Всем доброго времени суток. В прошлой статье я рассказал о магнитном поле и немного остановился на его параметрах. Данная статья продолжает тему магнитного поля и посвящена такому параметру как магнитная индукция. Для упрощения темы я буду рассказывать о магнитном поле в вакууме, так как различные вещества имеют разные магнитные свойства, и как следствие необходимо учитывать их свойства.
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Закон Био – Савара – Лапласа
В результате исследования магнитных полей создаваемых электрическим током, исследователи пришли к таким выводам:
- магнитная индукция, создаваемая электрическим током пропорциональна силе тока;
- магнитная индукция имеет зависимость от формы и размеров проводника, по которому протекает электрический ток;
- магнитная индукция в любой точке магнитного поля зависит от расположения данной точки по отношению к проводнику с током.
Французские учёные Био и Савар, которые пришли к таким выводам обратились к великому математику П. Лапласу для обобщения и вывода основного закона магнитной индукции. Он высказал гипотезу, что индукция в любой точке магнитного поля, создаваемое проводником с током можно представить в виде суммы магнитных индукций элементарных магнитных полей, которые создаются элементарным участком проводника с током. Данная гипотеза и стала законом магнитной индукции, называемого законом Био – Савара – Лапласа. Для рассмотрения данного закона изобразим проводник с током и создаваемую им магнитную индукцию
Магнитная индукция dB, создаваемая элементарным участком проводника dl.
Тогда магнитная индукция dB элементарного магнитного поля, которое создается участком проводника dl, с током I в произвольной точке Р будет определяться следующим выражением
где I – сила тока, протекающая по проводнику,
r – радиус-вектор, проведённый от элемента проводника к точке магнитного поля,
dl – минимальный элемент проводника, который создает индукцию dB,
k – коэффициент пропорциональности, зависящий от системы отсчёта, в СИ k = μ0/(4π)
Так как [dl r] является векторным произведением, тогда итоговое выражение для элементарной магнитной индукции будет выглядеть следующим образом
Таким образом, данное выражение позволяет найти магнитную индукцию магнитного поля, которое создается проводником с током произвольной формы и размеров при помощи интегрирования правой части выражения
где символ l обозначает, что интегрирование происходит по всей длине проводника.
Магнитная индукция прямолинейного проводника
Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.
Магнитная индукция магнитного поля создаваемого прямолинейным проводником с током.
Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения
В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид
где I – ток, протекающий по проводу,
b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.
Теперь просто проинтегрируем получившееся выражение по dα в пределах от 0 до π.
Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
I – ток, протекающий по проводу,
b – расстояние от центра проводника до точки, в которой измеряется индукция.
Магнитная индукция кольца
Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется. Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока. Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.
В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.
Магнитная индукция в центре кругового тока.
В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид
Остается только проинтегрировать полученное выражение по всей длине окружности
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
I – сила тока в проводнике,
R – радиус окружности, в которое свернут проводник.
Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х, которая перпендикулярна плоскости ограниченной круговым током.
Магнитная индукция в точке, лежащей на оси окружности.
В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dBX, которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB
Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции
Теперь проинтегрируем данное выражение по всей длине окружности
где μ0 – магнитная постоянная, μ0 = 4π•10-7 Гн/м,
I – сила тока в проводнике,
R – радиус окружности, в которое свернут проводник,
х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.
Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.
Циркуляция вектора магнитной индукции
Для расчёта магнитной индукции простых магнитных полей достаточно закона Био-Савара-Лапласа. Однако при более сложных магнитных полях, например, магнитное поле соленоида или тороида, количество расчётов и громоздкость формул значительно увеличится. Для упрощения расчётов вводится понятие циркуляции вектора магнитной индукции.
Циркуляция вектора магнитной индукции по произвольному контуру.
Представим некоторый контур l, который перпендикулярный току I. В любой точке Р данного контура, магнитная индукция В направлена по касательной к данному контуру. Тогда произведение векторов dl и В описывается следующим выражением
Так как угол dφ достаточно мал, то векторов dlВ определяется, как длина дуги
Таким образом, зная магнитную индукцию прямолинейного проводника в данной точке, можно вывести выражение для циркуляции вектора магнитной индукции
Теперь остаётся проинтегрировать получившееся выражение по всей длине контура
В нашем случае вектор магнитной индукции циркулирует вокруг одного тока, в случае же нескольких токов выражение циркуляции магнитной индукции переходит в закон полного тока, который гласит:
Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, которые охватывает данный контур.
