Matematika-club.ru
Калькуляторы и тренажеры
по математике и физике
Тренажеры по математике
ТРЕНАЖЁРЫ РЕШЕНИЯ СТОЛБИКОМ
КАЛЬКУЛЯТОРЫ РЕШЕНИЯ СТОЛБИКОМ
КАЛЬКУЛЯТОРЫ СИСТЕМ СЧИСЛЕНИЯ
СИСТЕМЫ СЧИСЛЕНИЯ ТЕОРИЯ
КАЛЬКУЛЯТОРЫ (ТЕОРИЯ ЧИСЕЛ)
КАЛЬКУЛЯТОРЫ ДРОБЕЙ
КАЛЬКУЛЯТОРЫ (ТРИГОНОМЕТРИЯ)
КАЛЬКУЛЯТОРЫ ПЛОЩАДИ ГЕОМЕТРИЧЕСКИХ ФИГУР
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ
КАЛЬКУЛЯТОРЫ (КОМБИНАТОРИКА)
КАЛЬКУЛЯТОРЫ (ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ)
КОНВЕРТОРЫ ВЕЛИЧИН
КАЛЬКУЛЯТОРЫ ПО ФИЗИКЕ
Механика
Калькулятор вычисления скорости, времени и расстояния
Калькулятор вычисления ускорения, скорости и перемещения
Калькулятор времени
Калькулятор вычисления времени движения
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения.
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния.
Импульс тела. Калькулятор вычисления импульса, массы и скорости.
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы.
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения
Оптика
Калькулятор отражения и преломления света
Электричество и магнетизм
Калькулятор Закона Ома
Калькулятор Закона Кулона
Калькулятор напряженности электрического поля
Калькулятор нахождения точечного электрического заряда
Калькулятор нахождения силы действующей на заряд
Калькулятор вычисления расстояния от заряда
Калькулятор вычисления потенциальной энергии заряда
Калькулятор вычисления потенциала электростатического поля
Калькулятор вычисления электроемкости проводника и сферы
Конденсаторы
Калькулятор вычисления электроемкости плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряженности электрического поля плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления напряжения (разности потенциалов) плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления расстояния между пластинами в плоском конденсаторе
Калькулятор вычисления площади пластины (обкладки) в плоском конденсаторе
Калькулятор вычисления энергии заряженного конденсатора
Калькулятор вычисления энергии заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов
Калькулятор вычисления объемной плотности энергии электрического поля для плоского, цилиндрического и сферического конденсаторов
КАЛЬКУЛЯТОРЫ ПО АСТРОНОМИИ
ГЕНЕРАТОРЫ
КАЛЬКУЛЯТОР ИНТЕРВАЛЬНЫХ ПОВТОРЕНИЙ
СПРАВОЧНЫЕ МАТЕРИАЛЫ
СТАТЬИ
ПОИСК ПО САЙТУ 🔎
0 | |||
AC | +/- | ÷ | |
7 | 8 | 9 | × |
4 | 5 | 6 | – |
1 | 2 | 3 | + |
0 | 00 | , | = |
Калькулятор модуля числа
Калькулятор предназначен для нахождения абсолютной величины (модуля) числа, либо выражения.
Введите число или выражение, например 0.5, (1/3)+7 и т.д.
Что такое модуль
Модулем числа a является неотрицательное число, которое обозначает расстояние от начала координат до точки a. Модуль числа также называют абсолютной величиной.
Модуль числа обозначается как: |a|
Свойства модуля:
|a| = a, если a > 0
|a| = –a, если a < 0
|a| = 0, если a = 0
|a| > 0, если a ≠ 0
|a| = |–a|
|0| = 0
Примеры:
|5| = 5
|1.5| = 1.5
|-3.6| = 3.6
|-4.5| = |4.5| = 4.5
Вам могут также быть полезны следующие сервисы |
Калькуляторы (Теория чисел) |
Калькулятор выражений |
Калькулятор упрощения выражений |
Калькулятор со скобками |
Калькулятор уравнений |
Калькулятор суммы |
Калькулятор пределов функций |
Калькулятор разложения числа на простые множители |
Калькулятор НОД и НОК |
Калькулятор НОД и НОК по алгоритму Евклида |
Калькулятор НОД и НОК для любого количества чисел |
Калькулятор делителей числа |
Представление многозначных чисел в виде суммы разрядных слагаемых |
Калькулятор деления числа в данном отношении |
Калькулятор процентов |
Калькулятор перевода числа с Е в десятичное |
Калькулятор экспоненциальной записи чисел |
Калькулятор нахождения факториала числа |
Калькулятор нахождения логарифма числа |
Калькулятор квадратных уравнений |
Калькулятор остатка от деления |
Калькулятор корней с решением |
Калькулятор нахождения периода десятичной дроби |
Калькулятор больших чисел |
Калькулятор округления числа |
Калькулятор свойств корней и степеней |
Калькулятор комплексных чисел |
Калькулятор среднего арифметического |
Калькулятор арифметической прогрессии |
Калькулятор геометрической прогрессии |
Калькулятор модуля числа |
Калькулятор абсолютной погрешности приближения |
Калькулятор абсолютной погрешности |
Калькулятор относительной погрешности |
Дроби |
Калькулятор интервальных повторений |
Учим дроби наглядно |
Калькулятор сокращения дробей |
Калькулятор преобразования неправильной дроби в смешанную |
Калькулятор преобразования смешанной дроби в неправильную |
Калькулятор сложения, вычитания, умножения и деления дробей |
Калькулятор возведения дроби в степень |
