Как найти модуль импульса двух тел

Определение

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

p = mv

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости (p↑↓v), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

10 г = 0,01 кг

Импульс равен:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Определение

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p1отн2 = m1v1отн2 = m1(v1v2)

p1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v1отн2 — скорость первого тела относительно второго, v1 и v2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

15 т = 15000 кг

p1отн2 = m1(v1 – v2) = 15000(20 – 15) = 75000 (кг∙м/с) = 75∙103 (кг∙м/с)

Изменение импульса тела

ОпределениеИзменение импульса тела — векторная разность между конечным и начальным импульсом тела:

p = pp0 = p + (– p0)

p — изменение импульса тела, p — конечный импульс тела, p0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечная скорость после удара:

v = 0.

Конечный импульс тела:

p = 0.

Модуль изменения импульса тела равен модулю его начального импульса:

∆p = p0.

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p.

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

∆p = p0 – p = m(v0 – v)

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

∆p = 2p0 = 2p = 2mv0

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

v = v0.

Модули конечного и начального импульсов равны:

p = p0.

Угол падения равен углу отражения:

α = α’

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

Или:

F∆t — импульс силы, ∆p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Определение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Реактивная сила:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

V = a∆t

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Определение

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Закон сохранения импульсаПолный импульс замкнутой системы сохраняется:

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

Важно!

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение  проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

m2v2 = (m1 + m2)v

Отсюда скорость равна:

Задание EF17556

Импульс частицы до столкновения равен p1, а после столкновения равен p2, причём p1 = p, p2 = 2p, p1p2. Изменение импульса частицы при столкновении Δp равняется по модулю:

а) p

б) p√3

в) 3p

г) p√5


Алгоритм решения

1.Записать исходные данные.

2.Построить чертеж, обозначить векторы начального и конечного импульсов, а также вектор изменения импульса. Для отображения вектора изменения импульса использовать правило сложения векторов методом параллелограмма.

3.Записать геометрическую формулу для вычисления длины вектора изменения импульса.

4.Подставить известные значения и вычислить.

Решение

Запишем исходные данные:

 Модуль импульса частицы до столкновения равен: p1 = p.

 Модуль импульса частицы после столкновения равен: p2 = 2p.

 Угол между вектором начального и вектором конечного импульса: α = 90о.

Построим чертеж:

Так как угол α = 90о, вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δp=p21+p22

Подставим известные данные:

Δp=p2+(2p)2=5p2=p5

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17695

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено


Алгоритм решения

1.Записать формулу, связывающую импульс тема с его кинематическими характеристиками движения.

2.Сделать вывод о том, как зависит характер движения от импульса.

3.На основании вывода и анализа графика установить характер движения тела на интервалах.

Решение

Импульс тела есть произведение массы тела на его скорость:

p = mv

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

Верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22730

Камень массой 3 кг падает под углом α = 60° к горизонту в тележку с песком общей массой 15 кг, покоящуюся на горизонтальных рельсах, и застревает в песке (см. рисунок). После падения кинетическая энергия тележки с камнем равна 2,25 Дж. Определите скорость камня перед падением в тележку.


Алгоритм решения

1.Записать исходные данные.

2.Записать закон сохранения импульса применительно к задаче.

3.Записать формулу кинетической энергии тела.

4.Выполнить общее решение.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса камня: m1 = 3 кг.

 Масса тележки с песком: m2 = 15 кг.

 Кинетическая энергия тележки с камнем: Ek = 2,25 Дж.

Так как это абсолютно неупругий удар, закон сохранения импульса принимает вид:

m1v1+m2v2=(m1+m2)v

Учтем, что скорость тележки изначально была равна нулю, а к ее движению после столкновения привела только горизонтальная составляющая начальной скорости камня:

m1v1cosα=(m1+m2)v

Выразить конечную скорость системы тел после столкновения мы можем через ее кинетическую энергию:

Ek=(m1+m2)v22

Отсюда скорость равна:

v=2Ekm1+m2

Выразим скорость камня до столкновения через закон сохранения импульса и подставим в формулу найденную скорость:

v1=(m1+m2)vm1cosα=(m1+m2)m1cosα·2Ekm1+m2

Подставим известные данные и произведем вычисления:

v1=(3+15)3cos60o·2·2,253+15=12·0,25=12·0,5=6 (мс)

Ответ: 6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22520

Снаряд, имеющий в точке О траектории импульсp0, разорвался на два осколка. Один из осколков имеет импульс p1
. Импульс второго осколка изображается вектором:

а) AB

б) BC

в) CO

г) OD


Алгоритм решения

1.Сформулировать закон сохранения импульса и записать его в векторной форме.

2.Применить закон сохранения импульса к задаче.

3.Выразить из закона импульс второго осколка и найти на рисунке соответствующий ему вектор.

Решение

Согласно закону сохранения импульса, импульс замкнутой системы тел сохраняется. Записать его можно так:

p1+p2=p′
1
+p2

Можем условно считать осколки замкнутой системой, так как они не взаимодействуют с другими телами. Применяя к ним закон сохранения импульса, получим:

p0=p1+p2

Отсюда импульс второго осколка равен векторной разности импульса снаряда и импульса первого осколка:

p2=p0p1

Известно, что разностью двух векторов является вектор, начало которого соответствует вычитаемому вектору, а конец — вектору уменьшаемому. В нашем случае вычитаемый вектор — вектор импульса первого осколка. Следовательно, начало вектора импульса второго осколка лежит в точке А. Уменьшаемый вектор — вектор импульса снаряда. Следовательно, конец вектора лежит в точке В. Следовательно, искомый вектор — AB.

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18122

Летящая горизонтально со скоростью 20 м/с пластилиновая пуля массой 9 г попадает в груз неподвижно висящий на нити длиной 40 см, в результате чего груз с прилипшей к нему пулей начинает совершать колебания. Максимальный угол отклонения нити от вертикали при этом равен α = 60°. Какова масса груза?

Ответ:

а) 27 г

б) 64 г

в) 81 г

г) 100 г


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Сделать чертеж, отобразив начальное, промежуточное и конечное положение тел.

3.Записать закон сохранения импульса для момента столкновения и закон сохранения механической энергии для момента максимального отклонения нити от положения равновесия.

4.Выполнить решение задачи в общем виде.

5.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Масса пластилиновой пули: m = 9 г.

 Скорость пластилиновой пули: v = 20 м/с.

 Максимальный угол отклонения нити: α = 60°.

Переведем единицы измерения величин в СИ:

Сделаем чертеж:

Нулевой уровень — точка А.

После неупругого столкновения пули с грузом они начинают двигаться вместе. Поэтому закон сохранения импульса для точки А выглядит так:

mv=(m+M)V

После столкновения система тел начинается двигаться по окружности. Точка В соответствует верхней точке траектории. В этот момент скорость системы на мгновение принимает нулевое значение, а потенциальная энергия — максимальное.

Закон сохранения энергии для точки В:

(m+M)V22=(m+M)gh

V22=gh

Высоту h можно определить как произведение длины нити на косинус угла максимального отклонения. Поэтому:

V=2glcosα

Подставим это выражение в закон сохранения импульса для точки А и получим:

Выразим массу груза:

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 19.9k

Импульс

  • Второй закон Ньютона в импульсной форме

  • Пример вычисления силы

  • Импульс системы тел

  • Закон сохранения импульса

  • Закон сохранения проекции импульса

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: импульс тела, импульс системы тел, закон сохранения импульса.

