Распределение торговых фирм по размеру месячного товарооборота характеризуется следующими данными:
№п/п | Товарооборот, млн. руб. | Число фирм |
1 | до 5 | 20 |
2 | 5-10 | 26 |
3 | 10-15 | 20 |
4 | 15-20 | 14 |
5 | 20-25 | 10 |
6 | 25 и более | 10 |
Итого | – | 100 |
Определите:
а) средний размер месячного товарооборота на одну фирму;
б) модальное и медианное значение месячного товарооборота;
в) сделайте выводы о характере данного распределения.
Решение:
а) Рассчитаем средний размер товарооборота на одну фирму.
В данном ряду варианты усредняемого признака (товарооборот) представлены не одним числом, а в виде интервала «от – до». Причём первый и последний – интервалы открытые.
В таких рядах условно принимается, величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей. Таким образом, товарооборот первой группы от 0 до 5 млн. руб., товарооборот последней – от 25 до 30 млн. руб. Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:
Чтобы применить эту формулу, необходимо варианты признака выразить одним числом (дискретным). За такое дискретное число принимается средняя арифметическая простая из верхнего и нижнего значения интервала. Так для первой группы дискретная величина х будет равна: (0 + 5) / 2 = 2,5. Дальнейший расчёт производится обычным методом определения средней арифметической взвешенной:
Исходные и расчётные данные представим в таблице:
Товарооборот, млн. руб. | Число фирм, f | Середина интервала, х | xf | Сумма накопленных частот |
0-5 | 20 | 2,5 | 50 | 20 |
5-10 | 26 | 7,5 | 195 | 46 |
10-15 | 20 | 12,5 | 250 | 66 |
15-20 | 14 | 17,5 | 245 | – |
20-25 | 10 | 22,5 | 225 | – |
25-30 | 10 | 27,5 | 275 | – |
Итого | 100 | – | 1240 | – |
б) Определим модальное и медианное значение месячного товарооборота.
В интервальных рядах распределения с равными интервалами мода определяется по формуле:
xMo – начальное значение интервала, содержащего моду;
iMo – величина модального интервала,
fMo – частота модального интервала,
f(Mo-1) – частота интервала, предшествующего модальному,
f(Mo+1) – частота интервала, следующего за модальным.
Наибольшее число фирм (26) имеют величину товарооборота от 5 до 10 млн. руб. Следовательно, этот интервал является модальным интервалом ряда распределения. Введём следующие обозначения:
xMo=5, iMo=5, fMo=26, f(Mo-1)=20, f(Mo+1)=20.
Подставим эти значения в формулу моды и произведём вычисления:
Следовательно, наибольшее число фирм имеет товарооборот 7,5 млн. руб.
Медиана интервального вариационного ряда распределения определяется по формуле:
где xMе – начальное значение интервала, содержащего медиану;
iMе – величина медианного интервала;
Σf – сумма частот ряда;
S(Me-1) – сумма накопленных частот, предшествующих медианному интервалу;
fMe – частота медианного интервала.
Определим, прежде всего, медианный интервал. Сумма накопленных частот, превышающая половину всех значений (66), соответствует интервалу 10 – 15. Это и есть медианный интервал, в котором находится медиана. Определим её значение по приведённой выше формуле, если:
xMе=10, iMе=5, Σf=100, S(Me-1)=46, fMe=20:
Таким образом, половина фирм имеет товарооборот менее 11 млн. руб., а остальные фирмы – более 11 млн. руб.
в) В симметричных рядах распределения значения моды и медианы совпадают со средней величиной, а в умеренно ассиметричных они соотносятся таким образом:
Соотношение характеристик центра распределения товарооборота свидетельствует об умеренной асимметрии:
3(12,4-11) ≈12,4-7,5
В статистике есть целый набор показателей, которые характеризуют центральную тенденцию. Выбор того или иного индикатора в основном зависит от характера данных, целей расчетов и его свойств.
Что подразумевается под характером данных? Прежде всего, мы говорим о количественных данных, которые выражены в числах. Но набор числовых данных может иметь разное распределение. Под распределением понимаются частоты отдельных значений. К примеру, в классе из 23 человек 2 школьника написали контрольную работу на двойку, 5 – на тройку, 10 – на четверку и 6 – на пятерку. Это и есть распределение оценок. Распределение очень наглядно можно представить с помощью специальной диаграммы – гистограммы. Для данного примера получится следующая гистограмма.