Калькулятор перевода десятичной дроби в обыкновенную |
Калькулятор перевода обыкновенной дроби в десятичную |
Калькулятор сравнения дробей |
Калькулятор приведения дробей к общему знаменателю |
Калькуляторы (тригонометрия) |
Калькулятор синуса угла |
Калькулятор косинуса угла |
Калькулятор тангенса угла |
Калькулятор котангенса угла |
Калькулятор секанса угла |
Калькулятор косеканса угла |
Калькулятор арксинуса угла |
Калькулятор арккосинуса угла |
Калькулятор арктангенса угла |
Калькулятор арккотангенса угла |
Калькулятор арксеканса угла |
Калькулятор арккосеканса угла |
Калькулятор нахождения наименьшего угла |
Калькулятор определения вида угла |
Калькулятор смежных углов |
Калькуляторы систем счисления |
Калькулятор перевода чисел из арабских в римские и из римских в арабские |
Калькулятор перевода чисел в различные системы счисления |
Калькулятор сложения, вычитания, умножения и деления двоичных чисел |
Системы счисления теория |
N2 | Двоичная система счисления |
N3 | Троичная система счисления |
N4 | Четырехичная система счисления |
N5 | Пятеричная система счисления |
N6 | Шестеричная система счисления |
N7 | Семеричная система счисления |
N8 | Восьмеричная система счисления |
N9 | Девятеричная система счисления |
N11 | Одиннадцатиричная система счисления |
N12 | Двенадцатеричная система счисления |
N13 | Тринадцатеричная система счисления |
N14 | Четырнадцатеричная система счисления |
N15 | Пятнадцатеричная система счисления |
N16 | Шестнадцатеричная система счисления |
N17 | Семнадцатеричная система счисления |
N18 | Восемнадцатеричная система счисления |
N19 | Девятнадцатеричная система счисления |
N20 | Двадцатеричная система счисления |
N21 | Двадцатиодноричная система счисления |
N22 | Двадцатидвухричная система счисления |
N23 | Двадцатитрехричная система счисления |
N24 | Двадцатичетырехричная система счисления |
N25 | Двадцатипятеричная система счисления |
N26 | Двадцатишестеричная система счисления |
N27 | Двадцатисемеричная система счисления |
N28 | Двадцативосьмеричная система счисления |
N29 | Двадцатидевятиричная система счисления |
N30 | Тридцатиричная система счисления |
N31 | Тридцатиодноричная система счисления |
N32 | Тридцатидвухричная система счисления |
N33 | Тридцатитрехричная система счисления |
N34 | Тридцатичетырехричная система счисления |
N35 | Тридцатипятиричная система счисления |
N36 | Тридцатишестиричная система счисления |
Калькуляторы площади геометрических фигур |
Площадь квадрата |
Площадь прямоугольника |
КАЛЬКУЛЯТОРЫ ЗАДАЧ ПО ГЕОМЕТРИИ |
Калькуляторы (Комбинаторика) |
Калькулятор нахождения числа перестановок из n элементов |
Калькулятор нахождения числа сочетаний из n элементов |
Калькулятор нахождения числа размещений из n элементов |
Калькуляторы линейная алгебра и аналитическая геометрия |
Калькулятор сложения и вычитания матриц |
Калькулятор умножения матриц |
Калькулятор транспонирование матрицы |
Калькулятор нахождения определителя (детерминанта) матрицы |
Калькулятор нахождения обратной матрицы |
Длина отрезка. Онлайн калькулятор расстояния между точками |
Онлайн калькулятор нахождения координат вектора по двум точкам |
Калькулятор нахождения модуля (длины) вектора |
Калькулятор сложения и вычитания векторов |
Калькулятор скалярного произведения векторов через длину и косинус угла между векторами |
Калькулятор скалярного произведения векторов через координаты |
Калькулятор векторного произведения векторов через координаты |
Калькулятор смешанного произведения векторов |
Калькулятор умножения вектора на число |
Калькулятор нахождения угла между векторами |
Калькулятор проверки коллинеарности векторов |
Калькулятор проверки компланарности векторов |
Генератор Pdf с примерами |
Тренажёры решения примеров |
Тренажер по математике |
Тренажёр таблицы умножения |
Тренажер счета для дошкольников |
Тренажер счета на внимательность для дошкольников |
Тренажер решения примеров на сложение, вычитание, умножение, деление. Найди правильный ответ. |
Тренажер решения примеров с разными действиями |
Тренажёры решения столбиком |
Тренажёр сложения столбиком |
Тренажёр вычитания столбиком |
Тренажёр умножения столбиком |
Тренажёр деления столбиком с остатком |
Калькуляторы решения столбиком |
Калькулятор сложения, вычитания, умножения и деления столбиком |
Калькулятор деления столбиком с остатком |
Конвертеры величин |
Конвертер единиц длины |
Конвертер единиц скорости |
Конвертер единиц ускорения |
Цифры в текст |
Калькуляторы (физика) |
Механика |
Калькулятор вычисления скорости, времени и расстояния |