Магнитное поле соленоида и тороида
С помощью закона полного тока и циркуляции вектора магнитной индукции достаточно легко определить магнитную индукцию таких сложных магнитных полей как у соленоида и тороида.
Соленоидом называется цилиндрическая катушка, которая состоит из множества витков проводника, намотанных виток к витку на цилиндрический каркас. Магнитное поле соленоида фактически состоит из множества магнитных полей кругового тока с общей осью, перпендикулярной к плоскости каждого кругового тока.
Магнитная индукция соленоида.
Воспользуемся циркуляцией вектора магнитной индукции и представим циркуляцию по прямоугольному контуру 1-2-3-4. Тогда циркуляция вектора магнитной индукции для данного контура будет иметь вид
Так как на участках 2-3 и 4-1 вектор магнитной индукции перпендикулярен к контуру, то циркуляция равна нулю. На участке 3-4, который значительно удалён от соленоида, то его так же можно не учитывать. Тогда с учётом закона полного тока магнитная индукция в соленоиде достаточно большой длины будет иметь вид
где n – число витков проводника соленоида, которое приходится на единицу длины,
I – ток, протекающий по соленоиду.
Тороид образуется путём намотки проводника на кольцевой каркас. Данная конструкция эквивалентна системе из множества одинаковых круговых токов, центры которых расположены на окружности.
Магнитная индукция тороида.
В качестве примера рассмотрим тороид радиуса R, на который намотано N витков провода. Вокруг каждого витка провода возьмём контур радиуса r, центр данного контура совпадает в центром тороида. Так как вектор магнитной индукции B направлен по касательной к контуру в каждой точке контура, то циркуляция вектора магнитной индукции будет иметь вид
где r – радиус контура магнитной индукции.
Контур проходя внутри тороида охватывает N витков провода с током I, тогда закон полного тока для тороида будет иметь вид
где n – число витков проводника, которое приходится на единицу длины,
r – радиус контура магнитной индукции,
R – радиус тороида.
Таким образом, используя закон полного тока и циркуляцию вектора магнитной индукции можно рассчитать сколь угодно сложное магнитное поле. Однако закон полного тока дает правильные результаты только лишь в вакууме. В случае расчёта магнитной индукции в веществе необходимо учитывать так называемые молекулярные токи. Об этом пойдёт речь в следующей статье.
Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.
Основные свойства магнитного поля
- Магнитное поле порождается электрическим током (движущимися зарядами).
- Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
- Магнитное поле существует независимо от нас, от наших знаний о нем.
Вектор магнитной индукции
Определение
Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).
За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.
Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:
B=FAmaxIl
За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.
Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.
Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.
Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.
Напряженность магнитного поля
Определение
Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.
→H=→Bμμ0
μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.
Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H↑↑→B.
Направление вектора магнитной индукции и способы его определения
Чтобы определить направление вектора магнитной индукции, нужно:
- Расположить в магнитном поле компас.
- Дождаться, когда магнитная стрелка займет устойчивое положение.
- Принять за направление вектора магнитной индукции направление стрелки компаса «север».
В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:
При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:
При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.
Отсюда следует, что:
- Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
- Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.
Способы обозначения направлений векторов:
Вверх | |
Вниз | |
Влево | |
Вправо | |
На нас перпендикулярно плоскости чертежа | |
От нас перпендикулярно плоскости чертежа |
Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?
Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.
Магнитное поле прямолинейного тока
Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.
Вид сверху:
Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:
Правило буравчика (правой руки)
Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.
Модуль вектора магнитной индукции на расстоянии r от оси проводника:
B=μμ0I2πr
Модуль напряженности:
H=I2πr
Магнитное поле кругового тока
Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.
Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:
Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.
Модуль вектора магнитной индукции в центре витка, радиус которого равен R:
B=μμ0I2R
Модуль напряженности в центре витка:
H=I2R
Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?
Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.
Магнитное поле электромагнита (соленоида)
Определение
Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.
Число витков в соленоиде N определяется формулой:
N=ld
l — длина соленоида, d — диаметр проволоки.
Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.
Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.
Модуль вектора магнитной индукции в центральной области соленоида:
B=μμ0INl=μμ0Id
Модуль напряженности магнитного поля в центральной части соленоида:
H=INl=Id
Алгоритм определения полярности электромагнита
- Определить полярность источника.
- Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
- Определить направление вектора магнитной индукции.
- Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).
Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.
Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.
Задание EF17530
На рисунке изображён круглый проволочный виток, по которому течёт электрический ток. Виток расположен в вертикальной плоскости. В центре витка вектор индукции магнитного поля тока направлен
Ответ:
а) вертикально вверх в плоскости витка
б) вертикально вниз в плоскости витка
в) вправо перпендикулярно плоскости витка
г) влево перпендикулярно плоскости витка
Алгоритм решения
1.Определить правило, по которому можно определить направление вектора магнитной индукции в данном случае.
