{a}_{1},…, boldsymbol{a}_{i-1} boldsymbol{a}_{n} boldsymbol{a}_{i+1},…, boldsymbol{a}_{n} end{Vmatrix}.
Все слагаемые, кроме i-го, равны нулю, так как матрицы в них имеют по два одинаковых столбца. Поэтому vartriangle^{i}=x^{i} det A. Отсюда tag{3} x^{i}=frac{vartriangle^{i}}{det A} (i=1,…, n)
Напомним, что формулы Крамера при n=3 мы ранее уже выводили.
Формулы для элементов обратной матрицы.
Рассмотрим квадратную матрицу A с детерминантом, отличным от нуля. Правило Крамера позволяет получить формулы, выражающие элементы обратной матрицы A^{1} через элементы A.
Пусть boldsymbol{e}_{j} — j-й столбец единичной матрицы. Заметим, что j-й столбец A^{-1} при произвольном j равен A^{-1}boldsymbol{e}_{j}. Если мы обозначим его boldsymbol{x}_{j}, то Aboldsymbol{x}_{j}=boldsymbol{e}_{j}.
Применим правило Крамера для нахождения i-й неизвестной в решении этой системы: x_{j}^{i}=vartriangle^{i}/ det A, где vartriangle^{i} — детерминант матрицы, получаемой из A заменой ее i-го столбца на j-й столбец единичной матрицы. Разлагая vartriangle^{i} по этому столбцу, мы имеем только одно слагаемое, так как в boldsymbol{e}_{j} только j-Й элемент равен 1, а остальные равны нулю.
Следовательно, vartriangle^{i}=(-1)^{i+j}d_{i}^{j} — где d_{i}^{j} — дополнительный минор элемента a_{i}^{j} в матрице A. Подчеркнем, что этот элемент стоит в позиции, симметричной с позицией, в которой расположен вычисляемый нами элемент x_{j}^{i}. Окончательно, tag{4} x_{j}^{i}=frac{(-1)^{i+j}d_{i}^{j}}{det A}.
Формулы (4), как и правило Крамера, имеют некоторое теоретическое значение, но для численного решения систем линейных уравнений и обращения матриц применяются совсем другие методы.
Структура общего решения системы уравнений
Однородная система линейных уравнений
или
всегда совместна, так как имеет тривиальное решение . Если ранг матрицы системы равен количеству неизвестных , то тривиальное решение единственное. Предположим, что . Тогда однородная система имеет бесконечно много решений. Заметим, что расширенная матрица однородной системы при элементарных преобразованиях строк приводится к упрощенному виду , т.е. . Поэтому из (5.11) получаем общее решение однородной системы уравнений:
(5.13)
Получим другую форму записи решений однородной системы, которая раскрывает структуру множества решений. Для этого подчеркнем следующие свойства.
Свойства решений однородной системы уравнений
1. Если столбцы — решения однородной системы уравнений, то любая их линейная комбинация также является решением однородной системы.
В самом деле, из равенств следует, что
т.е. линейная комбинация решений является решением однородной системы.
2. Если ранг матрицы однородной системы равен , то система имеет линейно независимых решений.
Действительно, по формулам (5.13) общего решения однородной системы найдем частных решений , придавая свободным переменным следующие стандартные наборы значений (всякий раз полагая, что одна из свободных переменных равна единице, а остальные — равны нулю):
Получим решений
которые линейно независимы. В самом деле, если из этих столбцов составить матрицу, то последние ее строк образуют единичную матрицу. Следовательно, минор, расположенный в последних строках не равен нулю (он равен единице), т.е. является базисным. Поэтому ранг матрицы будет равен . Значит, все столбцы этой матрицы линейно независимы (см. теорему 3.4).
Любая совокупность линейно независимых решений однородной системы называется фундаментальной системой (совокупностью) решений.
Заметим, что фундаментальная система решений определяется неоднозначно. Однородная система может иметь разные фундаментальные системы решений, состоящие из одного и того же количества линейно независимых решений.
Теорема 5.3 об общем решении однородной системы. Если — фундаментальная система решений однородной системы уравнений (5.4), то столбец
(5.14)
при любых значениях произвольных постоянных также является решением системы (5.4), и, наоборот, для каждого решения х этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.14).
