Как найти модуль напряженности поля в точке

Цель урока: дать понятие напряжённости электрического поля и ее
определения в любой точке поля.

Задачи урока:

  • формирование понятия напряжённости электрического поля; дать понятие о
    линиях напряжённости и графическое представление электрического поля;
  • научить учащихся применять формулу E=kq/r2 в решении
    несложных задач на расчёт напряжённости.

Электрическое поле – это особая форма материи, о существовании которой можно
судить только по ее действию. Экспериментально доказано, что существуют два рода
зарядов, вокруг которых существуют электрические поля, характеризующиеся
силовыми линиями.

Графически изображая поле, следует помнить, что линии напряженности
электрического поля:

  1. нигде не пересекаются друг с другом;
  2. имеют начало на положительном заряде (или в бесконечности) и конец на
    отрицательном (или в бесконечности), т. е. являются незамкнутыми линиями;
  3. между зарядами нигде не прерываются.


Рис.1

Силовые линии положительного заряда:


Рис.2

Силовые линии отрицательного заряда:


Рис.3

Силовые линии одноименных взаимодействующих зарядов:


Рис.4

Силовые линии разноименных взаимодействующих зарядов:


Рис.5

Силовой характеристикой электрического поля является напряженность, которая
обозначается буквой Е и имеет единицы измерения
или
.
Напряженность является векторной величиной, так как определяется отношением силы
Кулона к величине единичного положительного заряда

В результате преобразования формулы закона Кулона и формулы напряженности
имеем зависимость напряженности поля от расстояния, на котором она определяется
относительно данного заряда

где: k – коэффициент пропорциональности, значение которого зависит от
выбора единиц электрического заряда.

В системе СИ
Н·м2/Кл2,

где ε0 – электрическая
постоянная, равная 8,85·10-12 Кл2/Н·м2;

q – электрический заряд (Кл);

r – расстояние от заряда до точки в которой определяется напряженность.

Направление вектора напряженности совпадает с направлением силы Кулона.

Электрическое поле, напряженность которого одинакова во всех точках
пространства, называется однородным. В ограниченной области пространства
электрическое поле можно считать приблизительно однородным, если напряженность
поля внутри этой области меняется незначительно.

Общая напряженность поля нескольких взаимодействующих зарядов будет равна
геометрической сумме векторов напряженности, в чем и заключается принцип
суперпозиции полей:

Рассмотрим несколько случаев определения напряженности.

1. Пусть взаимодействуют два разноименных заряда. Поместим точечный
положительный заряд между ними, тогда в данной точке будут действовать два
вектора напряженности, направленные в одну сторону:

Е31 – напряженность точечного заряда 3 со стороны заряда 1;

Е32 – напряженность точечного заряда 3 со стороны заряда 2.

Согласно принципу суперпозиции полей общая напряженность поля в данной точке
равна геометрической сумме векторов напряженности Е31 и Е32.

Напряженность в данной точке определяется по формуле:

Е = kq1/x2 + kq2/(r – x)2

где: r – расстояние между первым и вторым зарядом;

х – расстояние между первым и точечным зарядом.


Рис.6

2. Рассмотрим случай, когда необходимо найти напряженность в точке удаленной
на расстояние а от второго заряда. Если учесть, что поле первого заряда больше,
чем поле второго заряда, то напряженность в данной точке поля равна
геометрической разности напряженности Е31 и Е32.

Формула напряженности в данной точке равна:

Е = kq1/(r + a)2 – kq2/a2

Где: r – расстояние между взаимодействующими зарядами;

а – расстояние между вторым и точечным зарядом.


Рис.7

3. Рассмотрим пример, когда необходимо определить напряженность поля в
некоторой удаленности и от первого и от второго заряда, в данном случае на
расстоянии r от первого и на расстоянии bот второго заряда. Так как одноименные
заряды отталкиваются , а разноименные притягиваются, имеем два вектора
напряженности исходящие из одной точки, то для их сложения можно применить метод
противоположному углу параллелограмма будет являться суммарным вектором
напряженности. Алгебраическую сумму векторов находим из теоремы Пифагора:

Е = (Е312322)1/2

Следовательно:

Е = ((kq1/r2 )2 + (kq2/b2)2)1/2


Рис.8

Исходя из данной работы, следует, что напряженность в любой точке поля можно
определить, зная величины взаимодействующих зарядов, расстояние от каждого
заряда до данной точки и электрическую постоянную.