2.Применить выбранное правило и определить направление вектора магнитной индукции относительно рисунка.
Решение
По условию задачи мы имеем дело с круглым проволочным витком. Поэтому для определения вектора →B магнитной индукции мы будем использовать правило правой руки.
Чтобы применить это правило, нам нужно знать направление течение тока в проводнике. Условно ток течет от положительного полюса источника к отрицательному. Следовательно, на рисунке ток течет по витку в направлении хода часовой стрелки.
Теперь можем применить правило правой руки. Для этого мысленно направим четыре пальца правой руки в направлении тока в проволочном витке. Теперь отставим на 90 градусов большой палец. Он показывает относительно рисунка влево. Это и есть направление вектора магнитной индукции.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18109
Магнитная стрелка компаса зафиксирована на оси (северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит и освободили стрелку. В каком положении установится стрелка?
Ответ:
а) повернётся на 180°
б) повернётся на 90° по часовой стрелке
в) повернётся на 90° против часовой стрелки
г) останется в прежнем положении
Алгоритм решения
- Вспомнить, как взаимодействуют магниты.
- Определить исходное положение полюсов.
- Определить конечное положение полюсов и установить, как изменится положение магнитной стрелки.
Решение
Одноименные полюсы магнитов отталкиваются, а разноименные притягиваются. Изначально южный полюс магнитной стрелки находится справа, а северный — слева. Полосовой магнит подносят к ее южному полюсу северной стороной. Поскольку это разноименные полюса, положение магнитной стрелки не изменится.
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18266
Непосредственно над неподвижно закреплённой проволочной катушкой вдоль её оси на пружине подвешен полосовой магнит (см. рисунок). Куда начнёт двигаться магнит сразу после замыкания ключа? Ответ поясните, указав, какие физические явления и законы Вы использовали для объяснения.
Алгоритм решения
- Определить направление тока в соленоиде.
- Определить полюса соленоида.
- Установить, как будет взаимодействовать соленоид с магнитом.
- Установить, как будет себя вести магнит после замыкания электрической цепи.
Решение
Чтобы определить направление тока в соленоиде, посмотрим на расположение полюсов источника тока. Ток условно направлен от положительного полюса к отрицательному. Следовательно, относительно рисунка ток в витках соленоида направлен по часовой стрелке.
Зная направление тока в соленоиде, можно определить его полюса. Северным будет тот полюс, из которого выходят линии магнитной индукции. Определить их направление поможет правило правой руки для соленоида. Мысленно обхватим соленоид так, чтобы направление четырех пальцев правой руки совпадало с направлением тока в витках соленоида. Теперь отставленный на 90 градусов большой палец покажет направление вектора магнитной индукции. Проделав все манипуляции, получим, что вектор магнитной индукции направлен вниз. Следовательно, внизу соленоида расположен северный полюс, а вверху — южный.
Известно, что одноименные полюса магнитов отталкиваются, а разноименные — притягиваются. Подвешенный полосовой магнит обращен к южному полюсу соленоида северным полюсом. А это значит, что при замыкании электрической цепи он будет растягивать пружину, притягиваясь к соленоиду (двигаться вниз).
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 22.3k
Свойством поля магнитного в любой его точке с позиции силы выступает вектор магнитной индукции [overrightarrow{mathrm{B}}].
Вектор индукции магнитного поля: главные понятия
Рассмотрим определение вектора индукции магнитного поля. Индукцию определяют как предел отношения F силы, воздействующий на магнитное поле, на ток [text { Idl }] к произведению элементарного тока [text { I }] со значением элемента проводника [text { dl }]. Другими словами, магнитная индукция действует по направлению перпендикулярно [perp] по направлению тока (или по-другому к элементу проводника [text { dl }Rightarrow] из (1), а также вектор магнитной индукции поля перпендикулярен [perp] к направлению силы, которая действует с магнитного поля.
Вектор магнитной индукции однородного поля и неоднородного
Если [overrightarrow{mathrm{B}}=mathrm{const}], то поле является однородным. Если оно не изменяется с течением времени, то про него говорят, что поле постоянное.
Вектор индукции магнитного поля: важные формулы
Важно!
Формула с векторами преобразуется в модульную форму, потому что векторы задают направление, а модульная форма — значения, которые необходимы для решения задачи.
Формула
Модуль вектора индукции однородного поля находят следующим образом:
[mathrm{B}=frac{mathrm{M}_{max }}{mathrm{P}_{mathrm{m}}}].