Прямое утверждение теоремы следует из свойства 1 решений однородной системы. Докажем обратное утверждение о том, что любое решение можно представить в виде (5.14). Для этого составим матрицу , приписав к столбцам фундаментальной системы решений столбец
Найдем ранг этой матрицы. Так как первые столбцов линейно независимы, то . Так как каждый из столбцов матрицы является решением системы , то по первой формуле из (5.13) получаем
Следовательно, первая строка матрицы является линейной комбинацией последних строк этой матрицы.
По второй формуле из (5.13) получим, что вторая строка матрицы является линейной комбинацией последних строк этой матрицы, и т.д. По r-й формуле из (5.13) получим, что r-я строка матрицы является линейной комбинацией последних строк этой матрицы. Значит, первые строк матрицы можно вычеркнуть и при этом ранг матрицы не изменится. Следовательно, , так как после вычеркивания в матрице будет всего строк. Таким образом, . Значит, есть базисный минор матрицы , который расположен в первых ее столбцах, а столбец не входит в этот базисный минор. Тогда по теореме о базисном миноре найдутся такие числа , что
Итак, обратное утверждение доказано.
Алгоритм решения однородной системы уравнений
1-5. Выполнить первые 5 пунктов алгоритма Гаусса. При этом не требуется выяснять совместность системы, так как любая однородная система имеет решение (пункт 3 метода Гаусса следует пропустить). Получить формулы (5.11) общего решения, которые для однородной системы будут иметь вид (5.13).
Если ранг матрицы системы равен числу неизвестных , то система имеет единственное тривиальное решение и процесс решения заканчивается.
Если ранг матрицы системы меньше числа неизвестных , то система имеет бесконечно много решений. Структуру множества решений находим в следующих пунктах алгоритма.
6. Найти фундаментальную систему решений однородной системы. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все свободные переменные равны нулю, кроме одной, равной единице (см. свойство 2 решений однородной системы).
7. Записать общее решение однородной системы по формуле (5.14).
Замечания 5.3
1. В пункте 6 алгоритма вместо стандартного набора значений свободных переменных можно использовать и другие наборы значений, лишь бы они обеспечивали линейную независимость получаемых частных решений однородной системы.
2. Матрица столбцы которой образуют фундаментальную систему решений однородной системы, называется фундаментальной. Используя фундаментальную матрицу, общее решение (5.14) однородной системы можно записать в виде
, где — столбец произвольных постоянных.
3. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) однородной системы можно представить в виде блочной матрицы
Тогда блочная матрица размеров является фундаментальной. В этом можно убедиться, используя стандартные наборы значений свободных переменных. Применение блочных матриц может служить вторым способом нахождения фундаментальной системы решений.
Пример 5.4. Найти фундаментальную систему решений и общее решение однородной системы
Решение. 1. Составляем расширенную матрицу системы
2-4. Используя элементарные преобразования над строками матрицы , приводим ее к ступенчатому, а затем и к упрощенному виду (см. решение примера 5.3):
Пункт 3 метода Гаусса пропускаем.
5. Переменные — базисные, а — свободные. Записываем формулу (5.13) общего решения однородной системы
6. Находим фундаментальную систему решений. Так как и , надо подобрать линейно независимых решения. Подставляем в систему стандартные наборы значений свободных переменных:
1) если , то ;
2) если , то .
В результате получили фундаментальную систему решений
7. Записываем общее решение однородной системы по формуле (5.14):
Заметим, что фундаментальную систему решений можно получить, взяв иные наборы значений свободных переменных. Например, и . Тогда получим другую фундаментальную систему решений
и общее решение системы
Несмотря на различия, обе формулы задают одно и то же множество решений.
Структура общего решения неоднородной системы уравнений
Ранее была выведена формула (5.11) общего решения системы линейных уравнений. Получим другую форму записи, отражающую структуру множества решений.
Рассмотрим неоднородную систему и соответствующую ей однородную систему . Между решениями этих систем имеются связи, выражающиеся следующими свойствами.
Свойства решений неоднородной системы уравнений
1. Разность двух решений и неоднородной системы есть решение однородной системы.