Калькулятор вычисления ускорения, скорости и перемещения |
Калькулятор вычисления времени движения |
Калькулятор времени |
Второй закон Ньютона. Калькулятор вычисления силы, массы и ускорения. |
Закон всемирного тяготения. Калькулятор вычисления силы притяжения, массы и расстояния. |
Импульс тела. Калькулятор вычисления импульса, массы и скорости |
Импульс силы. Калькулятор вычисления импульса, силы и времени действия силы. |
Вес тела. Калькулятор вычисления веса тела, массы и ускорения свободного падения |
Оптика |
Калькулятор отражения и преломления света |
Электричество и магнетизм |
Калькулятор Закона Ома |
Калькулятор Закона Кулона |
Калькулятор напряженности E электрического поля |
Калькулятор нахождения точечного электрического заряда Q |
Калькулятор нахождения силы F действующей на заряд q |
Калькулятор вычисления расстояния r от заряда q |
Калькулятор вычисления потенциальной энергии W заряда q |
Калькулятор вычисления потенциала φ электростатического поля |
Калькулятор вычисления электроемкости C проводника и сферы |
Конденсаторы |
Калькулятор вычисления электроемкости C плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряженности E электрического поля плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления напряжения U (разности потенциалов) плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления расстояния d между пластинами в плоском конденсаторе |
Калькулятор вычисления площади пластины (обкладки) S в плоском конденсаторе |
Калькулятор вычисления энергии W заряженного конденсатора |
Калькулятор вычисления энергии W заряженного конденсатора. Для плоского, цилиндрического и сферического конденсаторов |
Калькулятор вычисления объемной плотности энергии w электрического поля для плоского, цилиндрического и сферического конденсаторов |
Калькуляторы по астрономии |
Вес тела на других планетах |
Ускорение свободного падения на планетах Солнечной системы и их спутниках |
Генераторы |
Генератор примеров по математике |
Генератор случайных чисел |
Генератор паролей |
© 2016–2023 Matematika-club. Все права защищены.
Копирование материалов сайта запрещено.
Если у вас возникли вопросы по работе сайта или вы хотите сообщить об ошибке, вы можете обратиться в службу поддержки.
Что такое комплексное число
Комплексное число — это выражение типа (z;=;a;+;ib). Здесь a и b будут являться любыми действительными числами, а i — специальным числом, называемым мнимой единицей. Действительная часть комплексного числа обозначается как (a;=;RE;z ), а мнимая часть — (b;=;Im;z).
Во множестве комплексных чисел содержится множество вещественных чисел. Если множество комплексных чисел — это всевозможные пары (x, y), то содержащееся в нем множество вещественных чисел — это пары (x, 0). Те же комплексные числа, которые задают пары (0, y) являются мнимыми.
Что такое модуль комплексного числа
Модуль комплексного числа — это длина вектора, который изображает комплексное число.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Любое комплексное число кроме 0 может быть выражено в тригонометрической форме.
(z;=;left|zright|;cdot;(cosleft(varphiright);+;isinleft(varphiright)))
В этом виде (left|zright|) — модуль комплексного числа z. Может обозначаться как p и r.
Если (left|zright|;=;r,) то r будет обозначать длину радиус-вектора точки M (x, y).
Вычисление модуля комплексного числа, если в алгебраической форме оно выглядит как z = x + iy, возможно по следующей формуле:
(left|zright|;=;sqrt{x^2;+;y^2})
То есть модуль комплексного числа можно вычислить как квадратный корень из суммы квадратов действительной и мнимой его частей.
Модуль комплексного числа имеет следующие свойства:
- Модуль не отрицателен — (left|xright|;geq;0). (left|xright|;=;0) только в том случае, если z = 0.
- Модуль суммы двух комплексных чисел будет меньше или равен сумме модулей: (left|z_1;+;z_2right|;leq;left|z_1right|;+;left|z_2right|.)
- Модуль результата умножения двух комплексных числе будет равен произведению модулей: (left|z_1;cdot;z_2right|;=;left|z_1right|;cdot;left|z_2right|.)
- Модуль результата деления двух комплексных чисел будет равняться частному модулей: (left|z_1;div;z_2right|;=;left|z_1right|;div;left|z_2right|.)
- Модуль неравенства комплексных чисел будет равен расстоянию между этими числами на комплексной плоскости: (left|z_1;-;z_2right|;=;sqrt{left(x_1;-;x_2right)^2;+;left(y_1;-;y_2right)^2}).
Что такое аргумент комплексного числа
Аргумент комплексного числа — это угол (varphi) радиус-вектора точки, соответствующей комплексному числу (z;:;varphi;=;arg;z) на комплексной плоскости. Этот угол измеряется в радианах.