Во многих случаях количество уникальных значений намного больше, а распределение похоже на нормальное. Ниже приведена примерная иллюстрация нормального распределения случайных чисел.
Итак, центральная тенденция. Если частоты анализируемых значений распределены по нормальному закону, то есть симметрично вокруг некоторого центра, то центральная тенденция определяется вполне однозначно – это есть тот самый центр, и математически он соответствует средней арифметической.
Как нетрудно заметить, в этом же центре находится и максимальная частота значений. То есть при нормальном распределении центральная тенденция есть не только средняя арифметическая, но и максимальная частота, которая в статистике называется модой или модальным значением.
На диаграмме оба значения центральной тенденции совпадают и равны 10.
Но такое распределение встречается далеко не всегда, а при малом числе данных – совсем редко. Чаще бывает так, что частоты распределяются асимметрично. Тогда мода и среднее арифметическое не будут совпадать.
На рисунке выше среднее арифметическое по-прежнему составляет 10, а вот мода уже равна 9. Что в таком случае считать значением центральной тенденции? Ответ зависит от поставленных целей анализа. Если интересует уровень, сумма отклонений от которого равна нулю со всеми вытекающим отсюда свойствами и последствиями, то это средняя арифметическая. Если нужно максимально частое значение, то это мода.
Итак, зачем нужна мода? Приведу пару примеров. Экономист планово-экономического отдела обувной фабрики интересуется, какой размер обуви пользуется наибольшим спросом. Средний размер обуви, скорее всего, здесь не подойдет, тем более, что число может получится дробным. А вот мода – как раз нужный показатель.
Расчет моды
Теперь посмотрим, как рассчитать моду. Мода – это то значение в анализируемой совокупности данных, которое встречается чаще других, поэтому нужно посмотреть на частоты значений и отыскать максимальное из них. Например, в наборе данных 3, 4, 6, 7, 3, 5, 3, 4 модой будет значение 3 – повторяется чаще остальных. Это в дискретном ряду, и здесь все просто. Если данных много, то моду легче всего найти с помощью соответствующей гистограммы. Бывает так, что совокупность данных имеет бимодальное распределение.
Без диаграммы очень трудно понять, что в данных не один, а два центра. К примеру, на президентских выборах предпочтения сельских и городских жителей могут отличаться. Поэтому распределение доли отданных голосов за конкретного кандидата может быть «двугорбым». Первый «горб» – выбор городского населения, второй – сельского.
Немного сложнее с интервальными данными, когда вместо конкретных значений имеются интервалы. В этом случае говорят о модальном интервале (при анализе доходов населения, например), то есть интервале, частота которого максимальна относительно других интервалов. Однако и здесь можно отыскать конкретное модальное значение, хотя оно будет условным и примерным, так как нет точных исходных данных. Представим, что есть следующая таблица с распределением цен.
Для наглядности изобразим соответствующую диаграмму.
Требуется найти модальное значение цены.
Вначале нужно определить модальный интервал, который соответствует интервалу с наибольшей частотой. Найти его так же легко, как и моду в дискретном ряду. В нашем примере это третий интервал с ценой от 301 до 400 руб. На графике – самый высокий столбец. Теперь нужно определить конкретное значение цены, которое соответствует максимальному количеству. Точно и по факту сделать это невозможно, так как нет индивидуальных значений частот для каждой цены. Поэтому делается допущение о том, что интервалы выше и ниже модального в зависимости от своей частоты имеют разные вес и как бы перетягивают моду в свою сторону. Если частота интервала следующего за модальным больше, чем частота интервала перед модальным, то мода будет правее середины модального интервала и наоборот. Давайте еще раз посмотрим на рисунок, чтобы понять формулу, которую я напишу чуть ниже.
На рисунке отчетливо видно, что соотношение высоты столбцов, расположенных слева и справа от модального определяет близость моды к левому или правому краю модального интервала. Задача по расчету модального значения состоит в том, чтобы найти точку пересечения линий, соединяющих модальный столбец с соседними (как показано на рисунке пунктирными линиями) и нахождении соответствующего значения признака (в нашем примере цены). Зная основы геометрии (7-й класс), по данному рисунку нетрудно вывести формулу расчета моды в интервальном ряду.