Действительно, из равенств и следует, что .
2. Пусть — решение неоднородной системы. Тогда любое решение неоднородной системы можно представить в виде
, где — решение однородной системы.
В самом деле, для любого решения неоднородной системы разность по свойству 1 является решением однородной системы, т.е. — решение однородной системы.
Теорема 5.4 о структуре общего решения неоднородной системы.
Пусть — решение неоднородной системы, а — фундаментальная система решений соответствующей однородной системы уравнений. Тогда столбец
(5.15)
при любых значениях [i]произвольных постоянных является решением неоднородной системы, и, наоборот, для каждого решения этой системы найдутся такие значения произвольных постоянных , при которых это решение удовлетворяет равенству (5.15).[/i]
Говорят, что общее решение неоднородной системы есть сумма частного решения неоднородной системы и общего решения соответствующей однородной системы.
Доказательство теоремы вытекает из свойств 1, 2 и теоремы 5.3.
Алгоритм решения неоднородной системы уравнений
1-5. Выполнить первые 5 пунктов метода Гаусса решения системы уравнений и получить формулу общего решения неоднородной системы вида (5.11).
6. Найти частное решение неоднородной системы, положив в (5.11) все свободные переменные равными нулю.
7. Записав формулы (5.13) общего решения соответствующей однородной системы, составить фундаментальную систему ее решений. Для этого подставить в (5.13) последовательно стандартных наборов значений свободных переменных, в которых все переменные равны нулю, за исключением одной, равной единице.
8. Записать общее решение неоднородной системы по формуле (5.15).
Замечания 5.4
1. Используя фундаментальную матрицу однородной системы , решение неоднородной системы можно представить в виде
где — частное решение неоднородной системы, а — столбец произвольных постоянных.
2. Если базисный минор матрицы расположен в левом верхнем углу (в первых строках и первых столбцах), то упрощенный вид расширенной матрицы (5.9) неоднородной системы можно представить в виде блочной матрицы
Тогда блочная матрица оказывается фундаментальной (см. п.3 замечаний 5.3), а столбец является частным решением неоднородной системы (в этом можно убедиться, подставляя в (5.11) нулевой набор свободных переменных). Используя блочные матрицы, общее решение (5 15) неоднородной системы можно представить в виде
(5.16)
где — столбец произвольных постоянных. Полученную формулу можно считать вторым способом решения неоднородной системы.
Пример 5.5. Найти структуру (5.15) общего решения неоднородной системы
Решение. 1-5. Первые 5 пунктов метода Гаусса выполнены при решении примера 5.3, где получены формулы общего решения неоднородной системы:
Переменные — базисные, а — свободные.
6. Полагая , получаем частное решение неоднородной системы .
7. Находим фундаментальную систему решений однородной системы (см. пример 5.4):
8. Записываем по формуле (5.15) общее решение неоднородной системы
Искомая структура множества решений найдена.
Получим формулу общего решения вторым способом, используя п.2 замечаний 5.4. При решении примера 5.3 расширенная матрица системы была приведена к упрощенному виду. Разбиваем ее на блоки:
Записываем частное решение неоднородной системы
и составляем фундаментальную матрицу:
По формуле (5.16) получаем общее решение неоднородной системы, которое преобразуем к виду (5.15):
которое совпадает с ранее полученным.
Математический форум (помощь с решением задач, обсуждение вопросов по математике).
Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.
Однородные системы линейных алгебраических уравнений. Фундаментальная система решений. Первая часть.
Для чтения этой темы желательно, хоть и не обязательно, ознакомиться с темой “Система линейных алгебраических уравнений. Основные термины. Матричная форма записи”, а также с темой “Базисные и свободные переменные. Общее и базисное решения системы линейных алгебраических уравнений”.
Однородные системы линейных алгебраических уравнений. Нулевое (тривиальное) решение.