Импульс тела — это векторная величина, равная произведению массы тела на его скорость:

vec{p} = mvec{upsilon } .

Специальных единиц измерения импульса нет. Размерность импульса — это просто произведение размерности массы на размерность скорости:

[p]=[m]cdot [upsilon ]= frac{displaystyle kgcdot m}{displaystyle c}.

Почему понятие импульса является интересным? Оказывается, с его помощью можно придать второму закону Ньютона несколько иную, также чрезвычайно полезную форму.

к оглавлению ▴

Второй закон Ньютона в импульсной форме

Пусть vec{F} — равнодействующая сил, приложенных к телу массы m. Начинаем с обычной записи второго закона Ньютона:

mvec{a} =vec{F} .

С учётом того, что ускорение тела vec{a} равно производной вектора скорости, второй закон Ньютона переписывается следующим образом:

mfrac{displaystyle dvec{upsilon } }displaystyle {dt}=vec{F} .

Вносим константу m под знак производной:

frac{displaystyle d(mvec{upsilon } )}{displaystyle dt}= vec{F} .

Как видим, в левой части получилась производная импульса:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{F} . ( 1)

Соотношение ( 1) и есть новая форма записи второго закона Ньютона.

Второй закон Ньютона в импульсной форме. Производная импульса тела есть равнодействующая приложенных к телу сил.

Можно сказать и так: результирующая сила, действующая на тело, равна скорости изменения импульса тела.

Производную в формуле ( 1) можно заменить на отношение конечных приращений:

frac{displaystyle Delta vec{displaystyle p} }{Delta displaystyle t}= vec{displaystyle F} . ( 2)

В этом случае vec{F} есть средняя сила, действующая на тело в течение интервала времени Delta t. Чем меньше величина Delta t, тем ближе отношение Delta vec{p} /Delta t к производной dvec{p} /dt, и тем ближе средняя сила vec{F} к своему мгновенному значению в данный момент времени.

В задачах, как правило, интервал времени Delta t достаточно мал. Например, это может быть время соударения мяча со стенкой, и тогда vec{F} — средняя сила, действующая на мяч со стороны стенки во время удара.

Вектор Delta vec{p} в левой части соотношения ( 2) называется изменением импульса за время Delta t. Изменение импульса — это разность конечного и начального векторов импульса. А именно, если vec{p} _{0} — импульс тела в некоторый начальный момент времени, vec{p} — импульс тела спустя промежуток времени Delta t, то изменение импульса есть разность:

Delta vec{p} = vec{p} -vec{p} _{0}.

Подчеркнём ещё раз, что изменение импульса — это разность векторов (рис. 1):

Рис. 1. Изменение импульса

Пусть, например, мяч летит перпендикулярно стенке (импульс перед ударом равен vec{p} _{0} ) и отскакивает назад без потери скорости (импульс после удара равен vec{p}= -vec{p} _{0}). Несмотря на то, что импульс по модулю не изменился (p= p _{0}), изменение импульса имеется:

Delta vec{p} = vec{p} -vec{p} _{0}= -vec{p} _{0}-vec{p} _{0}= -2vec{p} _{0}.

Геометрически эта ситуация показана на рис. 2:

Рис. 2. Изменение импульса при отскоке назад

Модуль изменения импульса, как видим, равен удвоенному модулю начального импульса мяча: Delta p= 2p_{0}.

Перепишем формулу ( 2) следующим образом:

Delta vec{p} =vec{F} Delta t, ( 3)

или, расписывая изменение импульса, как и выше:

vec{p} -vec{p} _{0}=vec{F} Delta t.

Величина vec{F} Delta t называется импульсом силы. Специальной единицы измерения для импульса силы нет; размерность импульса силы равна просто произведению размерностей силы и времени:

[FDelta t]= [F]cdot [t]= Hcdot c.

(Обратите внимание, что Hcdot c оказывается ещё одной возможной единицей измерения импульса тела.)

Словесная формулировка равенства ( 3) такова: изменение импульса тела равно импульсу действующей на тело силы за данный промежуток времени. Это, разумеется, снова есть второй закон Ньютона в импульсной форме.

к оглавлению ▴

Пример вычисления силы

В качестве примера применения второго закона Ньютона в импульсной форме давайте рассмотрим следующую задачу.

Задача. Шарик массы m= 100 г, летящий горизонтально со скоростью upsilon = 6 м/с, ударяется о гладкую вертикальную стену и отскакивает от неё без потери скорости. Угол падения шарика (то есть угол между направлением движения шарика и перпендикуляром к стене) равен alpha = 60^{circ}. Удар длится Delta t= 0,01 с. Найти среднюю силу,
действующую на шарик во время удара.

Решение. Покажем прежде всего, что угол отражения равен углу падения, то есть шарик отскочит от стены под тем же углом alpha (рис. 3).

Рис. 3. К задаче (вид сверху)

Тут всё дело в том, что стена — гладкая. Это значит, что трения между шариком и стеной нет. Следовательно, со стороны стены на шарик действует единственная сила vec{N} — сила упругости, направленная перпендикулярно стене (рис. 4).

Рис. 4. К задаче

Согласно ( 3) имеем: Delta vec{p} = vec{N} Delta t. Отсюда следует, что вектор изменения импульса сонаправлен с вектором vec{N} , то есть направлен перпендикулярно стене в сторону отскока шарика (рис. 5).

Рис. 5. К задаче

Векторы vec{p} _{0} и
vec{p} равны по модулю
(так как скорость шарика не изменилась). Поэтому треугольник, составленный из векторов vec{p} _{0}, vec{p} и Delta vec{p} , является равнобедренным. Значит, угол между векторами vec{p} и Delta vec{p} равен alpha , то есть угол отражения действительно равен углу падения.

Теперь заметим вдобавок, что в нашем равнобедренном треугольнике есть угол 60^{circ} (это угол падения); стало быть, данный треугольник — равносторонний. Отсюда:

Delta p= p_{0}= mupsilon = 0,1cdot 6= 0,6~Hcdot c.

И тогда искомая средняя сила, действующая на шарик:

N= frac{displaystyle Delta p}{displaystyle Delta t}= frac{displaystyle 0,6}{displaystyle 0,01}= 60~H.

к оглавлению ▴

Импульс системы тел

Начнём с простой ситуации системы двух тел. А именно, пусть имеются тело 1 и тело 2 с импульсами vec{p} _{1} и vec{p} _{2} соответственно. Импульс vec{p} системы данных тел — это векторная сумма импульсов каждого тела:

vec{p} = vec{p} _{1}+vec{p} _{2}.

Оказывается, для импульса системы тел имеется формула, аналогичная второму закону Ньютона в виде ( 1). Давайте выведем эту формулу.

Все остальные объекты, с которыми взаимодействуют рассматриваемые нами тела 1 и 2, мы будем называть внешними телами. Силы, с которыми внешние тела действуют на тела 1 и 2, называем внешними силами. Пусть vec{F} _{1} — результирующая внешняя сила, действующая на тело 1. Аналогично vec{F} _{2} — результирующая внешняя сила, действующая на тело 2 (рис. 6).

Рис. 6. Система двух тел

Кроме того, тела 1 и 2 могут взаимодействовать друг с другом. Пусть тело 2 действует на тело 1 с силой vec{T} . Тогда тело 1 действует на тело 2 с силой {vec{T} }. По третьему закону Ньютона силы vec{T} и {vec{T} } равны по модулю и противоположны по направлению: {vec{T} }. Силы vec{T} и {vec{T} } — это внутренние силы, действующие в системе.