Каждое комплексное число, которое не равно нулю, имеет бесконечное множество аргументов. Эти аргументы отличаются друг от друга на целое число полный оборотов — (360^circ;cdot;k) при k — любое число.
Связь аргумента комплексного числа с его координатами отражена в следующих формулах:
(tanleft(varphiright);=;frac ba)
(cosleft(varphiright);=;frac a{sqrt{a^2;+;b^2}})
(sinleft(varphiright);=;frac b{sqrt{a^2;+;b^2}})
Важно помнить, что ни одна из этих формул отдельно недостаточна для того, чтобы найти аргументы. Формулы используются в совокупности, а также учитывается номер четвертый на координатной плоскости, в которой находится комплексное число.
Аргумент может быть записан в тригонометрической форме. Для комплексного числа (z = x + iy), это будет выглядеть следующим образом:
(z;=;r;(cosleft(varphiright);+;i;sinleft(varphiright)))
Здесь (r) будет модулем комплексного числа (z), а (varphi) — arg z.
Важно отметить, arg z имеет смысл лишь при (z neq 0), комплексное число ноль не имеет аргумента.
Как вывести формулу модуля
В соответствии с теоремой Пифагора длина вектора с координатами a и b равна (sqrt{a^2;+;b^2}).
Так как именно эта величина называется модулем комплексного числа (z = a + bi), тогда (left|xright|;=;sqrt{a^2;+;b^2}).
Примеры решения задач
Задача
Найти модуль числа (z;=;-5;+;15i)
Решение
(x;=;Re;z;=;-15) — действительная часть, а (y;=;Im;z;=;15) — мнимая часть комплексного числа (z;=;-5;+;15i.)
Таким образом, модуль числа равен следующему выражению:
(r;=;sqrt{x^2;+;y^2};=sqrt{{(-5)}^2;+;15^2};=;sqrt{25;+;225};=;sqrt{250} )
Ответ: (r;=;sqrt{250})
Задача
Найти расстояние между числами (z_1;=;1;-;3i,;z_2;=;-2;+;2i) на комплексной плоскости.
Решение
Расстояние между двумя комплексными числами находятся как модуль разности комплексных чисел. Используем необходимую формулу:
(left|z_1;-;z_2right|;=;sqrt{{(x_1;-;x_2)}^2;+;left(y_1;-;y_2right)^2};=;sqrt{(1;-;{(-2))}^2;+;{(-2;-;2)}^2};=;sqrt{34})
Ответ: (sqrt{34})
Задача
Найти значение аргумента комплексного числа (sqrt{34}) и выразить его в тригонометрической форме.
Решение
Если действительно частью комплексного числа (z;=;1;+;sqrt{3i}) является число (x = Re z = 1), а мнимой частью является (y = Im z;=sqrt3), то аргумент можно вычислить по формуле:
(varphi;=;arg;z;=;arctg;frac yx;=;arctg;frac{sqrt3}1;=;arctg;sqrt3;=;frac{mathrmpi}3)
Теперь для нахождения тригонометрической формы записи комплексного числа необходимо найти модуль.
(r;=;sqrt{x^2;+;y^2};=;sqrt{1^2;+;{(sqrt3)}^2};=;sqrt{1+3};=;sqrt4;=;2)
Исходя из этого, тригонометрическая форма комплексного числа выглядит следующим образом:
(z;=;2;(cosleft(frac{mathrmpi}3right);+;i;sinleft(frac{mathrmpi}3right)))
Ответ: аргумент равен (frac{mathrmpi}3). Тригонометрическая форма записана выше.
Задача
Найти модуль и аргумент числа (z = 2 – i)
Решение
Найдем (left|zright|;=;sqrt{2^2;+;{(-;1)}^2};=;sqrt5.)
Так как (Re z = 2 > 0), (Im z = -1 < 0), точка расположена в 4 четверти. Тогда из равенства (tanleft(varphiright);=;-frac12) следует:
(varphi;=;arctanleft(-frac12right))
Ответ: (varphi;=;arctanleft(-frac12right))
Как найти модуль комплексного числа
Действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение. Простейшее из квадратных уравнений, не имеющих корней среди действительных чисел – это x^2+1=0. При его решении получается, что x=±sqrt(-1), а согласно законам элементарной алгебры, извлечь корень четной степени из отрицательного числа нельзя.
Вам понадобится
- – бумага;
- – ручка.
Инструкция
В данном случае есть два пути: первый – следовать установленным запретам и считать, что это уравнение корней не имеет; второй – расширить систему действительных чисел до такой степени, что уравнение будет обладать корнем.Так появилось понятие комплексных чисел вида z=a+ib, в которых (i^2)=-1, где i – мнимая единица. Числа a и b называются, соответственно, действительной и мнимой частями числа z Rez и Imz.Важную роль в действиях с комплексными числами играют числа комплексно-сопряженные. Сопряженным к комплексному числу z=a+ib называется zs=a-ib, то есть число имеющее противоположный знак перед мнимой единицей. Так, если z=3+2i, то zs=3-2i.Любое действительное число является частным случаем комплексного числа, мнимая часть которого равна нулю. 0+i0 – комплексное число, равное нулю.