Для начала стоит вспомнить, что такое однородные системы линейных алгебраических уравнений. В теме “Система линейных алгебраических уравнений. Основные термины. Матричная форма записи” вопрос классификации систем осуществлялся подробно, здесь же лишь вкратце напомню основные термины. Итак, система линейных алгебраических уравнений (СЛАУ) называется однородной, если все свободные члены этой системы равны нулю. Например, система $left { begin{aligned}
& 2x_1-3x_2-x_3-x_4=0;\
& -4x_1+5x_2+3x_4=0.
end{aligned} right.$ является однородной, так как все свободные члены этой системы (т.е. числа, стоящие в правых частях равенств) – нули.
Любая однородная СЛАУ имеет хотя бы одно решение – нулевое (его ещё называют тривиальное), в котором все переменные равны нулю. Подставим, например, $x_1=0$, $x_2=0$, $x_3=0$ и $x_4=0$ в записанную выше систему. Получим два верных равенства:
$$
left { begin{aligned}
& 2cdot 0-3cdot 0-0-0=0;\
& -4cdot 0+5cdot 0+3cdot 0=0.
end{aligned} right.
$$
Однако следствие из теоремы Кронекера-Капелли однозначно указывает на то, что если СЛАУ имеет решение, то есть только два варианта. Либо это решение единственно (и тогда СЛАУ называют определённой), либо этих решений бесконечно много (такую СЛАУ именуют неопределённой). Возникает первый вопрос: как выяснить, сколько решений имеет заданная нам однородная СЛАУ? Одно (нулевое) или бесконечность?
Та однородная СЛАУ, которая рассмотрена выше, имеет не только нулевое решение. Подставим, например, $x_1=1$, $x_2=-1$, $x_3=2$ и $x_4=3$:
$$
left { begin{aligned}
& 2cdot 1-3cdot (-1)-2-3=0;\
& -4cdot 1+5cdot (-1)+3cdot 3=0.
end{aligned} right.
$$
Мы получили два верных равенства, поэтому $x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$ – тоже является решением данной СЛАУ. Отсюда, кстати, следует вывод: так как наша СЛАУ имеет более чем одно решение, то эта СЛАУ является неопределенной, т.е. она имеет бесконечное количество решений.
Кстати сказать, чтобы не писать каждый раз выражения вроде “$x_1=1$, $x_2=-1$, $x_3=2$, $x_4=3$”, пишут все значения переменных в матрицу-столбец: $left(begin{array} {c}
1 \
-1 \
2 \
3 end{array} right)$. Эту матрицу тоже называют решением СЛАУ.
Теорема Кронекера-Капелли гласит, что любая СЛАУ имеет решение (совместна) тогда и только тогда, когда ранг матрицы системы ($A$) равен рангу расширенной матрицы системы ($widetilde{A}$), т.е. $rang A=rangwidetilde{A}$. Так как мы уже выяснили, что любая однородная СЛАУ имеет решение (хотя бы одно), то для всех однородных СЛАУ $rang A=rangwidetilde{A}$. Так как ранги равны между собой, то можно обозначить их какой-то одной буквой, например, $r$. Итак, для любой однородной СЛАУ имеем: $rang A=rangwidetilde{A}=r$.
Теперь можно вернуться к вопросу о количестве решений однородной СЛАУ. Согласно следствию из теоремы Кронекера-Капелли, если $r=n$ ($n$ – количество переменных), то СЛАУ имеет единственное решение. Если же $r < n$, то СЛАУ имеет бесконечное количество решений.
Случай $r=n$ не интересен. Для однородных СЛАУ он означает, что система имеет только нулевое решение. А вот случай $r < n$ представляет особый интерес.
Этот случай уже был рассмотрен в теме “Базисные и свободные переменные. Общее и базисное решения СЛАУ”. По сути, однородные СЛАУ – это всего лишь частный случай системы линейных уравнений, поэтому вся терминология (базисные, свободные переменные и т.д.) остаётся в силе.
Что такое базисные и свободные переменные? показатьскрыть
Фундаментальная система решений однородной СЛАУ.
С однородными СЛАУ связано дополнительное понятие – фундаментальная система решений. Дело в том, что если ранг матрицы системы однородной СЛАУ равен $r$, то такая СЛАУ имеет $n-r$ линейно независимых решений: $varphi_1$, $varphi_2$,…, $varphi_{n-r}$.
Любая совокупность $n-r$ линейно независимых решений однородной СЛАУ называется фундаментальной системой (или совокупностью) решений данной СЛАУ.