4. Закрепление темы.

Проверочная работа.

Вариант № 1.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: электрическое поле – это ….

3. Как направлены силовые линии напряженности данного заряда?

4. Определить знаки зарядов:

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Вариант № 2.

1. Продолжить фразу: “электростатика – это …

2. Продолжить фразу: напряженностью называется …

3. Как направлены силовые линии напряженности данного заряда?

4. Определить заряды.

5. Указать вектор напряженности.

6. Определить напряженность в точке В исходя из суперпозиции полей.

Своя оценка работы Оценка работы другим учеником
   

Задачи на дом:

1. Два заряда q1 = +3·10-7 Кл и q2 = −2·10-7
Кл находятся в вакууме на расстоянии 0,2 м друг от друга. Определите
напряженность поля в точке С, расположенной на линии, соединяющей заряды, на
расстоянии 0,05 м вправо от заряда q2.

2. В некоторой точке поля на заряд 5·10-9 Кл действует сила 3·10-4
Н. Найти напряженность поля в этой точке и определите величину заряда,
создающего поле, если точка удалена от него на 0,1 м.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Для школьников.

Приведём решение трёх задач на применение принципа суперпозиции (наложения) электростатических полей.

Задача 1. Два точечных одинаковых положительных заряда по 20 нКл каждый расположены в двух вершинах равностороннего треугольника со стороной 2 м в вакууме. Найти напряжённость поля в третьей вершине треугольника.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке А вектора напряженности электрических полей каждого заряда направлены вдоль их силовых линий (от зарядов).

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Применим принцип суперпозиции для проекций указанных векторов на оси х и у:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Таким образом, вектор напряжённости результирующего электрического поля в точке А направлен вертикально вверх, а модуль напряжённости равен 77 В/м.

Задача 2. Электрическое поле образовано двумя одинаковыми разноимёнными точечными зарядами по 5 нКл. Расстояние между зарядами 10 см. Определить напряжённость поля: 1) в точке, лежащей посередине между зарядами; 2) в точке, лежащей на продолжении линии, соединяющей центры зарядов, на расстоянии 10 см от отрицательного заряда; 3) в точке, лежащей на расстоянии 10 см от положительного и отрицательного зарядов.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке А оба вектора напряжённости, создаваемых положительным и отрицательным зарядами, направлены вправо (на рисунке не показаны). Тогда результирующее поле находится через сумму полей, создаваемых первым и вторым зарядами:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке В результирующее поле направлено влево и равно:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке С вектор напряжённости результирующего электрического поля направлен вправо. Его модуль найдём из треугольника:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Ответ: 36000 В/м; 3400 В/м; 4500 В/м.

Задача 3. Электрическое поле создано двумя точечными зарядами 30 нКл и -10 нКл. Расстояние между зарядами 20 см. Определить напряжённость электрического поля в точке, находящейся на расстоянии 15 см от первого и на расстоянии второго (отрицательного) зарядов.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Покажем направления векторов напряжённости, создаваемых в искомой точке первым и вторым зарядами. Их модули найдём из формул:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Складывая вектора находим вектор результирующего поля. Модуль напряжённости результирующего поля находим по теореме косинусов:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Косинус угла найдём отдельно из треугольника образованного расстояниями:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Косинус угла оказался равным 0,25. Подставив все численные значения в формулу, получим результирующую напряжённость равную 16, 7 кВ/м.

Итак, приведено решение трёх задач на применение принципа суперпозиции (наложения) полей. Сначала в интересующей точке поля рисуем вектора напряжённости электрического поля, создаваемого каждым зарядом в отдельности. Затем, складывая их, находим напряжённость суммарного поля. В первой задаче проще просуммировать проекции векторов напряжённости на оси. Там, где угол между векторами напряжённости, создаваемыми отдельными зарядами, отличен от нуля, пользуются теоремой косинусов (задачи 2 и 3).

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Предыдущая запись: Нахождение напряжённости электростатического поля.

Следующая запись:Как рассчитать напряжённость поля заряженной пластины. Поле конденсатора.

Ссылки на другие занятия (до электростатики) даны в Занятии 1.