где [mathrm{M}_{max }] — вращающий момент в максимуме действует на контур с элементарным током, помещенный в магнитное поле, где в данном случае [mathrm{P}_{mathrm{m}}=mathrm{I} cdot mathrm{S}] — магнитный момент контура (S — площадь определенного контура).
Модуль вектора индукции магнитного поля: производные формулы
Есть еще формулы для определения модуля магнитной индукции. Она определяется как отношение силы в максимуме [mathrm{F}_{max }], которое реагирует на проводник длины (при этом L= 1 м) к силе элементарного тока [text { I }] в проводнике:
[B=frac{F_{max }}{I cdot L}]
В вакууме модуль индукции будет равен:
[mathrm{B}=mu 0 cdot mathrm{H}]
Чтобы найти вектор индукции через силу Лоренца, следует преобразовать формулу: [overrightarrow{mathrm{F}}=mathrm{q} cdot[overrightarrow{mathrm{V}} times overrightarrow{mathrm{B}}]] (Крестом обозначается произведение векторов)
[vec{F}=B cdot q cdot v cdot sin alpha]
[B=frac{F}{sin alpha cdot q v}]
В данном случае угол α — это угол между вектором индукции и скорости. Стоит отметить, что направление силы Лоренца [overrightarrow{mathrm{F}}] перпендикулярно [perp] каждому вектору, направлено по правилу Буравчика. Под символом q подразумевается заряд в магнитном поле.
Интересно
В СИ единицей модуля магнитной индукции принимается 1 Тесла (кратко — Тл), где [1 Tл=frac{H}{Aм}]
Как определяется направление вектора индукции магнитного поля?
За направление вектора индукции магнитного поля [overrightarrow{mathrm{B}}] используют направление, в котором устанавливается под воздействием поля утвердительного нормали к току с контору. Другими словами объясняют так: вектор идет в направление поступательного перемещения правого винта при вращении по направлению передвижения тока внутри контура.
Вектор индукции [overrightarrow{mathrm{B}}] обладает направлением, которое начинается со стрелки южного полюса [text { S }] (она свободна передвигается в поле) к полюсу северному [text { N }].
Магнитное поле возникает из-за электрических зарядов (элементарными токами), движущиеся в нем.
Для того чтобы определить направление вектора магнитной индукции в проводнике с элементарным током, используют правило правой руки (Буравчика). Они формулируются так:
- Для катушки с током: 4 согнутых пальца руки, которые обхватывают катушку, направляют по течению току. В это время оставленный большой палец на [90^{circ}] указывает на направление магнитной индукции [overrightarrow{mathrm{B}}] в середине катушки.
- Для прямого проводника с элементарным током: большой палец руки, который оставляется на [90^{circ}], направить по течению элементарного тока. В это время 4 согнутых пальца, которые держат проводник, показывают сторону, куда направлена индукция магнитного поля.
Задания по теме
Разберем примеры, в которых будет задействована данная формула и свойства.
Пример 1
Условие задачи:
Проводник представлен в квадратной форме. Каждая из сторон равна d. В данный момент по нему проходит элементарный ток силы I. Найдите индукцию магнитного поля в месте, где диагонали квадрата пересекаются.
Решение задачи следующее:
Сделаем рисунок, в котором плоскость совпадает с плоскостью проводника. Изобразим направление вектора индукции магнитного поля.
В данной точке О получаются проводники с элементарным током, которые расположены прямолинейно и вектор магнитной индукции поля перпендикулярен плоскости. Направления напряжености полей определяется в соответствием с правилом правого винта,то есть перпендикулярны плоскости изображения. Поэтому сумму векторов по принципу суперпозиции надо заменить на алгебраический вид. Получим следующее выражение: B=B1+B2+B3+B4
Из симметричности рисунка можно увидеть, что модули вектора индукции магнитного поля одинаковы. Получаем следующее: B=4B1
В разделе физике «Электромагнетизм» использовали одну из формул, чтобы рассчитать модуль индукции прямолинейного проводника с элементарным током.