Запишем для каждого тела 1 и 2 второй закон Ньютона в форме ( 1):

frac{displaystyle dvec{displaystyle p} _ {displaystyle 1}}{displaystyle dt}=vec{F} _{1}+vec{T} , ( 4)

frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}=vec{F} _{2}+{vec{T}}. ( 5)

Сложим равенства ( 4) и ( 5):

frac{displaystyle dvec{displaystyle p} _{displaystyle 1}}{displaystyle dt}+frac{displaystyle dvec{displaystyle p} _{displaystyle 2}}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}+vec{T} +{vec{T}}.

В левой части полученного равенства стоит сумма производных, равная производной суммы векторов vec{p} _{1} и vec{p} _{2}. В правой части имеем vec{T} +{vec{T}} в силу третьего закона Ньютона:

frac{displaystyle d(vec{displaystyle p} _{displaystyle 1}+vec{displaystyle p} _{displaystyle 2})}{displaystyle dt}= vec{F} _{1}+vec{F} _{2}.

Но vec{p} _{1}+vec{p} _{2}= vec{p} — это импульс системы тел 1 и 2. Обозначим также vec{F} _{1}+vec{F} _{2}= vec{F} _{external} — это результирующая внешних сил, действующих на систему. Получаем:

frac{dvec{displaystyle p} }{displaystyle dt}= vec{F} _{external}. ( 6)

Таким образом, скорость изменения импульса системы тел есть равнодействующая внешних сил, приложенных к системе. Равенство ( 6), играющее роль второго закона Ньютона для системы тел, мы и хотели получить.

Формула ( 6) была выведена для случая двух тел. Теперь обобщим наши рассуждения на случай произвольного количества тел в системе.

Импульсом системы тел тел называется векторная сумма импульсов всех тел, входящих в систему. Если система состоит из N тел, то импульс этой системы равен:

vec{p} = vec{p} _{1}+vec{p} _{2}+...+vec{p} _{N}.

Дальше всё делается совершенно так же, как и выше (только технически это выглядит несколько сложнее). Если для каждого тела записать равенства, аналогичные ( 4) и ( 5), а затем все эти равенства сложить, то в левой части мы снова получим производную импульса системы, а в правой части останется лишь сумма внешних сил (внутренние силы, попарно складываясь, дадут нуль ввиду третьего закона Ньютона). Поэтому равенство ( 6) останется справедливым и в общем случае.

к оглавлению ▴

Закон сохранения импульса

Система тел называется замкнутой, если действия внешних тел на тела данной системы или пренебрежимо малы, или компенсируют друг друга. Таким образом, в случае замкнутой системы тел существенно лишь взаимодействие этих тел друг с другом, но не с какими-либо другими телами.

Равнодействующая внешних сил, приложенных к замкнутой системе, равна нулю: vec{F} _{external}= vec{0} . В этом случае из ( 6) получаем:

frac{displaystyle dvec{displaystyle p} }{displaystyle dt}= vec{0} .

Но если производная вектора обращается в нуль (скорость изменения вектора равна нулю), то сам вектор не меняется со временем:

vec{p} = const.

Закон сохранения импульса. Импульс замкнутой системы тел остаётся постоянным с течением времени при любых взаимодействиях тел внутри данной системы.

Простейшие задачи на закон сохранения импульса решаются по стандартной схеме, которую мы сейчас покажем.

Задача. Тело массы m_{1}= 800 г движется со скоростью upsilon _{1}= 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m_{2}= 200 г со скоростью upsilon _{2}= 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение. Ситуация изображена на рис. 7. Ось X направим в сторону движения первого тела.

Рис. 7. К задаче

Поскольку поверхность гладкая, трения нет. Поскольку поверхность горизонтальная, а движение происходит вдоль неё, сила тяжести и реакция опоры уравновешивают друг друга:

m_{1}vec{g} +vec{N} _{1}= vec{0} ,
m_{2}vec{g} +vec{N} _{2}= vec{0} .

Таким образом, векторная сумма сил, приложенных к системе данных тел, равна нулю. Это значит, что система тел замкнута. Стало быть, для неё выполняется закон сохранения импульса:

vec{p} _{before~hitting}= vec{p} _{after~hitting}. ( 7)

Импульс системы до удара — это сумма импульсов тел:

vec{p} _{before~hitting}= m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} .

После неупругого удара получилось одно тело массы m_{1}+m_{2}, которое движется с искомой скоростью vec{upsilon } :

vec{p} _{after~hitting}= (m_{1}+m_{2})vec{upsilon } .

Из закона сохранения импульса ( 7) имеем:

m_{1}vec{upsilon _{1}} +m_{2}vec{upsilon _{2}} = (m_{1}+m_{2})vec{upsilon } .

Отсюда находим скорость тела, образовавшегося после удара:

vec{upsilon} = frac{displaystyle m_{displaystyle 1}vec{displaystyle upsilon _{displaystyle 1}} +displaystyle m_{displaystyle 2}vec{displaystyle upsilon _{displaystyle 2}} }{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

Переходим к проекциям на ось X:

upsilon _{x}= frac{displaystyle m_{displaystyle 1}displaystyle upsilon _{displaystyle 1x}+displaystyle m_{displaystyle 2}upsilon _{displaystyle 2x}}{displaystyle m_{displaystyle 1}+displaystyle m_{displaystyle 2}}.

По условию имеем: upsilon _{1x}= 3 м/с, upsilon _{2x}= -13 м/с, так что

upsilon _{x}= frac{displaystyle 0,8cdot 3-0,2cdot 13}{displaystyle 0,8+0,2}= -0,2frac{m}{c}.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Искомая скорость: upsilon = 0,2 м/с.

к оглавлению ▴

Закон сохранения проекции импульса

Часто в задачах встречается следующая ситуация. Система тел не является замкнутой (векторная сумма внешних сил, действующих на систему, не равна нулю), но существует такая ось X, сумма проекций внешних сил на ось X равна нулю в любой момент времени. Тогда можно сказать, что вдоль данной оси наша система тел ведёт себя как замкнутая, и проекция импульса системы на ось X сохраняется.

Покажем это более строго. Спроектируем равенство ( 6) на ось X:

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= F_{external,x}.

Если проекция равнодействующей внешних сил обращается в нуль, F_{external,x}= 0, то

frac{displaystyle dp_{displaystyle x}}{displaystyle dt}= 0.

Следовательно, проекция p_{x} есть константа:

p_{x}= const.

Закон сохранения проекции импульса. Если проекция на ось X суммы внешних сил, действующих на систему, равна нулю, то проекция p_{x} импульса системы не меняется с течением времени.

Давайте посмотрим на примере конкретной задачи, как работает закон сохранения проекции импульса.

Задача. Мальчик массы M, стоящий на коньках на гладком льду, бросает камень массы m со скоростью upsilon под углом alpha к горизонту. Найти скорость u, с которой мальчик откатывается назад после броска.

Решение. Ситуация схематически показана на рис. 8. Мальчик изображён прямогольником.

Рис. 8. К задаче

Импульс системы «мальчик + камень» не сохраняется. Это видно хотя бы из того, что после броска появляется вертикальная составляющая импульса системы (а именно, вертикальная составляющая импульса камня), которой до броска не было.