Ссылки на занятия (начиная с электростатики) даны в Занятии 45.

Любые заряженные тела создают вокруг себя электростатическое поле. Рассмотрим особенности электростатического поля, создаваемого точечным зарядом и заряженной сферой.

Электростатическое поле точечного заряда

Направление силовых линий электростатического поля точечного заряда

Модуль напряженности не зависит от значения пробного заряда q0:

E=FKq0=kQq0r2q0=kQr2

Модуль напряженности точечного заряда в вакууме:

E=kQr2

Модуль напряженности точечного заряда в среде:

E=kQεr2

Сила Кулона:

FKулона=qE

Потенциал не зависит от значения пробного заряда q0:

φ=Wpqo=±kQq0rq0=±kQr

Потенциал точечного заряда в вакууме:

φ=±kQr

Потенциал точечного заряда в среде:

φ=±kQεr

Внимание! Знак потенциала зависит только от знака заряда, создающего поле.

Эквипотенциальные поверхности для данного случая — концентрические сферы, центр которых совпадает с положением заряда.

Работа электрического поля по перемещению точечного заряда:

A12=±q(φ1φ2)

Пример №1. Во сколько раз увеличится модуль напряженности электрического поля, созданного точечным зарядом Q в некоторой точке, при увеличении значения этого заряда в 5 раз?

Модуль напряженности электрического поля, созданного точечным зарядом, определяется формулой:

E=kQεr2

Формула показывает, что модуль напряженности и электрический заряд — прямо пропорциональные величины. Следовательно, если заряд, который создает поле, увеличится в 5 раз, то модуль напряженности создаваемого поля тоже увеличится в 5 раз.

Электростатическое поле заряженной сферы

Направление силовых линий электростатического поля заряженной сферы:

Модуль напряженности электростатического поля заряженной сферы:

Внутри проводника (расстояние меньше радиуса сферы, или r < R)

E=0

На поверхности проводника (расстояние равно радиусу сферы, или r = R)

E=kQR2

Вне проводника (расстояние больше радиуса сферы, или r > R)

E=kQr2=kQ(R+a)2

a — расстояние от поверхности сферы до изучаемой точки. r — расстояние от центра сферы до изучаемой точки.

Сила Кулона:

FK=qE

Потенциал:

Внутри проводника и на его поверхности (r < R или r = R)

φ=±kQR

Вне проводника (r > R)

φ=±kQr=±φ=±kQR+a

Пример №2. Определить потенциал электростатического поля, создаваемого заряженной сферой радиусом 0,1 м, в точке, находящейся на расстоянии 0,2 м от этой сферы. Сфера заряжена положительна и имеет заряд, равный 6 нКл.

6 нКл = 6∙10–9 Кл

Так как сфера заряжена положительно, то потенциал тоже положителен:

Задание EF18107

Два неподвижных точечных заряда действуют друг на друга с силами, модуль которых равен F. Чему станет равен модуль этих сил, если один заряд увеличить в n раз, другой заряд уменьшить в n раз, а расстояние между ними оставить прежним?

Ответ:

а) F

б) nF

в) Fn

г) n2F


Алгоритм решения

1.Записать исходные данные.

3.Применить закон Кулона к обоим зарядам для 1 и 2 случая.

4.Установить, как меняется сила, с которой заряды действуют друг на друга.

Решение

Запишем исходные данные:

 Первая пара зарядов: q1 и q2.

 Вторая пара зарядов: q1’ = nq1 и q2’=q2/n.

 Расстояние между зарядами: r1 = r2 = r.

Закон Кулона:

FK=k|q1||q2|r2

Применим закон Кулона к парам зарядов. Закон Кулона для первой пары:

FK1=k|q1||q2|r2

Закон Кулона для второй пары:

FK2=k|nq1|q2nr2=k|q1||q2|r2

Коэффициент n сократился. Следовательно, силы, с которыми заряды взаимодействуют друг с другом, не изменятся:

FK1=FK2

После изменения зарядов модуль силы взаимодействия между ними останется равным F.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18591

В трёх вершинах квадрата размещены точечные заряды: +qq, +q (q >0) (см. рисунок). Куда направлена кулоновская сила, действующая со стороны этих зарядов на точечный заряд +2q, находящийся в центре квадрата?