Часто вместо словосочетания “фундаментальная система решений” используют аббревиатуру “ФСР”. Если решения $varphi_1$, $varphi_2$,…, $varphi_{n-r}$ образуют ФСР, и $X$ – матрица переменных данной СЛАУ, то общее решение СЛАУ можно представить в таком виде:
$$
X=C_1cdot varphi_1+C_2cdot varphi_2+ldots+C_{n-r}cdot varphi_{n-r},
$$
где $C_1$, $C_2$,…, $C_{n-r}$ – произвольные постоянные.
Что значит “линейно независимые решения”? показатьскрыть
Пример №1
Решить СЛАУ
$$left { begin{aligned}
& 3x_1-6x_2+9x_3+13x_4=0\
& -x_1+2x_2+x_3+x_4=0;\
& x_1-2x_2+2x_3+3x_4=0.
end{aligned} right.$$
Если система является неопределённой, указать фундаментальную систему решений.
Решение
Итак, мы имеем однородную СЛАУ, у которой 3 уравнения и 4 переменных: $x_1$, $x_2$, $x_3$, $x_4$. Так как количество переменных больше количества уравнений, то такая однородная система не может иметь единственное решение (чуть позже мы строго докажем это предложение на основе теоремы Кронекера-Капелли). Найдём решения СЛАУ, используя метод Гаусса:
$$
left( begin{array} {cccc|c}
3 & -6 & 9 & 13 & 0 \
-1 & 2 & 1 & 1 & 0 \
1 & -2 & 2 & 3 & 0 end{array} right) rightarrow
left|begin{aligned}
& text{поменяем местами первую и третью}\
& text{строки, чтобы первым элементом}\
& text{первой строки стала единица.}
end{aligned}right| rightarrow \
rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
-1 & 2 & 1 & 1 & 0 \
3 & -6 & 9 & 13 & 0
end{array} right)
begin{array} {l} phantom{0} \ r_2+r_1\ r_3-3r_1end{array} rightarrow
left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 3 & 4 & 0
end{array}right)
begin{array} {l} phantom{0} \ phantom{0}\ r_3-r_2end{array} rightarrow \
rightarrowleft( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right).
$$
Мы завершили прямой ход метода Гаусса, приведя расширенную матрицу системы к ступенчатому виду. Слева от черты расположены элементы преобразованной матрицы системы, которую мы также привели к ступенчатому виду. Напомню, что если некая матрица приведена к ступенчатому виду, то её ранг равен количеству ненулевых строк.
И матрица системы, и расширенная матрица системы после эквивалентных преобразований приведены к ступенчатому виду; они содержат по две ненулевых строки. Вывод: $rang A=rangwidetilde{A} = 2$.
Итак, заданная СЛАУ содержит 4 переменных (обозначим их количество как $n$, т.е. $n=4$). Кроме того, ранги матрицы системы и расширенной матрицы системы равны между собой и равны числу $r=2$. Так как $r < n$, то согласно следствию из теоремы Кронекера-Капелли СЛАУ является неопределённой (имеет бесконечное количество решений).
Найдём эти решения. Для начала выберем базисные переменные. Их количество должно равняться $r$, т.е. в нашем случае имеем две базисные переменные. Какие именно переменные (ведь у нас их 4 штуки) принять в качестве базисных? Обычно в качестве базисных переменных берут те переменные, которые расположены на первых местах в ненулевых строках преобразованной матрицы системы, т.е. на “ступеньках”. Что это за “ступеньки” показано на рисунке:
На “ступеньках” стоят числа из столбцов №1 и №3. Первый столбец соответствует переменной $x_1$, а третий столбец соответствует переменной $x_3$. Именно переменные $x_1$ и $x_3$ примем в качестве базисных.
В принципе, если вас интересует именно методика решения таких систем, то можно пропускать нижеследующее примечание и читать далее. Если вы хотите выяснить, почему можно в качестве базисных взять именно эти переменные, и нельзя ли выбрать иные – прошу раскрыть примечание.