Стало быть, система, которую образуют мальчик и камень, не замкнута. Почему? Дело в том, что векторная сумма внешних сил Mvec{g} +mvec{g} +vec{N} не равна нулю во время броска. Величина N больше, чем сумма Mg+mg, и за счёт этого превышения как раз и появляется вертикальная компонента импульса системы.

Однако внешние силы действуют только по вертикали (трения нет). Стало быть, сохраняется проекция импульса на горизонтальную ось X. До броска эта проекция была равна нулю. Направляя ось X в сторону броска (так что мальчик поехал в направлении отрицательной полуоси), получим:

-Mu+mupsilon _{0}cos alpha = 0,

откуда

u=frac{mupsilon _{0}cos alpha }{M}.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Импульс» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
07.05.2023

Закон
со­хра­не­ния импульса

1.
Два
тела дви­жут­ся по вза­им­но
пер­пен­ди­ку­ляр­ным
пе­ре­се­ка­ю­щим­ся пря­мым,
как по­ка­за­но на ри­сун­ке.

Мо­дуль
им­пуль­са пер­во­го тела равен
,
а вто­ро­го тела равен
.
Чему равен мо­дуль им­пуль­са
си­сте­мы этих тел после их аб­со­лют­но
не­упру­го­го удара?

1)

2)

3)

4)

Ре­ше­ние.

В
си­сте­ме не дей­ству­ет ни­ка­ких
внеш­них сил, сле­до­ва­тель­но
вы­пол­ня­ет­ся закон со­хра­не­ния
им­пуль­са. Век­тор пол­но­го
им­пуль­са си­сте­мы есть сумма
век­то­ров
и
.
Так как эти век­то­ра пер­пен­ди­ку­ляр­ны,
то мо­дуль им­пуль­са си­сте­мы
равен по тео­ре­ме Пи­фа­го­ра

.

Пра­виль­ный
ответ: 2.

Ответ:
2

401

2

2.
Си­сте­ма
со­сто­ит из двух тел a
и b.
На ри­сун­ке стрел­ка­ми в
за­дан­ном мас­шта­бе ука­за­ны
им­пуль­сы этих тел.

Чему
по мо­ду­лю равен им­пульс всей
си­сте­мы?

1)

2)

3)

4)

Ре­ше­ние.

Ис­поль­зуя
мас­штаб ри­сун­ка, опре­де­лим
мо­ду­ли им­пуль­сов тел a
и b.
Из ри­сун­ка видно, что
и
.
Им­пульс всей си­сте­мы равен
.
Так как век­то­ра
и
пер­пен­ди­ку­ляр­ны,
то мо­дуль им­пуль­са всей си­сте­мы
равен

.

Пра­виль­ный
ответ: 4.

Ответ:
4

402

4

3.
Си­сте­ма
со­сто­ит из двух тел a
и b.
На ри­сун­ке стрел­ка­ми в
за­дан­ном мас­шта­бе ука­за­ны
им­пуль­сы этих тел.

Чему
по мо­ду­лю равен им­пульс всей
си­сте­мы?

1)

2)

3)

4)

Ре­ше­ние.

Пер­вый
спо­соб
:

Сло­жим
им­пуль­сы по пра­ви­лу
тре­уголь­ни­ка, сум­мар­ный
им­пульс обо­зна­чен на ри­сун­ке
крас­ной стрел­кой. Видно, что его
длина равна 4 клет­кам, сле­до­ва­тель­но,
им­пульс си­сте­мы по мо­ду­лю
равен
.

Вто­рой
спо­соб (более длин­ный и менее
удач­ный)
:

Ис­поль­зуя
мас­штаб ри­сун­ка, опре­де­лим
мо­ду­ли им­пуль­сов тел a
и b.
Из ри­сун­ка видно, что

.

Им­пульс
всей си­сте­мы равен
.
Так как век­то­ра
и
пер­пен­ди­ку­ляр­ны,
то мо­дуль им­пуль­са всей си­сте­мы
равен

.

Пра­виль­ный
ответ: 2.

Ответ:
2

403

2

4.
Си­сте­ма
со­сто­ит из двух тел 1 и 2, массы
ко­то­рых равны 0,5 кг и 2 кг. На
ри­сун­ке стрел­ка­ми в за­дан­ном
мас­шта­бе ука­за­ны ско­ро­сти
этих тел.

Чему
равен им­пульс всей си­сте­мы по
мо­ду­лю?

1)

2)

3)

4)

Ре­ше­ние.

Ис­поль­зуя
мас­штаб ри­сун­ка, опре­де­лим
ве­ли­чи­ны ско­ро­стей тел:
и
.
Вы­чис­лим мо­ду­ли им­пуль­сов
тел:

  
и
  .

Им­пульс
всей си­сте­мы равен
.
Так как век­то­ра
и
пер­пен­ди­ку­ляр­ны,
то мо­дуль им­пуль­са всей си­сте­мы
равен

.

Пра­виль­ный
ответ: 1.

Ответ:
1

404

1

5.
Кубик
мас­сой m
дви­жет­ся по глад­ко­му столу
со ско­ро­стью
и
на­ле­та­ет на по­ко­я­щий­ся
кубик такой же массы. После удара ку­би­ки
дви­жут­ся как еди­ное целое без
вра­ще­ний, при этом:

1)
ско­рость ку­би­ков равна

2)
им­пульс ку­би­ков равен

3)
им­пульс ку­би­ков равен

4)
ки­не­ти­че­ская энер­гия
ку­би­ков равна

Ре­ше­ние.

На
си­сте­му не дей­ству­ет ни­ка­ких
внеш­них сил, сле­до­ва­тель­но
вы­пол­ня­ет­ся закон со­хра­не­ния
им­пуль­са. До столк­но­ве­ния
один кубик сколь­зил со ско­ро­стью
,
а вто­рой — по­ко­ил­ся,
зна­чит пол­ный им­пульс си­сте­мы
по мо­ду­лю был равен

.

Таким
он оста­нет­ся и после столк­но­ве­ния.
Сле­до­ва­тель­но, утвер­жде­ние
2 верно. По­ка­жем, что утвер­жде­ния
1 и 4 ложны. Ис­поль­зуя закон
со­хра­не­ния им­пуль­са,
най­дем ско­рость
сов­мест­но­го
дви­же­ния ку­би­ков после
столк­но­ве­ния:
.
Сле­до­ва­тель­но ско­рость
ку­би­ков
,
а не
.
Далее, на­хо­дим их ки­не­ти­че­скую
энер­гию:

.

Пра­виль­ный
ответ: 2.

Ответ:
2

405

2

6.
Ма­ят­ник
мас­сой m
про­хо­дит точку рав­но­ве­сия
со ско­ро­стью
.
Через по­ло­ви­ну пе­ри­о­да
ко­ле­ба­ний он про­хо­дит
точку рав­но­ве­сия, дви­га­ясь
в про­ти­во­по­лож­ном
на­прав­ле­нии с такой же по
мо­ду­лю ско­ро­стью
.
Чему равен мо­дуль из­ме­не­ния
им­пуль­са ма­ят­ни­ка за это
время?

1)

2)

3)

4)

Ре­ше­ние.

Через
по­ло­ви­ну пе­ри­о­да
про­ек­ция ско­ро­сти ма­ят­ни­ка
ме­ня­ет­ся на про­ти­во­по­лож­ную
и ста­но­вит­ся рав­ной
.
Сле­до­ва­тель­но, мо­дуль
из­ме­не­ния им­пуль­са
ма­ят­ни­ка за это время равен

.