Комплексные числа можно складывать и перемножать так же, как это делают с алгебраическими выражениями. При этом привычные законы сложения и умножения остаются в силе. Пусть z1=a1+ib1, z2=a2+ib2.1. Сложение и вычитание.z1+z2=(a1+a2)+i(b1+b2), z1-z2=(a1-a2)+i(b1-b2). 2. Умножение.z1*z2=(a1+ib1)(a2+ib2)=a1a2+ia1b2+ia2b1+(i^2)b1b2=(a1a2-b1b2)+i(a1b2+a2b1).При умножении просто раскрывают скобки и применяют определение i^2=-1. Произведение комплексно-сопряженных чисел является действительным числом: z*zs=(a+ib)(a-ib)==a^2-(i^2)(b^2) = a^2+b^2.
3. Деление.Чтобы привести частное z1/z2=(a1+ib1)/(a2+ib2) к стандартному виду нужно избавиться от мнимой единицы в знаменателе. Для этого проще всего умножить числитель и знаменатель на число, сопряженное знаменателю: ((a1+ib1)(a2-ib2))/((a2+ib2)(a2-ib2))=((a1a2+b1b2)+i(a2b1-a1b2))/(a^2+b^2)= =(a1a2+b1b2)/(a^2+b^2)+i(a2b1-a1b2)/(a^2+b^2).Операции сложения и вычитания, а также умножения и деления являются взаимно обратными.
Пример. Вычислить (1-3i)(4+i)/(2-2i)=(4-12i+i+3)(2+2i)/((2-2i)(2+2i))=(7-11i)(2+2i)/(4+4)=(14+22)/8+i(-22+14)/8=9/2-iРассмотрите геометрическую интерпретацию комплексных чисел. Для этого на плоскости с прямоугольной декартовой системой координат 0xy каждому комплексному числу z=a+ib необходимо поставить в соответствие точку плоскости с координатами a и b (см. рис. 1). Плоскость, на которой реализовано такое соответствие, называется комплексной плоскостью. На оси 0x расположены действительные числа, поэтому она называется действительной осью. На оси 0y расположены мнимые числа, она носит название мнимой оси.
C каждой точкой z комплексной плоскости связан радиус-вектор этой точки. Длина радиус-вектора, изображающего комплексное число z, называется модулемr=|z| комплексного числа; а угол, между положительным направлением действительной оси и направлением вектора 0Z, называется аргументом argz этого комплексного числа.
Аргумент комплексного числа считается положительным, если он отсчитывается от положительного направления оси 0x против часовой стрелки, и отрицательным при противоположном направлении. Одному комплексному числу соответствует множество значений аргумента argz+2пk. Из этих значений главными считаются значения argz, лежащие в пределах от –п до п. Сопряженные комплексные числа z и zs имеют равные модули, а их аргументы равны по абсолютной величине, но отличаются знаком.
Таким образом, |z|^2=a^2+b^2, |z|=sqrt(a^2+b^2). Так, если z=3-5i, то |z|=sqrt(9+25)=6. Кроме того, так как z*zs=|z|^2=a^2+b^2, то становится возможным вычисление модулей целых комплексных выражений, в которых мнимая единица может появляться многократно.Так как z=(1-3i)(4+i)/(2-2i)=9/2-i, то непосредственное вычисление модуля z даст |z|^2=81/4+1=85/4 и |z|=sqrt(85)/2.Минуя стадию вычисления выражение, учитывая, что zs=(1+3i)(4-i)/(2+2i), можно записать: |z|^2=z*zs==(1-3i)(1+3i)(4+i)(4-i)/((2-2i)(2+2i))=(1+9)(16+1)/(4+4)=85/4 и |z|=sqrt(85)/2.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Содержание:
- Аргумент комплексного числа
Определение: Модулем комплексного числа называется число , то есть .
Свойство 1. Если , где , то . Доказательство этого свойства очевидным образом получается из определения модуля комплексного числа. Таким образом, понятие модуля комплексного числа является развитием и обобщением понятия модуля действительного числа.
Свойство 2. Модуль комплексного числа равен модулям противоположного и сопряженного этому числу чисел. Доказательство. Рассмотрим комплексное число , а также противоположное и сопряженное ему числа. Найдем их модули:
Свойство доказано.
Замечание. Число равно модулю (длине) вектора , то есть .
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Пример 1.
Найдите . Решение:
Так как 5 — действительное число, то по свойству 1 получаем: . Ответ: 5.
Пример 2.
Найдите . Решение:
Запишем число в алгебраической форме: . Тогда, по определению модуля комплексного числа, получим: . Ответ: 1.
Пример 3.
Найдите . Решение:
Число представлено в алгебраической форме. По определению модуля комплексного числа получим: . Ответ: .
Возможно вам будут полезны данные страницы:
Пример 4.
Изобразите на комплексной плоскости все комплексные числа с модулем, равным . Решение:
Все комплексные числа с модулем изображаются точками комплексной плоскости, которые являются концами радиус-векторов длины . Множество таких точек есть окружность с центром в начале координат и радиусом .