Примечание. показатьскрыть
Базисные переменные выбраны: это $x_1$ и $x_3$. Количество свободных переменных, как и количество решений в ФСР, равно $n-r=2$. Свободными переменными будут $x_2$ и $x_4$. Нам нужно выразить базисные переменные через свободные.
Я предпочитаю работать с системой в матричной форме записи. Для начала очистим полученную матрицу $left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0 \
0 & 0 & 0 & 0 & 0
end{array}right)$ от нулевой строки:
$$
left( begin{array} {cccc|c}
1 & -2 & 2 & 3 & 0\
0 & 0 & 3 & 4 & 0
end{array}right)
$$
Свободным переменным, т.е. $x_2$ и $x_4$, соответствуют столбцы №2 и №4. Перенесём эти столбцы за черту. Знак всех элементов переносимых столбцов изменится на противоположный:
Почему меняются знаки? Что вообще значит это перенесение столбцов? показатьскрыть
А теперь продолжим решение обычным методом Гаусса. Наша цель: сделать матрицу до черты единичной. Для начала разделим вторую строку на 3, а потом продолжим преобразования обратного хода метода Гаусса:
$$
left( begin{array} {cc|cc}
1 & 2 & 2 & -3\
0 & 3 & 0 & -4
end{array}right)
begin{array} {l} phantom{0} \ 1/3cdot{r_2} end{array} rightarrow
left( begin{array} {cc|cc}
1 & 2 & 2 & -3\
0 & 1 & 0 & -4/3
end{array}right)
begin{array} {l} r_1-2r_2 \ phantom{0} end{array} rightarrow \
rightarrow left(begin{array} {cc|cc}
1 & 0 & 2 & -1/3\
0 & 1 & 0 & -4/3
end{array}right).
$$
Матрица до черты стала единичной, метод Гаусса завершён. Общее решение найдено, осталось лишь записать его. Вспоминая, что четвёртый столбец соответствует переменной $x_2$, а пятый столбец – переменной $x_4$, получим:
$$
left{begin{aligned}
& x_1=2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.
$$
Нами найдено общее решение заданной однородной СЛАУ. Если есть желание, то полученное решение можно проверить. Например, подставляя $x_1=2x_2-frac{1}{3}x_4$ и $x_3=-frac{4}{3}x_4$ в левую часть первого уравнения, получим:
$$
3x_1-6x_2+9x_3+13x_4=3cdot left(2x_2-frac{1}{3}x_4right)-6x_2+9cdot left(-frac{4}{3}x_4right)+13x_4=0.
$$
Проверка первого уравнения увенчалась успехом; точно так же можно проверить второе и третье уравнения.
Теперь найдем фундаментальную систему решений. ФСР будет содержать $n-r=2$ решения. Для нахождения ФСР составим таблицу. В первой строке таблицы будут перечислены переменные: сначала базисные $x_1$, $x_3$, а затем свободные $x_2$ и $x_4$. Всего в таблице будут три строки. Так как у нас 2 свободные переменные, то под свободными переменными запишем единичную матрицу второго порядка, т.е. $left(begin{array} {cc} 1 & 0 \0 & 1end{array}right)$. Таблица будет выглядеть так:
Теперь будем заполнять свободные ячейки. Начнём со второй строки. Мы знаем, что $x_1=2x_2-frac{1}{3}x_4$ и $x_3=-frac{4}{3}x_4$. Если $x_2=1$, $x_4=0$, то:
$$
begin{aligned}
& x_1=2cdot 1-frac{1}{3}cdot 0=2;\
& x_3=-frac{4}{3}cdot 0=0.
end{aligned}
$$
Найденные значения $x_1=2$ и $x_3=0$ запишем в соответствующие пустые ячейки второй строки:
$$
begin{array} {c|c|c|c}
x_1 & x_3 & x_2 & x_4 \
hline 2 & 0 & 1 & 0 \
hline & & 0 & 1
end{array}
$$
Заполним и третью строку. Если $x_2=0$, $x_4=1$, то:
$$
begin{aligned}
& x_1=2cdot 0-frac{1}{3}cdot 1=-frac{1}{3};\
& x_3=-frac{4}{3}cdot 1=-frac{4}{3}.