Пра­виль­ный
ответ: 3.

Ответ:
3

406

3

7.
Ма­ят­ник
мас­сой m
про­хо­дит точку рав­но­ве­сия
со ско­ро­стью
.
Через чет­верть пе­ри­о­да
ко­ле­ба­ний он до­сти­га­ет
точки мак­си­маль­но­го уда­ле­ния
от точки рав­но­ве­сия. Чему равен
мо­дуль из­ме­не­ния им­пуль­са
ма­ят­ни­ка за это время?

1)

2)

3)

4)

Ре­ше­ние.

Через
чет­верть пе­ри­о­да, когда
ма­ят­ник до­сти­га­ет точки
мак­си­маль­но­го уда­ле­ния,
его ско­рость об­ра­ща­ет­ся
в ноль. Сле­до­ва­тель­но, мо­дуль
из­ме­не­ния им­пуль­са
ма­ят­ни­ка за это время равен

.

Пра­виль­ный
ответ: 2.

Ответ:
2

407

2

8.
Груз
мас­сой m
на пру­жи­не, со­вер­шая сво­бод­ные
ко­ле­ба­ния, про­хо­дит
по­ло­же­ние рав­но­ве­сия
со ско­ро­стью
.
Через по­ло­ви­ну пе­ри­о­да
ко­ле­ба­ний он про­хо­дит
по­ло­же­ние рав­но­ве­сия,
дви­га­ясь в про­ти­во­по­лож­ном
на­прав­ле­нии с такой же по
мо­ду­лю ско­ро­стью
.
Чему равен мо­дуль из­ме­не­ния
ки­не­ти­че­ской энер­гии
груза за это время?

1)

2)

3)

4)

Ре­ше­ние.

По­сколь­ку
ки­не­ти­че­ская энер­гия тела
за­ви­сит толь­ко от ве­ли­чи­ны
его ско­ро­сти, но не от ее
на­прав­ле­ния, а, по усло­вию,
через по­ло­ви­ну пе­ри­о­да
мо­дуль ско­ро­сти не из­ме­ня­ет­ся,
за­клю­ча­ем, что мо­дуль
из­ме­не­ния ки­не­ти­че­ской
энер­гии за это время равен нулю.

Пра­виль­ный
ответ: 4.

Ответ:
4

408

4

9.
Груз
мас­сой m
на пру­жи­не, со­вер­шая сво­бод­ные
ко­ле­ба­ния, про­хо­дит
по­ло­же­ние рав­но­ве­сия
со ско­ро­стью
.
Через чет­верть пе­ри­о­да
ко­ле­ба­ний он до­сти­га­ет
по­ло­же­ния мак­си­маль­но­го
уда­ле­ния от по­ло­же­ния
рав­но­ве­сия. Чему равен мо­дуль
из­ме­не­ния ки­не­ти­че­ской
энер­гии груза за это время?

1)

2)

3)

4)

Ре­ше­ние.

Через
чет­верть пе­ри­о­да, когда
ма­ят­ник до­сти­га­ет
по­ло­же­ния мак­си­маль­но­го
от­кло­не­ния, его ско­рость
об­ра­ща­ет­ся в ноль. Таким
об­ра­зом, мо­дуль из­ме­не­ния
ки­не­ти­че­ской энер­гии за
это время равен

.

Пра­виль­ный
ответ: 3.

Ответ:
3

409

3

10.
Если
при уве­ли­че­нии мо­ду­ля
ско­ро­сти ма­те­ри­аль­ной
точки ве­ли­чи­на ее им­пуль­са
уве­ли­чи­лась в 4 раза, то при этом
ки­не­ти­че­ская энер­гия

1)
уве­ли­чи­лась в 2 раза

2)
уве­ли­чи­лась в 4 раза

3)
уве­ли­чи­лась в 16 раз

4)
умень­ши­лась в 4 раза

Ре­ше­ние.

Им­пульс
ма­те­ри­аль­ной точки
про­пор­ци­о­на­лен ско­ро­сти,
а ки­не­ти­че­ская энер­гия —
квад­ра­ту ско­ро­сти:

.

Таким
об­ра­зом, уве­ли­че­ние
им­пуль­са ма­те­ри­аль­ной
точки в 4 раза со­от­вет­ству­ет
уве­ли­че­нию энер­гии в 16 раз.

Пра­виль­ный
ответ: 3.

Ответ:
3

414

3

11..
Танк дви­жет­ся со ско­ро­стью
,
а гру­зо­вик со ско­ро­стью
.
Масса танка
.
От­но­ше­ние ве­ли­чи­ны
им­пуль­са танка к ве­ли­чи­не
им­пуль­са гру­зо­ви­ка равно
2,25. Масса гру­зо­ви­ка равна

1)
1 500 кг

2)
3 000 кг

3)
4 000 кг

4)
8 000 кг

Ре­ше­ние.

Им­пульс
танка равен
.
Им­пульс гру­зо­ви­ка равен
где
M —
ис­ко­мая масса. По усло­вию,
.
Таким об­ра­зом, для массы гру­зо­ви­ка
имеем

.

Пра­виль­ный
ответ: 3

Ответ:
3

416

3

12.
Поезд
дви­жет­ся со ско­ро­стью
,
а теп­ло­ход со ско­ро­стью
.
Масса по­ез­да
.
От­но­ше­ние мо­ду­ля им­пуль­са
по­ез­да к мо­ду­лю им­пуль­са
теп­ло­хо­да равно 5. Масса
теп­ло­хо­да равна

1)
20 тонн

2)
50 тонн

3)
100 тонн

4)
200 тонн

Ре­ше­ние.

Им­пульс
по­ез­да равен
.
Им­пульс теп­ло­хо­да равен
где
M —
ис­ко­мая масса. По усло­вию,
.
Таким об­ра­зом, для массы гру­зо­ви­ка
имеем

.

Пра­виль­ный
ответ: 2.

Ответ:
2

417

2

13.
Са­мо­лет
летит со ско­ро­стью
,
а вер­то­лет со ско­ро­стью
.
Масса са­мо­ле­та
.
От­но­ше­ние им­пуль­са
са­мо­ле­та к им­пуль­су
вер­то­ле­та равно 1,5. Масса
вер­то­ле­та равна

1)
1 500 кг

2)
3 000 кг

3)
4 000 кг

4)
8 000 кг

Ре­ше­ние.

Им­пульс
са­мо­ле­та равен
.
Им­пульс вер­то­ле­та равен
где
M —
ис­ко­мая масса. По усло­вию,
.
Таким об­ра­зом, для массы вер­то­ле­та
имеем

.

Пра­виль­ный
ответ: 3. Нcdot м

Ответ:
3

418

3

14.
Ав­то­мо­биль
дви­жет­ся со ско­ро­стью
,
а мо­то­цикл со ско­ро­стью
.
Масса мо­то­цик­ла
.
От­но­ше­ние им­пуль­са
ав­то­мо­би­ля к им­пуль­су
мо­то­цик­ла равно 1,5. Масса
ав­то­мо­би­ля равна

1)
1 500 кг

2)
3 000 кг

3)
4 000 кг

4)
8 000 кг

Ре­ше­ние.

Им­пульс
ав­то­мо­би­ля равен
,
где M —
ис­ко­мая масса. Им­пульс мо­то­цик­ла
равен
.
По усло­вию,
.
Таким об­ра­зом, для массы ав­то­мо­би­ля
имеем

.