Формула моды имеет следующий вид.
Где Мо – мода,
x0 – значение начала модального интервала,
h – размер модального интервала,
fМо – частота модального интервала,
fМо-1 – частота интервала, находящего перед модальным,
fМо1 – частота интервала, находящего после модального.
Второе слагаемое формулы моды соответствует длине красной линии на рисунке выше.
Рассчитаем моду для нашего примера.
Таким образом, мода интервального ряда представляет собой сумму, состоящую из значения начального уровня модального интервала и отрезка, который определяется соотношением частот ближайших интервалов от модального.
Расчет моды в Excel
В настоящее время большинство вычислений делается в MS Excel, где для расчета моды также предусмотрена специальная функция. В Excel 2013 я таких нашел ажно 3 штуки.
МОДА – пережиток старых изданий Excel. Функция оставлена для совмещения со старыми версиями.
МОДА.ОДН – рассчитывает моду по заданным значениям. Здесь все просто. Вставили функцию, указали диапазон данных и «Ок».
МОДА.НСК – позволяет рассчитать сразу несколько модальных значений (одинаковых максимальных частот) для одного ряда данных, если они есть. Функцию нужно вводить как формулу массива, перед этим выделив количество ячеек равное количеству требуемых модальных значений. Иногда действительно модальных значений может быть несколько. Однако для этих целей предварительно лучше посмотреть на диаграмму распределения.
Моду для интервальных данных одной функцией в Excel рассчитать нельзя. То есть такая функция в готовом виде не предусмотрена. Придется прописывать вручную.
Следующая статья посвящена медиане.
До встречи на statanaliz.info.
Поделиться в социальных сетях:
Для
характеристики структуры вариационных
рядов применяются так называемые
структурные средние. Наиболее часто
используются в экономической практике
мода и медиана.
Мода
– это наиболее
часто встречающаяся варианта признака
в данной совокупности.
В
дискретных
вариационных рядах мода
определяется по наибольшей частоте.
Предположим товар «А» реализуют в городе
9 фирм по цене в рублях:
44; 43; 44; 45; 43; 46; 42;
46;43;
Так как чаще всего
встречается цена 43 рубля, то она и будет
модальной.
В
интервальных
вариационных рядах
моду определяют приближенно по формуле
,
где
x0
– нижняя граница
модального интервала;
–
величина модального интервала;
–
частота модального интервала;
–
частота интервала, предшествующая
модальному;
–
частота интервала, следующая за модальным.
Место нахождения
модального интервала определяют по
наибольшей частоте (таблица 5.3)
Таблица 5.3.
Распределение
населения РФ по уровню среднедушевого
месячного дохода в I-ом
полугодии 1995 года
Среднедушевой |
Удельный |
Накопленная |
менее 100 100-300 300-500 500-700 700-900 900 и выше |
2,4 35,5 30,0 15,7 7,7 8,7 |
2,4 37,9 67,9 83,6 91,3 100,0 |
Всего |
100,0 |
Х |
Интервал
100-300 в данном распределении будет
модальным, т.к. он имеет наибольшую
частоту ().
Тогда по вышеуказанной формуле мода
будет равна:
руб.
Мода
применяется для решения некоторых
практических задач. Так, например, при
изучении товарооборота рынка берется
модальная цена, для изучения спроса на
обувь, одежду используют модальные
размеры обуви и одежды и др.
Медиана
– это численное
значение признака у той единицы
совокупности, которая находится в
середине ранжированного ряда (построенного
в порядке возрастания, либо убывания
значения изучаемого признака). Медиану
иногда называют серединной
вариантой, т.к. она делит совокупность
на две равные части. В дискретных
вариационных рядах
с нечетным числом единиц совокупности
– это конкретное численное значение в
середине ряда. Так в группе студентов
из 27 человек медианным будет рост у
14-го, если они выстроятся по росту. Если
число единиц совокупности четное, то
медианой будет средняя арифметическая
из значений признака у двух средних
членов ряда. Так, если в группе 26 человек,
то медианным будет рост средний 13-го и
14-го студентов. В интервальных вариационных
рядах медиана определяется по формуле:
,
где x0
– нижняя граница медианного интервала;
– величина медианного интервала;–
сумма накопленных частот до медианного
интервала;fMe
– частота
медианного интервала. По данным таблицы
5.3. определим медианное значение
среднедушевого дохода. Для этого
необходимо определить, какой интервал
будет медианным. Используя формулу
накопленной частоты до медианы, т.е.