Ответ:

а) ↘

б) →

в) ↖

г) ↓


Алгоритм решения

1.Сделать чертеж. Обозначить все силы, действующие на центральный точечный заряд со стороны остальных точечных зарядов.

2.Найти равнодействующую сил геометрическим способом.

Решение

Сделаем чертеж. В центр помещен положительный заряд. Он будет отталкиваться от положительных зарядов и притягиваться к отрицательным:

Модули всех векторов сил, приложенных к центральному точечному заряду равны, так как модули точечных зарядов, расположенных в вершинах квадрата равны, и находятся они на одинаковом расстоянии от этого заряда.

Складывая векторы геометрически, мы увидим, что силы, с которыми заряд +2q отталкивается от точечных зарядов +q, компенсируют друг друга. Поэтому на заряд действует равнодействующая сила, равная силе, с которой он притягивается к отрицательному точечному заряду –q. Эта сила направлена в ту же сторону (к нижней правой вершине квадрата).

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22574

На неподвижном проводящем уединённом шарике радиусом R находится заряд Q. Точка O – центр шарика, OA = 3R/4, OB = 3R, OC = 3R/2. Модуль напряжённости электростатического поля заряда Q в точке C равен EC. Определите модуль напряжённости электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать формулы для нахождения напряженности электростатического поля внутри и снаружи заряженной сферы.

2.Определить величину напряженности поля в указанных точках.

3.Установить соответствие между величинами и их значениями.

Решение

Внутри заряженной сферы напряженность электростатического поля равна 0. Поэтому напряженность в точке А равна 0.

EA=0

Снаружи заряженной сферы напряженность электростатического поля равна:

E=kQr2=kQ(R+a)2

Найдем напряженность электростатического поля в точке В, которая находится на расстоянии 3R от центра заряженной сферы:

EB=kQr2=kQ(3R)2=kQ9R2

Чтобы выразить EB через Eс, найдем напряженность электростатического поля в точке С, которая находится на расстоянии 3R/2 от центра заряженной сферы:

EС=kQr2=kQ(32R)2=4kQ9R2

Найдем отношение EB к Eс:

EBEС=kQ9R2÷4kQ9R2=kQ9R2·9R24kQ=14

Следовательно:

EB=EС4

Ответ: 14

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7.5k

Содержание:

  • Определение и формула напряженности электрического поля
  • Принцип суперпозиции напряженностей электрических полей
  • Напряженность поля в диэлектрике
  • Напряженность поля точечного заряда
  • Связь напряженности и потенциала
  • Единицы измерения напряженности электрического поля
  • Примеры решения задач

Определение и формула напряженности электрического поля

Определение

Вектор напряженности $bar{E}$ – это силовая характеристика электрического поля. В некоторой точке поля, напряженность равна
силе, с которой поле действует на единичный положительный заряд, размещенный в указанной точке, при этом направление силы и напряженности
совпадают. Математическое определение напряженности записывается так:

$$bar{E}=frac{bar{F}}{q}$$

где $bar{F}$ – сила, с которой электрическое поле действует на
неподвижный, «пробный», точечный заряд q, который размещают в рассматриваемой точке поля. При этом считают, что «пробный» заряд
мал на столько, что не искажает исследуемого поля.

Если поле является электростатическим, то его напряженность от времени не зависит.

Если электрическое поле является однородным, то его напряженность во всех точках поля одинакова.

Графически электрические поля можно изображать при помощи силовых линий. Силовыми линиями (линиями напряженности) называют
линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке поля.

Принцип суперпозиции напряженностей электрических полей

Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:

$$bar{E}=sum_{i=1}^{n} bar{E}_{i}(2)$$

Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:

$$bar{E}=int d bar{E}(3)$$

интегрирование в выражении (3) проводят по всей области распределения заряда.

Напряженность поля в диэлектрике

Напряженность поля $bar{E}$ в диэлектрике равна векторной сумме
напряженностей полей, создаваемых свободными зарядами $bar{E}_0$ и
связанными (поляризационными зарядами) $bar{E}_p$:

$$bar{E}=bar{E}_{0}+bar{E}_{p}(4)$$

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность
$bar{E}$ равна:

$$bar{E}=frac{bar{E}_{0}}{varepsilon}(5)$$

где $varepsilon$ – относительная диэлектрическая проницаемость вещества в исследуемой точке
поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном
диэлектрике меньше, чем в вакууме в $varepsilon$ раз.