Не нарушая общности рассуждений, можно сделать следующий вывод. Свойство 3. Изображением множества комплексных чисел с модулем на комплексной плоскости является окружность с центром в начале координат и радиусом . Доказательство этого утверждения состоит в последовательном применении определения модуля комплексного числа и определения окружности с центром в начале координат и радиусом .
Пример 5.
Изобразите на комплексной плоскости все комплексные числа с модулем, меньшим или равным 2. Решение:
Все комплексные числа с модулем, меньшим или равным 2, изображаются точками комплексной плоскости, которые являются концами радиус-векторов длины, меньшей или равной 2. Множество таких точек есть круг с центром в начале координат и радиусом 2.
Пример 6.
Изобразите на комплексной плоскости все такие комплексные числа, что . Решение:
Все комплексные числа с модулем, меньшим 4, изображаются точками комплексной плоскости, которые являются концами радиус-векторов длины, меньшей 4. Множество таких точек есть внутренняя часть круга с центром в начале координат и радиусом 4.
Пример 7.
Изобразите на комплексной плоскости все комплексные числа с модулем, большим или равным 3. Решение:
В данной задаче рассматриваются все точки плоскости, кроме внутренних точек круга с центром в начале координат и радиусом 3.
Пример 8.
Изобразите на комплексной плоскости все комплексные числа , удовлетворяющие условию . Решение:
В данной задаче рассматриваются точки комплексной плоскости, которые являются концами радиус-векторов длины, большей или равной 2 и меньшей 4. Множество таких точек есть внутренняя часть круга с центром в начале координат и радиусом 4 без внутренней части круга с тем же центром и радиусом 2. Это кольцо, ограниченное двумя концентрическими окружностями с центром в начале координат и радиусами 2 и 4 (при этом внутренняя окружность включена в множество, а внешняя — не включена).
Пример 9.
Изобразите на комплексной плоскости все комплексные числа, удовлетворяющие условию
. Решение:
В данной задаче рассматриваются все точки плоскости, кроме точек, расположенных между концентрическими окружностями и на меньшей окружности. Центры окружностей — начало координат, радиусы равны 2 и 4.
Пример 10.
Изобразите на комплексной плоскости множество чисел таких, что . Решение:
Напомним, что геометрической интерпретацией модуля разности двух чисел, в том числе и комплексных, является расстояние между соответствующими точками. В данном случае речь идет о расстоянии от некоторой точки г комплексной плоскости до точки . Таким образом, получаем круг радиуса 4 с центром в точке .
Пример 11.
Изобразите на комплексной плоскости множество чисел г таких, что . Решение:
В данной задаче нужно изобразить множество точек комплексной плоскости, расстояние от каждой из которых до точки (5; 0) меньше или равно расстоянию до точки (-7; 0). Это прямая и правая полуплоскость, ограниченная этой прямой.
Аргумент комплексного числа
Радиус-вектор точки комплексной плоскости задается двумя числами: — длиной (модулем) вектора, — углом между вектором и положительным направлением оси .
Замечание 5. Если — аргумент комплексного числа , то любое число вида , где , также является аргументом данного числа . Верно и обратное утверждение: если число является аргументом данного комплексного числа , то оно представимо в виде , где — некоторое целое число. Оба утверждения очевидным образом следуют из свойства периодичности тригонометрических функций.
Свойство 4. Два ненулевых комплексных числа равны тогда и только тогда, когда их модули равны, а аргументы отличаются на , где . Предлагаем читателю доказать этот факт самостоятельно.
Пример 12.
Изобразите на комплексной плоскости л все комплексные числа с аргументом .
Решение:
Все комплексные числа с аргументом изображаются точками комплексной плоскости, которые являются концами ненулевых радиус-векторов, образующих с положительным направлением оси абсцисс угол . Множество таких точек есть луч , который образует с положительным направлением оси абсцисс угол . Заметим, что при этом имеется в виду луч без начальной точки.
Пример 13.
Изобразите на комплексной плоскости все комплексные числа с аргументом . Решение:
Все комплексные числа с аргументом изображаются точками комплексной плоскости, которые являются концами ненулевых радиус-векторов, образующих с положительным направлением оси абсцисс угол . Множество таких точек есть луч , который образует с положительным направлением оси абсцисс угол . Напомним, что при этом имеется в виду луч без начальной точки.
Пример 14.
Изобразите на комплексной плоскости все комплексные числа с аргументами . Решение:
Все комплексные числа с аргументами изображаются точками комплексной плоскости, которые являются концами ненулевых радиус-векторов, образующих с положительным направлением оси абсцисс углы или . Множество таких точек есть прямая с выколотой точкой (0; 0).
Пример 15.
Изобразите на комплексной плоскости все комплексные числа с аргументами такими, что . Решение:
Все комплексные числа с указанными аргументами изображаются точками комплексной плоскости, расположенными ниже лучей . Это угол без одной из сторон и вершины (см. рис.).
Пример 16.
Изобразите на комплексной плоскости все комплексные числа с аргументами такими, что . Решение:
Все комплексные числа с указанными аргументами изображаются точками комплексной плоскости, расположенными между лучами и . Это угол без одной из сторон и вершины (см. рис.).