Пра­виль­ный
ответ: 1.

Ответ:
1

419

1

15.
Масса
гру­зо­ви­ка
,
масса лег­ко­во­го ав­то­мо­би­ля
.
Гру­зо­вик дви­жет­ся со
ско­ро­стью
.
От­но­ше­ние ве­ли­чи­ны
им­пуль­са гру­зо­ви­ка к
ве­ли­чи­не им­пуль­са
ав­то­мо­би­ля равно 2,5. Ско­рость
лег­ко­во­го ав­то­мо­би­ля
равна

1)

2)

3)

4)

Ре­ше­ние.

Им­пульс
гру­зо­ви­ка равен
.
Им­пульс лег­ко­во­го ав­то­мо­би­ля
равен
,
где u —
ис­ко­мая ско­рость. По усло­вию,
.
Таким об­ра­зом, для ско­ро­сти
лег­ко­во­го ав­то­мо­би­ля
имеем

.

Пра­виль­ный
ответ: 4.

Ответ:
4

420

4

16.
Две
те­леж­ки дви­жут­ся нав­стре­чу
друг другу с оди­на­ко­вы­ми по
мо­ду­лю ско­ро­стя­ми
.
Массы те­ле­жек m
и 2m.
Какой будет ско­рость дви­же­ния
те­ле­жек после их аб­со­лют­но
не­упру­го­го столк­но­ве­ния?

1)

2)

3)

4)

Ре­ше­ние.

Для
те­ле­жек вы­пол­ня­ет­ся
закон со­хра­не­ния им­пуль­са,
по­сколь­ку на си­сте­му не
дей­ству­ет ни­ка­ких внеш­них
сил в го­ри­зон­таль­но
на­прав­ле­нии:

.

От­сю­да
на­хо­дим ско­рость те­ле­жек
после аб­со­лют­но не­упру­го­го
удара:

.

Пра­виль­ный
ответ: 4.

Ответ:
4

421

4

17.
Охот­ник
мас­сой 60 кг, сто­я­щий на
глад­ком льду, стре­ля­ет из ружья
в го­ри­зон­таль­ном на­прав­ле­нии.
Масса за­ря­да 0,03 кг. Ско­рость
дро­би­нок при вы­стре­ле
.
Ка­ко­ва ско­рость охот­ни­ка
после вы­стре­ла?

1)

2)

3)

4)

Ре­ше­ние.

Для
охот­ни­ка с ру­жьем вы­пол­ня­ет­ся
закон со­хра­не­ния им­пуль­са,
по­сколь­ку на эту си­сте­му не
дей­ству­ет ни­ка­ких внеш­них
сил в го­ри­зон­таль­ном
на­прав­ле­нии:

.

От­сю­да
на­хо­дим ско­рость охот­ни­ка
после вы­стре­ла:

.

Пра­виль­ный
ответ: 2.

Ответ:
2

422

2

18.
Тело
дви­жет­ся по пря­мой в одном
на­прав­ле­нии. Под дей­стви­ем
по­сто­ян­ной силы за 3 с им­пульс
тела из­ме­нил­ся на
.
Каков мо­дуль силы?

1)
0,5 Н

2)
2 Н

3)
9 Н

4)
18 Н

Ре­ше­ние.

Сила,
из­ме­не­ние им­пуль­са под
дей­стви­ем этой силы и ин­тер­вал
вре­ме­ни, в те­че­ние ко­то­ро­го
про­изо­шло из­ме­не­ние,
свя­за­ны со­глас­но вто­ро­му
за­ко­ну Нью­то­на, со­от­но­ше­ни­ем

.

От­сю­да
на­хо­дим мо­дуль силы

.

Пра­виль­ный
ответ: 2.

Ответ:
2

423

2

19..
От­но­ше­ние массы гру­зо­ви­ка
к массе лег­ко­во­го ав­то­мо­би­ля
.
Ка­ко­во от­но­ше­ние их
ско­ро­стей
,
если от­но­ше­ние им­пуль­са
гру­зо­ви­ка к им­пуль­су
лег­ко­во­го ав­то­мо­би­ля
равно 3?

1)
1

2)
2

3)
3

4)
5

Ре­ше­ние.

Им­пульс
гру­зо­ви­ка равен
.
Им­пульс лег­ко­во­го
ав­то­мо­би­ля —
По
усло­вию,
.
Таким об­ра­зом, от­но­ше­ние
ско­ро­стей равно

.

Пра­виль­ный
ответ: 1.

Ответ:
1

424

1

20.
Тело
дви­жет­ся по пря­мой. Под дей­стви­ем
по­сто­ян­ной силы ве­ли­чи­ной
2 Н за 3 с мо­дуль им­пуль­са
тела уве­ли­чил­ся и стал равен
.
Пер­во­на­чаль­ный им­пульс
тела равен

1)

2)

3)

4)

Ре­ше­ние.

Сила,
из­ме­не­ние им­пуль­са под
дей­стви­ем этой силы и ин­тер­вал
вре­ме­ни, в те­че­ние ко­то­ро­го
про­изо­шло из­ме­не­ние,
свя­за­ны со­глас­но вто­ро­му
за­ко­ну Нью­то­на, со­от­но­ше­ни­ем
Сле­до­ва­тель­но,

.

Таким
об­ра­зом, пер­во­на­чаль­ный
им­пульс был равен

.

Пра­виль­ный
ответ: 1.

Ответ:
1

425

1

21.
Два
шара мас­са­ми m
и 2m
дви­жут­ся по одной пря­мой со
ско­ро­стя­ми, рав­ны­ми
со­от­вет­ствен­но
и
.
Пер­вый шар дви­жет­ся за вто­рым
и, до­гнав, при­ли­па­ет к нему.
Чему равен сум­мар­ный им­пульс
шаров после удара?

1)

2)

3)

4)

Ре­ше­ние.

Для
шаров вы­пол­ня­ет­ся закон
со­хра­не­ния им­пуль­са,
по­сколь­ку на си­сте­му не
дей­ству­ет ни­ка­ких внеш­них
сил в го­ри­зон­таль­но
на­прав­ле­нии:

.

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Импульс тела при движении по окружности

Движение по окружности импульс тела

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Закон cохранения импульса

О чем эта статья:

9 класс, 10 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Импульс: что это такое

Как-то раз Рене Декарт (это который придумал ту самую декартову систему координат) решил, что каждый раз считать силу, чтобы описать процессы — как-то лень и сложно.

Для этого нужно ускорение, а оно не всегда очевидно. Тогда он придумал такую величину, как импульс. Импульс можно охарактеризовать, как количество движения — это произведение массы на скорость.

Импульс тела

p — импульс тела [кг · м/с]

m — масса тела [кг]

Закон сохранения импульса

В физике и правда ничего не исчезает и не появляется из ниоткуда. Импульс — не исключение. В замкнутой изолированной системе (это та, в которой тела взаимодействуют только друг с другом) закон сохранения импульса звучит так:

Закон сохранения импульса

Векторная сумма импульсов тел в замкнутой системе постоянна

А выглядит — вот так:

Закон сохранения импульса

pn — импульс тела [кг · м/с]

Простая задачка

Мальчик массой m = 45 кг плыл на лодке массой M = 270 кг в озере и решил искупаться. Остановил лодку (совсем остановил, чтобы она не двигалась) и спрыгнул с нее с горизонтально направленной скоростью 3 м/с. С какой скоростью станет двигаться лодка?