end{aligned}
$$
Найденные значения $x_1=-frac{1}{3}$ и $x_3=-frac{4}{3}$ запишем в соответствующие пустые ячейки третьей строки. Таким образом таблица будет заполнена полностью:
$$
begin{array} {c|c|c|c}
x_1 & x_3 & x_2 & x_4 \
hline 2 & 0 & 1 & 0 \
hline -frac{1}{3} & -frac{4}{3} & 0 & 1
end{array}
$$
Из второй и третьей строки таблицы мы и запишем ФСР. Матрица неизвестных для нашей системы такова: $X=left(begin{array} {c} x_1 \x_2 \x_3 \x_4 end{array}right)$. В том же порядке, в котором в матрице $X$ перечислены переменные, записываем значения переменных из таблицы в две матрицы:
$$
varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right);;
varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right).
$$
Совокупность $varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right)$, $varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:
$$
X=C_1cdotleft(begin{array} {c} 2 \1 \0 \0 end{array}right)+C_2cdotleft(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right),
$$
где $C_1$ и $C_2$ – произвольные постоянные.
Ответ: Общее решение: $left{begin{aligned}
& x_1=2x_2-frac{1}{3}x_4;\
& x_2in R;\
& x_3=-frac{4}{3}x_4;\
& x_4 in R.
end{aligned}right.$. Или так: $X=C_1cdotleft(begin{array} {c} 2 \1 \0 \0 end{array}right)+C_2cdotleft(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$, где $C_1$ и $C_2$ – произвольные константы. Фундаментальная система решений: $varphi_1=left(begin{array} {c} 2 \1 \0 \0 end{array}right)$, $varphi_2=left(begin{array} {c} -1/3 \0 \ -4/3 \1 end{array}right)$.
Пример №2
Записать ФСР однородной СЛАУ
$$
left{begin{aligned}
& x_1-5x_2-x_3-2x_4+3x_5=0;\
& 2x_1-6x_2+x_3-4x_4-2x_5=0; \
& -x_1+4x_2+5x_3-3x_4=0.
end{aligned} right.,
$$
зная общее решение. Записать общее решение с помощью ФСР.
Решение
Общее решение уже было получено в теме “метод Крамера” (пример №4). Это решение таково:
$$
left{begin{aligned}
& x_1=frac{-17x_4+144x_5}{19};\
& x_2=frac{-15x_4+41x_5}{19};\
& x_3=frac{20x_4-4x_5}{19}; \
& x_4in R; ; x_5in R.
end{aligned} right.
$$
Опираясь на предыдущий пример №1, попробуйте составить ФСР самостоятельно, а потом сверить с ответом.
Ранг матрицы системы $r=3$ (поэтому у нас три базисных переменных), количество переменных $n=5$. Количество свободных переменных и количество решений ФСР равно $n-r=2$.
Так же, как и в предыдущем примере, составим ФСР. При составлении учтём, что $x_1$, $x_2$, $x_3$ – базисные переменные, а $x_4$, $x_5$ – свободные переменные.
$$
begin{array} {c|c|c|c|c}
x_1 & x_2 & x_3 & x_4 & x_5\
hline -frac{17}{19} & -frac{15}{19} & frac{20}{19} & 1 & 0 \
hline frac{144}{19} & frac{41}{19} & -frac{4}{19} & 0 & 1
end{array}
$$
Совокупность $varphi_1=left(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)$, $varphi_2=left(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$ и есть ФСР данной системы. Общее решение можно записать теперь так: $X=C_1cdot varphi_1+C_2cdot varphi_2$. Или в развёрнутом виде:
$$
X=C_1cdotleft(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)+C_2cdotleft(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right),
$$
где $C_1$ и $C_2$ – произвольные постоянные.
Ответ: Фундаментальная система решений: $varphi_1=left(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)$, $varphi_2=left(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$. Общее решение: $X=C_1cdotleft(begin{array} {c} -17/19 \-15/19 \20/19 \1\0 end{array}right)+C_2cdotleft(begin{array}{c} 144/19 \ 41/19 \ -4/19\0\1 end{array}right)$, где $C_1$ и $C_2$ – произвольные константы.
Продолжение этой темы рассмотрим во второй части, где разберём ещё один пример с нахождением общего решения и ФСР.