середины
(%) .
Дробное
значение SМе
(всегда при
четном числе членов) равное 50,5% говорит
о том, что середина ряда находится между
50% и 51%, т.е. в третьем интервале. Отсюда
медиана по формуле будет определена.
руб.
Мода
и медиана, как правило, отличаются от
значения средней, совпадая с ней только
в случае симметричного распределения
частот вариационного ряда. Соотношение
моды, медианы и средней арифметической
указывает на характер распределения
признака в совокупности, позволяет
оценить его асимметрию. Если M0<Me<
имеет место правосторонняя асимметрия.
Если же
<Me<M0
– левосторонняя
асимметрия ряда. По приведенному примеру
можно сделать заключение, что наиболее
распространенным является доход порядка
271 руб. в месяц. В то же время более
половины населения располагают доходом
свыше 381 руб., при среднем уровне 435 руб.
руб. Из соотношения этих показателей
следует сделать вывод о правосторонней
асимметрии распределения населения по
уровню среднедушевого денежного дохода.
Аналогично
медиане вычисляются значения признака,
делящие совокупность на четыре равные
(по числу единиц) части – квартили,
на десять частей
– децили,
на сто частей – перцентили.
Так формула
первого квартиля будет
.
Второй квартиль равен медиане. Формула
третьего квартиля будет.
Аналогичны формулы
децилей. Пятый дециль равен медиане.
Среди
множества варьирующих признаков
существуют признаки, которыми одни
единицы совокупности обладают, а другие
не обладают. Такие признаки называются
альтернативными.
Примером таких признаков являются:
наличие бракованной продукции, ученая
степень у преподавателя, наличие
академической задолженности у студента
и др. Обозначим:
1
—
наличие интересующего нас признака; 0
—
его
отсутствие;
р
— доля
единиц, обладающих данным признаком; q
— доля единиц,
не обладающих данным признаком; тогда
р+q=1.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Загрузить PDF
Загрузить PDF
Среднее значение, медиана и мода — значения, которые часто используются в статистике и математике. Эти значения найти довольно легко, но их легко и перепутать. Мы расскажем, что они из себя представляют и как их найти.
-
1
Сложите все числа, которые вам даны. Допустим, вам даны числа 2, 3 и 4. Сложим их: 2 + 3 + 4 = 9.
-
2
Сосчитайте количество чисел. У нас есть три цифры.
-
3
Разделите сумму чисел на их количество. Берем 9, делим на 3. 9/3 = 3. Среднее значение в данном случае равно 3. Помните, что не всегда получается целое число.
Реклама
-
1
Запишите все числа, которые вам даны, в порядке возрастания. Например, нам даны числа: 4, 2, 8, 1, 15. Запишите их от меньшего к большему, вот так: 1, 2, 4, 8, 15.
-
2
Найдите два средних числа. Мы расскажем, как это сделать, если у вас имеется четное количество чисел, и как это сделать, если количество чисел нечетное:
- Если у вас нечетное количество чисел, вычеркните левое крайнее число, затем правое крайнее число и так далее. Один оставшийся номер и будет искомой медианой. Если вам дан ряд чисел 4, 7, 8, 11, 21, тогда 8 — медиана, так как 8 стоит посередине.
- Если у вас четное количество чисел, вычеркните по одному числу с каждой стороны, пока у вас не останется два числа посередине. Сложите их и разделите на два. Это и есть значение медианы. Если вам дан ряд чисел 1, 2, 5, 3, 7, 10, то два средних числа — это 5 и 3. Сложим 5 и 3, получим 8, разделим на два, получим 4. Это и есть медиана.
Реклама
-
1
Запишите все числа в ряд. Например, вам даны числа 2, 4, 5, 5, 4 и 5. Запишите их в порядке возрастания.
-
2
Найдите число, которое чаще всего встречается. В данном случае это 5. Если два числа встречаются одинаково часто, то этот ряд двухвершинный или бимодальный, а если больше — то мультимодальный.