Лекции:
- Пределы функций примеры решения
- Найти предел используя правило Лопиталя
- Решение неравенств
- Элементы дифференциальной геометрии
- Неопределенный интеграл
- Декартовы координаты на плоскости и в пространстве
- Наибольшее значение функции
- Степенные ряды. Теорема Абеля
- Построить ряд по степеням
- Интегрирование рациональных дробей
Модуль числа — теория и решение задач
Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂
А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.
Вот смотри…
Ситуация первая
В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.
Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.
Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.
Ситуация вторая
Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.
И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?
Нет. Потому что «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.
Ситуация третья
В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.
А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.
Ну вот, ты уже почти все знаешь. Давай теперь подробнее…
Модуль числа — коротко о главном
Определение модуля:
Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):
( displaystyle left| x right|=left{ begin{array}{l}x, xge 0\-x, x<0end{array} right.)
Свойства модуля:
- Модуль числа есть число неотрицательное: ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0);
- Модули противоположных чисел равны: ( left| -x right|=left| x right|);
- Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
- Модуль частного двух чисел равен частному их модулей: ( displaystyle left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0});
- Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
- Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
- Квадрат модуля числа равен квадрату этого числа: ( {{left| x right|}^{2}}={{x}^{2}}).
Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.
И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.
Что же такое модуль числа?
Представь, что это ты.
Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).
Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).
Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).
То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).
Но ведь ты же можешь двигаться и назад!
Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).
Какое расстояние было пройдено в первом и во втором случае?
Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).
Таким образом, мы приблизились к понятию модуля.
Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.
Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).
Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.
Обозначается модуль просто:
( |mathbf{a}|,) (( a) — любое число).
Итак, найдём модуль числа ( 3) и ( -3):
( left| mathbf{3} right|=mathbf{3})
( left| -mathbf{3} right|=mathbf{3}.)
Основные свойства модуля
Первое свойство модуля
Модуль не может быть выражен отрицательным числом ( |mathbf{a}|text{ }ge text{ }mathbf{0})
То есть, если ( mathbf{a}) – число положительное, то его модуль будет равен этому же числу.
Если ( mathbf{a}text{ }>text{ }mathbf{0},) то ( displaystyle left| a right|=a).
Если ( a) – отрицательное число, то его модуль равен противоположному числу.
Если ( atext{ }<text{ }mathbf{0},) то ( |mathbf{a}|text{ }=text{ }-mathbf{a})
А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):
Если ( a=0), то ( |mathbf{a}|=mathbf{a}), или ( displaystyle left| 0 right|=0).
Из этого следует, что модули противоположных чисел равны, то есть:
( left| -4 right|text{ }=text{ }left| 4 right|text{ }=text{ }4;)
( left| -7 right|text{ }=text{ }left| 7 right|text{ }=text{ }7.)
А теперь потренируйся:
- ( left| 9 right|text{ }=text{ }?;)
- ( left| -3 right|text{ }=text{ }?;)
- ( left| 16 right|text{ }=text{ }?;)
- ( left| 8 right|text{ }=text{ }?;)
- ( left| -17 right|text{ }=text{ }?.)
Ответы: 9; 3; 16; 8; 17.
Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt{5} right|=?)
Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.
Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:
- если значение выражения больше нуля, то просто выносим его из-под знака модуля,
- если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.
Ну что, попробуем? Оценим ( 2-sqrt{5}):
( 2<sqrt{5}) (Забыл, что такое корень? Бегом повторять!)
Если ( 2<sqrt{5}), то какой знак имеет ( 2-sqrt{5})? Ну конечно, ( 2-sqrt{5}<0)!
А, значит, знак модуля раскрываем, меняя знак у выражения:
( left| 2-sqrt{5} right|=-left( 2-sqrt{5} right)=-2+sqrt{5}=sqrt{5}-2)
Разобрался? Тогда попробуй сам:
- ( left| sqrt{3}-1 right|=?)
- ( left| 3-sqrt{7} right|=?)
- ( left| 2-sqrt{7} right|=?)
- ( left| sqrt{13}-4 right|=?)
Ответы:
( sqrt{3}-1; 3-sqrt{7}; sqrt{7}-2; 4-sqrt{13.})
Какими же ещё свойствами обладает модуль?
Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.
То есть: ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|)
Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.
Например:
( left| mathbf{5}cdot mathbf{7} right|text{ }=text{ }left| mathbf{5} right|cdot left| mathbf{7} right|text{ }=text{ }mathbf{5}cdot mathbf{7}text{ }=text{ }mathbf{35};)
( left| mathbf{3}cdot left( -mathbf{2} right) right|text{ }=text{ }left| mathbf{3} right|cdot left| -mathbf{2} right|text{ }=text{ }mathbf{3}cdot mathbf{2}text{ }=text{ }mathbf{6}.)
А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:
( displaystyle |frac{a}{b}|=frac{|a|}{|b|}) при условии, что ( mathbf{b}ne mathbf{0}) (так как на ноль делить нельзя).
Еще одно свойство модуля…
Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.