Чтобы формула подошла к данной задачи, ее применяют в следующем виде:
[mathrm{B}_{1}=frac{mathrm{I} cdot mu_{0}}{4 mathrm{pi b}}(cos alpha-cos beta)]
углы α и β, которые отмечены на рисунке:
[beta=pi-alpha rightarrow cos beta=cos (pi-alpha)=-cos alpha]
Используем формулу [B_{1}=frac{I cdot mu_{0}}{4 pi b}(cos alpha-cos beta)] и преобразуем с применением тригонометрического свойства:
[mathrm{B}_{1}=frac{mathrm{I} cdot mu_{0}}{2 mathrm{pi b}} cdot cos alpha]
Поскольку у нас квадратная форма, то следует заметить следующее:
[mathrm{b}=mathrm{d} 2, alpha=frac{pi}{4} rightarrow cos alpha=frac{sqrt{2}}{2}]
Возьмем выведенные формулы и получим конечное выражение, то есть:
[mathrm{B}=4 cdot frac{mathrm{I} cdot mu_{0}}{pi mathrm{d}} cdot frac{sqrt{2}}{2}=frac{2 sqrt{2}}{pi mathrm{d}} cdot mathrm{I} cdot mu_{0}]
Ответ: [mathrm{B}=frac{2 sqrt{2}}{pi mathrm{d}} cdot mathrm{I} cdot mu_{0}]
Нет времени решать самому?
Наши эксперты помогут!
Пример 2
Условие задачи:
Бесконечно проводник с элементарным током (I) согнут под 90 градусов, который изображен на рисунке. Найдите вектор магнитной индукции однородного поля в точке А.
Решение задачи:
В точке А получается из двух частей проводника, то есть:
[overrightarrow{mathrm{B}}=mathrm{B}_{mathrm{II}}+mathrm{B}_{perp}]
Теперь посмотрим горизонтальный участок, где расположена точка А. Данная область проводника с элементарным током формирует поле в этой точке. Вектор индукции магнитного поля [mathrm{B}_{mathrm{II}}] равен нулю, потому что в А все углы между с радиус-векторами и с элементарным током равны π.
Следовательно, произведение векторов [[mathrm{d} vec{ l } vec{r}]] и поток вектора индукции магнитного поля в законе Био-Савара-Лапласа будет равен нулю:
[overrightarrow{mathrm{B}}=frac{mu_{0}}{4 pi} oint frac{mathrm{I}[mathrm{d} vec{l} vec{r}]}{mathrm{r}^{3}}]
В этом случае [vec{r}] — радиус-вектор, который идет от элемента [mathrm{Idvec{l}}] к точке А, в которой находится индукция магнитного поля [overrightarrow{mathrm{B}}].
Индукция бесконечного проводника в точке А была бы равна:
[mathrm{B}^{prime}=frac{mu_{0}}{2 pi} frac{mathrm{I}}{mathrm{b}}]
Но так как полу бесконечный проводник, то следуя из принципа суперпозиции, получается следующее выражение для проводника магнитной индукций равна:
[mathrm{B}=mathrm{B}_{perp}=frac{1}{2} mathrm{~B}^{prime}=frac{mu_{0}}{Pi} frac{mathrm{I}}{mathrm{b}}]
Ответ: [mathrm{B}=frac{mu_{0}}{pi} frac{mathrm{I}}{mathrm{b}}]
Единица измерения магнитной индукции, теория и онлайн калькуляторы
Единица измерения магнитной индукции
Тесла – единица измерения магнитной индукции в системе СИ
Единица магнитной индукции ($overline{B}$) в международной системе единиц (СИ) называется тесла (Тл), по имени сербского ученого Н. Тесла, который успешно работал в области радиотехники и электроники.
Единицу измерения магнитной индукции определим исходя из закона Ампера. Рассмотрим прямолинейный проводник, длиной $l$ по которому течет ток $I$. Пусть этот проводник находится в однородном магнитном поле $overline{B}$, причем вектор индукции поля перпендикулярен проводнику. В таком случае модуль силы Ампера (${overline{F}}_A$), воздействующей на проводник равен:
[F=IBl left(1right).]
Выразим магнитную индукцию из формулы (1), получим:
[B=frac{F}{Icdot l}left(2right).]
Из выражения (2) мы видим, что тесла (единица измерения магнитной индукции) – это величина, соответствующая магнитной индукции однородного магнитного поля, действующего на каждый метр прямого проводника, находящегося в магнитном поле перпендикулярно направлению $overline{B}$, с силой в один ньютон, при силе тока в проводнике в один ампер:
[left[Bright]=Тл=frac{H}{Acdot м}.]
Единица измерения магнитной индукции (тесла) является производной в системе Международных единиц (СИ). Через основные единицы СИ Тл, как единицу измерения магнитной индукции выражают, учитывая, что:
[Н=frac{кгcdot м}{с^2},]
тогда получаем:
[left[Bright]=Тл=frac{кгcdot м}{с^2}cdot frac{1}{Acdot м}=frac{кг}{Аcdot с^2}.]