Решение:

Запишем закон сохранения импульса для данного процесса.

— это импульс системы мальчик + лодка до того, как мальчик спрыгнул,

— это импульс мальчика после прыжка,

— это импульс лодки после прыжка.

Изобразим на рисунке, что происходило до и после прыжка.

Если мы спроецируем импульсы на ось х, то закон сохранения импульса примет вид

Подставим формулу импульса.
, где:
— масса мальчика [кг]
— скорость мальчика после прыжка [м/с]
— масса лодки [кг]
— скорость лодки после прыжка [м/с]

Выразим скорость лодки :

Подставим значения:
м/с

Ответ: скорость лодки после прыжка равна 0,5 м/с

Задачка посложнее

Тело массы m1 = 800 г движется со скоростью v1 = 3 м/с по гладкой горизонтальной поверхности. Навстречу ему движется тело массы m2 = 200 г со скоростью v2 = 13 м/с. Происходит абсолютно неупругий удар (тела слипаются). Найти скорость тел после удара.

Решение: Для данной системы выполняется закон сохранения импульса:

Импульс системы до удара — это сумма импульсов тел, а после удара — импульс «получившегося» в результате удара тела.

Спроецируем импульсы на ось х:

После неупругого удара получилось одно тело массы , которое движется с искомой скоростью:

Отсюда находим скорость тела, образовавшегося после удара:

Переводим массу в килограммы и подставляем значения:

В результате мы получили отрицательное значение скорости. Это значит, что в самом начале на рисунке мы направили скорость после удара неправильно.

Знак минус указывает на то, что слипшиеся тела двигаются в сторону, противоположную оси X. Это никак не влияет на получившееся значение.

Ответ: скорость системы тел после соударения равна v = 0,2 м/с.

Второй закон Ньютона в импульсной форме

Второй закон Ньютона в импульсной форме можно получить следующим образом. Пусть для определенности векторы скоростей тела и вектор силы направлены вдоль одной прямой линии, т. е. движение прямолинейное.

Запишем второй закон Ньютона, спроецированный на ось х, сонаправленную с направлением движения и ускорением:

Применим выражение для ускорения

В этих уравнениях слева находится величина a. Так как левые части уравнений равны, можно приравнять правые их части

Полученное выражение является пропорцией. Применив основное свойство пропорции, получим такое выражение:

В правой части находится — это разница между конечной и начальной скоростью.

Преобразуем правую часть

Раскрыв скобки, получим

Заменим произведение массы и скорости на импульс:

То есть, вектор – это вектор изменения импульса .

Тогда второй закон Ньютона в импульсной форме запишем так

Вернемся к векторной форме, чтобы данное выражение было справедливо для любого направления вектора ускорения.

Задачка про белку отлично описывает смысл второго закона Ньютона в импульсной форме

Белка с полными лапками орехов сидит на гладком горизонтальном столе. И вот кто-то бесцеремонно толкает ее к краю стола. Белка понимает законы Ньютона и предотвращает падение. Но как?

Решение:

Чтобы к белке приложить силу, которая будет толкать белку в обратном направлении от края стола, нужно создать соответствующий импульс (вот и второй закон Ньютона в импульсной форме подъехал).

Ну, а чтобы создать импульс, белка может выкинуть орехи в сторону направления движения — тогда по закону сохранения импульса ее собственный импульс будет направлен против направления скорости орехов.

Реактивное движение

В основе движения ракет, салютов и некоторых живых существ: кальмаров, осьминогов, каракатиц и медуз — лежит закон сохранения импульса. В этих случаях движение тела возникает из-за отделения какой-либо его части. Такое движение называется реактивным.

Яркий пример реактивного движения в технике — движение ракеты, когда из нее истекает струя горючего газа, которая образуется при сгорании топлива.

Сила, с которой ракета действует на газы, равна по модулю и противоположна по направлению силе, с которой газы отталкивают от себя ракету:

Сила называется реактивной. Это та сила, которая возникает в процессе отделения части тела. Особенностью реактивной силы является то, что она возникает без взаимодействия с внешними телами.

Закон сохранения импульса позволяет оценить скорость ракеты.

vг — скорость горючего,

vр — скорость ракеты.

Отсюда можно выразить скорость ракеты:

Скорость ракеты при реактивном движении

vг — скорость горючего [м/с]

mр — масса ракеты [кг]

vр — скорость ракеты [м/с]

Эта формула справедлива для случая мгновенного сгорания топлива. Мгновенное сгорание — это теоретическая модель. В реальной жизни топливо сгорает постепенно, так как мгновенное сгорание приводит к взрыву.

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

Движение тела по криволинейной траектории. Движение по окружности. Характеристики вращательного движения. Центростремительное ускорение

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Вам хорошо известно, что в зависимости от формы траектории движение делится на прямолинейное и криволинейное. С прямолинейным движением мы научились работать на предыдущих уроках, а именно решать главную задачу механики для такого вида движения.

Однако ясно, что в реальном мире мы чаще всего имеем дело с криволинейным движением, когда траектория представляет собой кривую линию. Примерами такого движения является траектория тела, брошенного под углом к горизонту, движение Земли вокруг Солнца и даже траектория движения ваших глаз, следящих сейчас за этим конспектом.

Вопросу о том, как решается главная задача механики в случае криволинейного движения, и будет посвящен этот урок.

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2— импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p 0 — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Импульс и момент импульса в физике: формулы, описывающие закон сохранения этих величин

Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные формулы импульса в физике приводятся в данной статье.

Импульс или количество движения?

Прежде чем приводить формулы импульса тела в физике, познакомимся с этим понятием. Впервые величину под названием impeto (импульс) использовал в описании своих трудов Галилей в начале XVII века. Впоследствии Исаак Ньютон для нее употребил другое название — motus (движение). Поскольку фигура Ньютона оказала большее влияние на развитие классической физики, чем личность Галилея, изначально принято говорить не об импульсе тела, а о количестве движения.

Вам будет интересно: Ярославский политехнический университет (ЯГТУ): сведения, факты, поступление

Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:

Вам будет интересно: Формулировка третьего закона Ньютона: примеры, связь с ускорением системы и с ее импульсом

Здесь p¯ — вектор, направление которого совпадает с v¯, но модуль в m раз больше, чем модуль v¯.

Изменение величины p¯

Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:

Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:

Перенося dt из знаменателя правой части равенства в числитель левой, получаем:

Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.

Заметим, что dp¯ — это тоже векторная величина, но направлена она в отличие от p¯ не как скорость v¯, а как сила F¯.

Ярким примером изменения вектора количества движения (импульса) является ситуация, когда футболист бьет по мячу. До удара мяч двигался к футболисту, после удара — от него.

Закон сохранения импульса

Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.

Обратимся к выражению из предыдущего пункта:

Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:

Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:

  • Импульс сохраняется вдоль каждой координаты, то есть если до некоторого события значение px системы составляло 2 кг*м/c, то после этого события оно будет таким же.
  • Импульс сохраняется независимо от характера столкновений твердых тел в системе. Известно два идеальных случая таких столкновений: абсолютно упругий и абсолютно пластичный удары. В первом случае сохраняется также кинетическая энергия, во втором часть ее расходуется на пластическую деформацию тел, однако импульс сохраняется все равно.

Упругое и неупругое взаимодействие двух тел

Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.