Напряженность поля точечного заряда

Напряженность поля точечного заряда q равна:

$$bar{E}=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{3}} bar{r}(6)$$

где $varepsilon_{0}=8,85 cdot 10^{-12}$ Ф/м (система СИ) – электрическая постоянная.

Связь напряженности и потенциала

В общем случае напряженность электрического поля связана с потенциалом как:

$$bar{E}=-operatorname{grad} varphi-frac{partial bar{A}}{partial t}(7)$$

где $varphi$ – скалярный потенциал,
$bar{a}$ – векторный потенциал.

Для стационарных полей выражение (7) трансформируется в формулу:

$$bar{E}=-operatorname{grad} varphi(8)$$

Единицы измерения напряженности электрического поля

Основной единицей измерения напряженности электрического поля в системе СИ является: [E]=В/м(Н/Кл)

Примеры решения задач

Пример

Задание. Каков модуль вектора напряженности электрического поля
$bar{E}$ в точке, которая определена радиус- вектором
$bar{r}_{2}=7 bar{i}+3 bar{j}$ (в метрах), если электрическое поле создает положительный точечный
заряд (q=1Кл), который лежит в плоскости XOY и его положение задает радиус вектор
$bar{r}_{1}=bar{i}-5 bar{j}$, (в метрах)?

Решение. Модуль напряжения электростатического поля, которое создает точечный заряд, определяется формулой:

$$E=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{2}}(1.1)$$

r- расстояние от заряда, создающего поле до точки в которой ищем поле.

$$bar{r}=bar{r}_{2}-bar{r}_{1}=6 bar{i}-8 bar{j}(1.2)$$

Из формулы (1.2) следует, что модуль $bar{r}$ равен:

$$r=|bar{r}|=sqrt{36+64}=10(mathrm{~m})$$

Подставим в (1.1) исходные данные и полученное расстояние r, имеем:

$$E=9 cdot 10^{9} frac{1}{100}=9 cdot 10^{7}left(frac{B}{m}right)$$

Ответ. $E=9 cdot 10^{7}left(frac{B}{m}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Запишите выражение для напряженности поля в точке, которая определена радиус – вектором
$bar{r}$, если поле создается зарядом, который распределен по объему V с плотностью
$rho=rho(r)$ .

Решение. Сделаем рисунок.

Проведем разбиение объема V на малые области с объемами
$Delta V_{i}$ заряды этих объемов
$Delta q_{i}$, тогда напряженность поля точечного заряда в точке А (рис.1) будет равна:

$$bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.1)$$

Для того чтобы найти поле, которое создает все тело в точке А, используем принцип суперпозиции:

$$bar{E}_{A}=sum_{i=1}^{N} bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.2)$$

где N – число элементарных объемов, на которые разбивается объем V.

Плотность распределения заряда можно выразить как:

$rholeft(bar{r}_{i}right)=frac{Delta q_{i}}{Delta V_{i}}(2.3)$

Из выражения (2.3) получим:

$Delta q_{i}=rholeft(bar{r}_{i}right) Delta V_{i}(2.4)$

Подставим выражение для элементарного заряда в формулу (2.2), имеем:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{rholeft(bar{r}_{i}right) Delta V_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.5)$$

Так ка распределение зарядов задано непрерывное, то если устремить
$Delta V_i$ к нулю, то можно перейти от суммирования к интегрированию, тогда:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$$

Ответ. $bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$

Читать дальше: Формула пути.

Принцип суперпозиции

(примеры решения задач)

Закон Кулона.
Электростатическое поле системы точечных
зарядов

Пример 1.1

В однородном электрическом поле
напряженностью
закреплен точечный отрицательный заряд.
В точкеA, положение
которой определяется расстояниеми углом(см.
рис.), модуль вектора напряженности
результирующего электрического поля.
Определите угол.

Решениe.

Напряженность результирующего поля
согласно принципу суперпозиции равна

,

гденапряженность
поля, создаваемого точечным зарядомqв точкеА(рис.)

.

По теореме косинусов

.

Учитывая, что по условию задачи,
получим для искомого угла:

.