Стандартные приставки системы СИ можно использовать с Тл при обозначении десятичных кратных и дольных единиц. Например, $кТл$ (кило тесла), $1кТл=1000Тл$; нТл (нано тесла), $1нТл={10}^{-9}Тл.$
1 Тл – достаточно большая величина магнитной индукции, особенно, если речь идет о постоянном магнитном поле. Человек на сегодняшний день смог создать постоянное магнитное поле величиной 100,75 Тл. Искусственно созданное людьми импульсное магнитное поле достигло величины индукции в $2,8cdot {10}^3Тл$. Магнитное поле Земли может существенно отличаться в зависимости от местоположения на планете, оно составляет порядка $approx $10 мкТл.
Гаусс – единица измерения магнитной индукции в системе единиц СГС
В системе единиц СГС (сантиметр, грамм, секунда) единицей измерения магнитной индукций служит гаусс (Гс). Соотношение между гауссом и тесла:
[1 Тл={10}^4Гс.]
Данная единица измерения именована в честь немецкого ученого К.Ф. Гаусса.
Используя основные единицы системы СГС, единица измерения магнитной индукции выражается как:
[left[Bright]=frac{sqrt{гр}}{сcdot sqrt{см}}.]
Примеры задач с решением
Пример 1
Задание. Получите единицу измерения магнитной индукции в Международной системе единиц, используя формулу, связывающую ее с магнитным потоком ($Ф$).
Решение. По условию задачи в качестве основы для ее решения используем выражение:
[Ф=BS{cos alpha } left(1.1right),]
где$ Ф$- поток вектора магнитной индукции через площадку S;$ S$ – величина площади площадки; $alpha $ – угол между направлением нормали к площади S и направлением вектора магнитной индукции. Выразим модуль вектора магнитной индукции из формулы (1.1), имеем:
[B=frac{Ф}{S cos alpha }]
Учитывая, что в системе СИ ${cos alpha }$ – величина безразмерная, поток вектора магнитной индукции измеряется в веберах (Вб):
[left[Фright]=Вб=frac{кгcdot м^2}{Аcdot с^2},]
а единицы измерения площади:
[left[Sright]=м^2,]
получим:
[left[Bright]=frac{Вб}{м^2}=frac{кгcdot м^2}{Аcdot с^2}cdot frac{1}{м^2}=frac{кг}{Аcdot с^2}=Тл.]
Ответ. Мы получили, что тесла – единица измерения магнитной индукции, и ее можно выразить как: $Тл=frac{Вб}{м^2}$
Пример 2
Задание. Определите размерность индукции магнитного поля, используя формулу для модуля $overline{B}$ кругового витка с током.
Решение. Найдем величину вектора магнитной индукции в центре кругового вика с током (рис.1).
Получим формулу для вычисления модуля вектора магнитной индукции в центре витка с током $I$, будем считать, что радиус витка равен R, виток находится в вакууме. Выделим элементарный участок кругового тока ($dl$) (см. рис.1). Величина индукции в очке О от избранного элемента $dl$ равна (из закона Био-Савара – Лапласа):
[dB=frac{{mu }_0Idl}{4pi r^2}{sin alpha } left(2.1right).]
Для нашего случая все элементы $dl$ перпендикулярны соответствующим радиус-векторам, соединяющим их с точкой, где мы ищем поле, значит ${sin alpha }=1.$ Кроме того для всех участков витка $r=R.$ Выражение (2.1) преобразуется к виду:
[dB=frac{{mu }_0Idl}{4pi R^2}left(2.2right).]
Все элементы кругового тока будут образовывать вектор, направленный по оси X (рис.1). Для нахождения полного поля перейдем к интегралу:
[B=ointlimits_L{frac{{mu }_0Idl}{4pi R^2}=}frac{{mu }_0I}{4pi R^2}ointlimits_L{dl}=frac{{mu }_0I}{4pi R^2}cdot 2pi R=frac{{mu }_0I}{2R}(2.3).]
Рассмотрим единицы измерения правой части выражения (2.3), имеем:
[left[Bright]=left[frac{{mu }_0I}{2R}right]=frac{left[{mu }_0right]left[Iright]}{left[Rright]}=frac{left[frac{Н}{А^2}right]left[Аright]}{left[мright]}=frac{Н}{Аcdot м}=frac{кгcdot м}{с^2cdot Аcdot м}=frac{кг}{с^2cdot А}=Тл.]