Если удар будет абсолютно упругим, то есть передача импульса от одного тела к другому осуществляется посредством упругой деформации, тогда формула сохранения p запишется так:

m1*v1 + m2*v2 = m1*u1 + m2*u2

Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m1, v1, m2, v2) в конечном состоянии (после столкновения) имеется две неизвестных (u1, u2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:

m1*v12 + m2*v22 = m1*u12 + m2*u22

Если удар абсолютно неупругий или пластический, то после столкновения два тела начинают двигаться как единое целое. В этом случае имеет место выражение:

m1*v1 + m2*v2 = (m1 + m2)*u

Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.

Импульс тела во время движения по окружности

Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:

Здесь r¯ — вектор, равный расстоянию от оси вращения до частицы с импульсом p¯, совершающей круговые движения вокруг этой оси. Величина L¯ — это тоже вектор, но рассчитать его несколько сложнее, чем p¯, поскольку речь идет о векторном произведении.

Закон сохранения L¯

Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:

Здесь I — это момент инерции (для материальной точки он равен m*r2), который описывает инерционные свойства вращающегося объекта, ω¯ — скорость угловая. Как можно заметить, это уравнение аналогично по форме записи такового для линейного импульса p¯.

Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:

Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.

Импульс и момент импульса в физике: формулы, описывающие закон сохранения этих величин

Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные формулы импульса в физике приводятся в данной статье.

Импульс или количество движения?

Прежде чем приводить формулы импульса тела в физике, познакомимся с этим понятием. Впервые величину под названием impeto (импульс) использовал в описании своих трудов Галилей в начале XVII века. Впоследствии Исаак Ньютон для нее употребил другое название – motus (движение). Поскольку фигура Ньютона оказала большее влияние на развитие классической физики, чем личность Галилея, изначально принято говорить не об импульсе тела, а о количестве движения.

Вам будет интересно: Ярославский политехнический университет (ЯГТУ): сведения, факты, поступление

Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:

Вам будет интересно: Формулировка третьего закона Ньютона: примеры, связь с ускорением системы и с ее импульсом

Здесь p¯ – вектор, направление которого совпадает с v¯, но модуль в m раз больше, чем модуль v¯.

Изменение величины p¯

Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:

Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:

Перенося dt из знаменателя правой части равенства в числитель левой, получаем:

Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.

Заметим, что dp¯ – это тоже векторная величина, но направлена она в отличие от p¯ не как скорость v¯, а как сила F¯.

Ярким примером изменения вектора количества движения (импульса) является ситуация, когда футболист бьет по мячу. До удара мяч двигался к футболисту, после удара – от него.

Закон сохранения импульса

Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.

Обратимся к выражению из предыдущего пункта:

Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:

Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:

  • Импульс сохраняется вдоль каждой координаты, то есть если до некоторого события значение px системы составляло 2 кг*м/c, то после этого события оно будет таким же.
  • Импульс сохраняется независимо от характера столкновений твердых тел в системе. Известно два идеальных случая таких столкновений: абсолютно упругий и абсолютно пластичный удары. В первом случае сохраняется также кинетическая энергия, во втором часть ее расходуется на пластическую деформацию тел, однако импульс сохраняется все равно.

Упругое и неупругое взаимодействие двух тел

Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.

Если удар будет абсолютно упругим, то есть передача импульса от одного тела к другому осуществляется посредством упругой деформации, тогда формула сохранения p запишется так:

m1*v1 + m2*v2 = m1*u1 + m2*u2

Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m1, v1, m2, v2) в конечном состоянии (после столкновения) имеется две неизвестных (u1, u2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:

m1*v12 + m2*v22 = m1*u12 + m2*u22

Если удар абсолютно неупругий или пластический, то после столкновения два тела начинают двигаться как единое целое. В этом случае имеет место выражение:

m1*v1 + m2*v2 = (m1 + m2)*u

Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.

Импульс тела во время движения по окружности

Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:

Здесь r¯ – вектор, равный расстоянию от оси вращения до частицы с импульсом p¯, совершающей круговые движения вокруг этой оси. Величина L¯ – это тоже вектор, но рассчитать его несколько сложнее, чем p¯, поскольку речь идет о векторном произведении.

Закон сохранения L¯

Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:

Здесь I – это момент инерции (для материальной точки он равен m*r2), который описывает инерционные свойства вращающегося объекта, ω¯ – скорость угловая. Как можно заметить, это уравнение аналогично по форме записи такового для линейного импульса p¯.

Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:

Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.

[spoiler title=”источники:”]

http://b4.cooksy.ru/articles/impuls-tela-pri-dvizhenii-po-okruzhnosti

http://1ku.ru/obrazovanie/29777-impuls-i-moment-impulsa-v-fizike-formuly-opisyvajushhie-zakon-sohranenija-jetih-velichin/

[/spoiler]

Предположим, что нам дан график зависимости равнодействующей силы, приложенной к какому-то объекту, от времени.

Допустим, что этот график описывает изменение равнодействующей силы, приводящей в движение маленький кораблик на радиоуправлении массой 2.5 килограмма, который мы запустили плавать в спокойную речку.

В задаче требуется найти скорость тела через 7 секунд после начала движения (в самом начале оно покоилось).

Как же мы будем работать? Во-первых, мы найдем изменение импульса на трех ключевых участках, хорошо видных на рисунке.

Потом через импульс мы узнаем скорость кораблика в интересующий нас момент времени (мы сможем это сделать, так как знаем массу тела и его начальную скорость, которая равна нулю):

varDelta{vec{p}}=vec{p}-vec{p}_0

varDelta{vec{p}}=mvec{v}-mvec{v}_0

varDelta{vec{p}}=mvec{v}

vec{v}=dfrac{varDelta{vec{p}}}{m}

Начнем с того, что найдем изменение импульса в промежутке от 0 до 3 секунд. Для этого нам достаточно найти площадь прямоугольника, находящегося под графиком на этом участке. Почему так? Изменение импульса равно произведению суммы приложенных к телу сил и времени, в течение которого они действовали:

varDelta{vec{p}}=varSigma{vec{F}}varDelta{t}

Если теперь взглянуть на график, можно заметить, что модуль этого произведения совпадает с площадью нашего прямоугольника.

Итак, модуль изменения импульса на первом участке равен:

varDelta{p}=S_Box=ab=4thickspaceН×3thickspaceс=12thickspaceН⋅с

Равнодействующая сила действовала в положительном направлении, поэтому и изменение импульса будет положительно:

varDelta{vec{p}}_1=12thickspaceН⋅с

Используя графический способ нахождения модуля изменения импульса, найдем его и на двух других участках:

varDelta{p}_2=dfrac{1}{2}×4thickspaceН×2thickspaceс=4thickspaceН⋅с

varDelta{p}_3=dfrac{1}{2}×2thickspaceН×1thickspaceс=1thickspaceН⋅с

Добавим направления:

varDelta{vec{p}}_2=4thickspaceН⋅с

varDelta{vec{p}}_3=-,1thickspaceН⋅с

Найдем суммарное изменение импульса:

varDelta{vec{p}}=varDelta{vec{p}}_1+varDelta{vec{p}}_2+varDelta{vec{p}}_3

varDelta{vec{p}}=12thickspaceН⋅с+4thickspaceН⋅с-1thickspaceН⋅с

varDelta{vec{p}}=15thickspaceН⋅с

Осталось узнать скорость кораблика через 7 секунд после начала движения:

vec{v}=dfrac{varDelta{vec{p}}}{m}=dfrac{15thickspaceН⋅с}{2.5thickspaceкг}=6thickspaceм/с

Добавить комментарий