( |a+bleft| text{ }le text{ } right|aleft| + right|b|)
Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.
Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:
( left| mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{10} right|text{ }=text{ }mathbf{10}) | ( left| mathbf{3} right|+left| mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10}) |
Выражения также равны, если оба числа отрицательны:
( displaystyle |-3+(-7)|~=~|-3-7|~)( displaystyle=|-10|=10) | ( |-mathbf{3}left| + right|-mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10}) |
Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:
( left| -mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{4} right|text{ }=text{ }mathbf{4}) | ( |-mathbf{3}left| + right|mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10}) |
или
( left| mathbf{3}+left( -mathbf{7} right) right|text{ }=text{ }left| -mathbf{4} right|text{ }=text{ }mathbf{4}) | ( left| mathbf{3} right|+left| -mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10}) |
( mathbf{4}<mathbf{10})
Рассмотрим еще парочку полезных свойств модуля
Что если перед нами такое выражение:
( left| 7x right|)
Что мы можем сделать с этим выражением?
Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:
( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)
Вот мы и пришли к другому свойству, которое в общем виде можно представить так:
( left| cx right|=ccdot left| x right|,) при ( c>0)
А чему равно такое выражение:
( {{left| x right|}^{2}}=?)
Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?
Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.
И что же получается? А вот что:
( {{left| x right|}^{2}}={{x}^{2}})
Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:
( {{left| 5 right|}^{2}}={{5}^{2}}=25)
( {{left| -5 right|}^{2}}=?)
Ну, и почему сомнения? Действуем смело!
( {{left| -5 right|}^{2}}={{5}^{2}}=25)
Во всем разобрался? Тогда вперед тренироваться на примерах!
Тренировка на примерах
1. Найдите значение выражения ( |xleft| text{ }+text{ } right|y|), если ( x=text{ }-7,5text{ },y=text{ }12.)
2. У каких чисел модуль равен ( 5)?
3. Найдите значение выражений:
а) ( |3|text{ }+text{ }|-9|;)
б) ( |-5|text{ }-text{ }|6|;)
в) ( |15left| cdot right|-3|;)
г) ( displaystyle frac{|8|}{|-2|}).
Если не все пока ясно и есть затруднения в решениях, то давай разбираться:
Решение 1:
Итак, подставим значения ( x) и ( y) в выражение ( |mathbf{x}left| text{ }-text{ } right|mathbf{y}|.) Получим:
( |-7,5|text{ }+text{ }|12|text{ }=7,5text{ }+text{ }12text{ }=text{ }19,5.)
Решение 2:
Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).
Решение 3:
а) ( |3|text{ }+text{ }|-9|=text{ }3+9=text{ }12;)
б) ( |-5|-text{ }left| 6 right|text{ }=text{ }5-6=text{ }-1;)
в) ( |15left| cdot right|-3|text{ }=text{ }15cdot 3=text{ }45;)
г) ( frac{|8|}{|-2|}=frac{8}{2}=4.)
Все уловил? Тогда пора перейти к более сложному!
Решение более сложных примеров
Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)
Решение:
Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.
Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).
Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.
( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).
( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.
Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:
Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:
Модуль числа и его свойства (строгие определения и доказательства)
Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):
( left| x right|=left{ begin{array}{l}x,text{ }xge 0\-x,text{ }x<0end{array} right.)
Например: ( left| 4 right|=4;text{ }left| 0 right|=0;text{ }left| -3 right|=-left( -3 right)=3.)
Пример:
Упростите выражение ( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|).
Решение:
( sqrt{5}-3<0Rightarrow left| sqrt{5}-3 right|=-left( sqrt{5}-3 right)=3-sqrt{5};)
( sqrt{5}+1>0Rightarrow left| sqrt{5}+1 right|=sqrt{5}+1;)
( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|=3-sqrt{5}+sqrt{5}+1=4.)
Основные свойства модуля (итог)
Для всех ( x,yin mathbb{R}):
- ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0;)
- ( left| -x right|=left| x right|;)
- ( left| xcdot y right|=left| x right|cdot left| y right|;)
- ( left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0};)
- ( left| x+y right|le left| x right|+left| y right|)
- ( left| cx right|=ccdot left| x right|, при text{ }c>0)
- ( {{left| x right|}^{2}}={{x}^{2}})
Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)
Доказательство:
Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):
( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})
а это противоречит определению модуля.
Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)
А теперь самостоятельно…
Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text{ }c>0)
Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text{ }Rightarrow text{ }left| c right|=c), тогда
( left| cx right|=ccdot left| x right|), ч.т.д.
Упростите выражение ( left| frac{31}{8}-sqrt{15} right|+left| frac{15}{4}-sqrt{15} right|)
Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:
Подготовка к ЕГЭ на 90+ в мини-группах
Алексей Шевчук — ведущий мини-групп
математика, информатика, физика
+7 (905) 541-39-06 — WhatsApp/Телеграм для записи
alexei.shevchuk@youclever.org — email для записи
- тысячи учеников, поступивших в лучшие ВУЗы страны
- автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
- закончил МФТИ, преподавал на малом физтехе;
- репетиторский стаж — c 2003 года;
- в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
- отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».