Ответ. Мы получили, что тесла можно выразить как: $Тл=frac{Н}{Аcdot м}$
Читать дальше: единица измерения мощности.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Итак,
мы научились рассчитывать силы,
действующие на заряженные частицы и
токи, находящиеся в магнитном поле. Сами
магнитные поля тоже создаются какими-то
движущимися зарядами. В этом параграфе
мы начинаем обсуждение методов вычисления
индукции магнитного поля.
Начнем
с магнитного поля, создаваемого в
пространстве единственным движущимся
со скоростью
зарядом.
Этот закон является обобщением опытных
фактов и выражается формулой:
(3.11)
где
это вектор, проведенный от заряда
к точке, в которой вычисляется магнитное
поле(точке наблюдения). Постоянная величина,
Гн/м, называется магнитной постоянной.
Движущийся
заряд создаёт магнитное поле во всём
окружающем пространстве. Направление
и модуль вектора
зависят от точки наблюдения. В случае
положительного заряда направление
векторасовпадает с направлением векторного
произведения,
т.е. определяется правилом левой руки
(рис. 3.8).
Раскрывая
векторное произведение, для модуля
вектора магнитной индукции получим:
,
(3.11,а)
где
угол между направлением движения заряда
и вектором
.
Для
магнитного поля так же, как и для поля
электрического, справедлив принцип
суперпозиции. Зная магнитное поле,
создаваемое одним движущимся точечным
зарядом, можно определить магнитное
поле, создаваемое произвольным количеством
движущихся зарядов, или поле, создаваемое
элементом тока. Для этого поля, создаваемые
каждым зарядом в отдельности, нужно
сложить векторно:
.
Пусть
по проводнику течет ток
.
Вычислим магнитное поле, создаваемое
малым элементом тока(рис. 3.9). Если
средняя скорость упорядоченного
движения электронов, тогда согласно
уравнению (3.11,а) магнитное поле, создаваемое
в точке наблюдения одним электроном из
элемента тока:
.
Все
свободные электроны элемента тока
создают поля, направленные за плоскость
чертежа (рис. 3.9), поэтому по принципу
суперпозиции величина суммарного поля
элемента тока:
,
где
число свободных электронов в элементе
проводника
.
Величинуможно выразить через концентрацию
свободных электронов:,
где
объем элемента проводника,
сечение проводника. Таким образом:
.
Учитывая,
что сила тока
(см. уравнение (2.23)), получим:
. (3.12)
Уравнение
(3.12) определяет магнитное поле, создаваемое
элементом тока, и представляет собой
закон Био-Савара-Лапласа. Оно было
впервые получено французскими физиками
Био и Саваром на основании экспериментального
материала при содействии математика
Лапласа.
Закон
Био-Савара-Лапласа можно записать в
дифференциальной форме (переходя от
малого к бесконечно малому элементу
тока
):
(3.12,а)
и
в векторной форме:
.
(3.12,б)
Вектор
направлен вдоль тока.
Рассмотрим
примеры расчета магнитных полей при
помощи закона Био-Савара-Лапласа.
Пример
3.3 Поле
прямого тока.
Найти
магнитное, создаваемое прямолинейным
отрезком провода с током
в произвольной точке пространства.
Решение
.
Зададим положение точки наблюдения при
помощи углов
,и расстоянияот точки наблюдения до проводника (см.
рис. 3.10). Разобьем весь отрезок провода
на малые элементы длины.
Поле одного малого элементас координатойопределяется согласно уравнению
(3.12,а):
.
Поле
в точке наблюдения – есть векторная
сумма полей, создаваемых каждым элементом.
Поля всех элементов направлены за
плоскость чертежа. Следовательно, для
того, чтобы определить величину поля,
надо просуммировать поля всех
элементов, или, «на языке математики»:
проинтегрировать уравнение (3.12,а). Для
этого в уравнении (3.12) нужно перейти к
одной переменной величине (переменной
интегрирования). Удобнее всего в качестве
переменной интегрирования взять угол
(рис. 3.10). Выразим все переменные величины
в уравнении (3.12) через.
Во-первых,
.
Далее,.
Берем дифференциалы от обеих частей
этого равенства:
.
Таким
образом, для поля элемента
получим:
.
Осталось
выразить через
переменную:.
Следовательно:
.
Теперь
интегрируем, учитывая, что все элементы
находятся в пределах углов
от(крайний нижний элемент) до(крайний верхний элемент):
.
Переходя
вновь к углам
и,
получим ответ:
. (3.13)
Частным
случаем формулы (3.13) является поле
бесконечно длинного прямого провода
на расстоянии
от него (,):
. (3.14)
Пример
3.4.
Магнитное
поле в центре кругового тока.