Реклама
Советы
- Вам будет легче найти моду и медиану, если вы запишете числа в порядке возрастания.
Реклама
Об этой статье
Эту страницу просматривали 352 737 раз.
Была ли эта статья полезной?
8.4. МОДА и МЕДИАНА (структурные средние)
Мода и медиана наиболее часто используемые в экономической практике структурные средние.
Мода – это величина признака (варианта), который наиболее часто встречается в данной совокупности, т.e. это варианта, имеющая наибольшую частоту.
В дискретном ряду мода определяется в соответствии с определением, т.е. это одна из вариант признака, которая в ряду распределения имеет наибольшую частоту.
Для интервального ряда моду находим по формуле (8.16), сначала по наибольшей частоте определив модальный интервал:
(8.16 – формула Моды)
где хо – начальная (нижняя) граница модального интервала;
h – величина интервала;
fМо – частота модального интервала;
fМо-1 – частота интервала, предшествующая модальному;
fМо+1– частота интервала следующая за модальным.
Медианой называется такое значение признака, которое приходится на середину ранжированного ряда, т.е. в ранжированном ряду распределения одна половина ряда имеет значение признака больше медианы, другая – меньше медианы.
В дискретном ряду медиана находится непосредственно по накопленной частоте, соответствующей номеру медианы.
В случае интервального вариационного ряда медиану определяют по формуле:
(8.17 – формула Медианы)
где хо – нижняя граница медианного интервала;
NМе– порядковый номер медианы (Σf/2);
S Me-1 – накопленная частота до медианного интервала;
fМе – частота медианного интервала.
Пример вычисления Моды.
Рассчитаем моду и медиану по данным табл. 8.4.
Таблица 8.4 – Распределение семей города N по размеру среднедушевого дохода в январе 2018 г. руб.(цифры условные)
Группы семей по размеру дохода, руб. | Число
семей |
Накоп-
ленные частоты |
в % к итогу |
До 5000 | 600 | 600 | 6 |
5000-6000 | 700 | 1300
(600+700) |
13 |
6000-7000 | 1700 (fМо-1) | 3000 (S Me-1 )
(1300+1700) |
30 |
7000-8000
(хо) |
2500
(fМо) (fМе) |
5500 (S Me) | 55 |
8000-9000 | 2200 (fМо+1) | 7700 | 77 |
9000-10000 | 1500 | 9200 | 92 |
Свыше 10000 | 800 | 10000 | 100 |
Итого | 10000 | – | – |
Пример вычисления Моды. Найдем моду по формуле (8.16) см. обозначения в таблице, а h = 8000-7000=1000, т.е. получаем:
Пример вычисления Моды
Пример вычисления Медианы интервального вариационного ряда. Рассчитаем медиану по формуле (8.17):
1) сначала находим порядковый номер медианы: NМе = Σfi/2= 5000.
2) по накопленным частотам в соответствии с номером медианы определяем, что 5000 находится в интервале (7000 – 8000), далее значение медианы определим по формуле (8.17):
Пример вычисления Медианы
Вывод: по моде – наиболее часто встречается среднедушевой доход в размере 7730 руб., по медиане – что половина семей города имеет среднедушевой доход ниже 7800 руб., остальные семьи – более 7800 руб.
Пример .СРЕДНИЙ, МЕДИАННЫЙ И МОДАЛЬНЫЙ УРОВЕНЬ ДЕНЕЖНЫХ ДОХОДОВ НАСЕЛЕНИЯ ЦЕЛОМ ПО РОССИИ И ПО СУБЪЕКТАМ РОССИЙСКОЙ ФЕДЕРАЦИИ ЗА 2013 год см. по ссылке. Источник: оценка на основании данных выборочного обследования бюджетов домашних хозяйств и макроэкономического показателя денежных доходов населения
Соотношение моды, медианы и средней арифметической указывает на характер распределения признака в совокупности, позволяет оценить его асимметрию.
Если Мо<Ме<Х – имеет место правосторонняя асимметрия.
При Х<Ме<Мо следует сделать вывод о левосторонней асимметрии ряда.
Средние величины (арифметическая, гармоническая, геометрическая, квадратическая) см. по ссылке
Оценка статьи:
Загрузка…