Найти
магнитную индукцию, создаваемую круговым
витком радиуса
с токомв центре витка.
Решение.
Разобьем виток на малые элементы
(рис. 3.11). Длину каждого элемента выразим
через радиус виткаи соответствующий центральный угол:.
Тогда, согласно уравнению (3.12, а), магнитное
поле, создаваемое одним элементом тока
в центре витка (,):
.
Индукция
магнитного поля от каждого элемента в
центре витка направлена вверх. Значит,
для того, чтобы найти результирующее
магнитное поле, нужно сложить величины
полей всех элементов или проинтегрировать
полученное выражение в пределах углов
от
до:
.
(3.15)
Пример
3.5.
Магнитное
поле на оси кругового тока.
Найти магнитную индукцию, создаваемую
круговым витком радиуса
с токомв произвольной точке на оси витка.
Решение.
Разобьем виток на малые элементы
(рис. 3.11). Длину каждого элемента выражаем
через радиус виткаи соответствующий центральный угол:.
Согласно уравнению (3.12,а) магнитное
поле, создаваемое одним элементом тока
в некоторой точке на оси витка, удаленной
на расстояниеот центра витка, ():
.
Вектор
перпендикулярен плоскости векторови(рис. 3.11). Вклады в общее магнитное поле
от отдельных элементов направлены в
разные стороны, поэтому суммировать
модули векторовнельзя.
Поскольку
результирующий вектор
будет направлен вдоль оси,
он представляет собой сумму проекций
векторовна ось:.
Проекция векторана ось:
.
Интегрируем
по переменной
:
.
Учитывая,
что
,
,
ответ
можно представить в виде:
. (3.16)
Используя
результат примера 3.5, можно определить
магнитное поле на оси соленоида –
катушки с током. Предоставляем читателям
самостоятельно поупражняться с
интегрированием и приведем лишь ответ
для поля в произвольной точке А
на оси (рис. 3.12):
.
(3.17)
Величина
называется поверхностной плотностью
тока. Она определяется для токов, текущих
по некоторым поверхностям. Поверхностная
плотность тока
это сила тока, приходящаяся на единицу
длины перпендикулярного току отрезка.
В нашем случае можно считать, что ток
идет по боковой поверхности соленоида.
Пусть соленоид имеет длину
,
состоит извитков, и по его обмотке течет ток.
Тогда полный ток, текущий по боковой
поверхности соленоида, равен,
а поверхностная плотность тока.
Формулу (3.17) можно переписать в виде:
.
(3.17,а)
В
случае, когда длина соленоида намного
превосходит его радиус (,),
.
(3.18)
Формула
(3.18) еще будет выведена в дальнейшем с
помощью теоремы о циркуляции для
магнитного поля. Будет показано, что
магнитное поле внутри «длинных»
соленоидов однородно, так, что формулу
(3.18) можно использовать для расчета поля
в любой точке внутри соленоида, а не
только на его оси.
На
рис. 3.13 показаны силовые линии магнитных
полей прямого провода, витка с током,
соленоида и полосового магнита.
Во-первых,
обратим внимание на то, что силовые
линии магнитного поля всегда замкнуты.
Вектор магнитной индукции направлен
по касательной к линиям (рис. 3.13, а, б) в
сторону, указываемую направлением
стрелки на силовой линии.
В
случае прямого тока (рис. 3.13, а) силовые
линии представляют собой коаксиальные
окружности с центрами на оси тока.
Направление магнитной индукции в любой
точке можно определить из закона
Био-Савара-Лапласа, записанного в
векторном виде (формула 3.12, б). Кроме
того, для определения направлений
силовых линий существует простое
правило, называемое правилом
буравчика
или правого
винта: при
вращении буравчика в направлении силовых
линий его поступательное движение
совпадает с направлением тока.
В
случае витка с током (рис. 3.13, б) или
соленоида (рис. 3.13, в) направление
магнитной индукции на оси витка или
соленоида тоже можно определить по
правилу буравчика. Направление магнитной
индукции совпадает с направлением
поступательного движения буравчика
при его вращении по току.
Отметим,
что картина силовых линий магнитного
поля соленоида абсолютно идентична
картине силовых линий полосового магнита
(рис. 3.13, г). Концы соленоида тоже называют
северным и южным полюсами. Силовые
магнитные линии во внешнем пространстве
соленоида или магнита идут от северного
полюса к южному, а во внутреннем
пространстве – наоборот.
Соседние файлы в папке Уч_Пособие_Часть_2
- #
- #
- #
29.03.201520.48 Кб24Глава 2.doc
- #
- #
- #
- #
- #