Пример 1.2

Два
одинаковых небольших металлических
шарика с зарядами и,
находящихся на расстоянии l = 0,2 м
друг от друга притягиваются с силой
H.
После того как шарики привели в
соприкосновение и опять развели на то
же расстояниеl,
они стали отталкиваться с силой
Н.
Найдитеи.

Решение.

Так как в начале
шарики притягивались, то их заряды
противоположны по знаку и по закону
Кулона

(1)

После
того, как шарики были приведены в
соприкосновение, заряды перераспределяются,
и на каждом из шариков заряд, согласно
закону сохранения заряда, становится
равным
Поэтому они стали взаимодействовать с
силой

(2)

Уравнения
(1) и (2), дают систему уравнений для
неизвестных и

решив которую,
находим искомые заряды

Кл,

Кл.

Заметим,
что в соответствии с симметрией задачи
возможны и
такие значения зарядов:
Кл,
 Кл.

Пример 1.3

В вершинах квадрата, со стороной а,помещены четыре зарядаq(см. рис.).

Найдите напряженность электрического
поля на перпендикуляре, восстановленном
из центра квадрата, как функцию его
длины x.

Решение.

Из принципа суперпозиции полей,
результирующее поле, создаваемое
зарядами, равно:

=,
где.

Задача сводится к суммированию четырех
равных по величине, но разных по
направлению векторов
.Найдем векторную сумму полей положительного
и отрицательного зарядов 1 и 3. Из подобия
треугольников на рисунке получим:

,
т.е..

Аналогично, складывая поля 2-го и 4-го
зарядов найдем
.
Для сложения векторовиучтем
их равенство по величине и взаимную
перпендикулярность. По теореме Пифагора,
получим

.

Пример 1.4

На рисунке изображена одна из линий
напряженности электрического поля двух
неподвижных точечных зарядов
и.
Известно, что нКл.
Определите.

Решение.

Введем систему координат, выбрав ее,
как показано на рисунке, т.е. ось xпроходит через заряды, а осьyпроходит через «вершину» линии поля.
Так как вектор поля направлен по
касательной к линии поля, то в точке
«вершины»Еy= 0. По принципу суперпозиции для поля
в этой точке имеем:

,
где

,

.

После подстановки и преобразований,
найдем, взяв значения геометрических
параметров из рисунка в условии задачи
a1 =2, a2
= 8,
b = 4:

нКл.

Электростатическое
поле заряженных тел (непрерывное
распределение зарядов)

Пример 1.5

На единицу длины
тонкого однородно заряженного стержня
АВ,имеющего форму дуги окружностирадиуса R
с центром в точке О,
приходится заряд
.
Найдите модуль напряженности электрического
поля в точкеО,
если угол АОВ
равен
.

Решение.

Выберем оси координат так, чтобы начало
координат совпадало с точкой О, а
осьубыла симметрично расположена
относительно концов дугиАВ(рис.).

Разобьем стержень на элементарные
участки длины dl с зарядом,
который можно рассматривать как точечный.

Найдем напряженность поля, создаваемого
зарядом этого элементарного участка
стержня в точке 0:

,

где

радиус вектор, направленный от элементаdlк точке, напряженность
которой вычисляется. Напряженность
результирующего поля найдем,
воспользовавшись принципом суперпозиции.
В силу симметрии результирующее поле
будет направлено вдоль осиу(рис.).
Запишем выражение для проекции:

.

Приведем правую часть последнего
уравнения к одной переменной интегрирования
– углу
(учитывая, что)

.

Проинтегрировав левую часть полученного
уравнения от
доE, а правую отдо,
найдем модуль напряженности электрического
поля, создаваемого в точкеОдугойАВ:

.

Рассмотрим специальные случаи
использования формулы для
расчета поля, создаваемого частью дуги
окружности в ее центре
:

а) Модуль напряженности электрического
поля, создаваемого 1/4 части дуги окружности
радиуса Rв ее центре:

.

б) Модуль напряженности электрического
поля, создаваемого тонким полукольцом
радиуса Rв его центре:

.

в) Модуль напряженности электрического
поля, создаваемого тонким кольцом
радиуса Rв его центре:

.

г) Модуль напряженности электрического
поля в центре тонкого кольца радиуса
R, если половины этого
кольца заряжены разноименными зарядами
с линейными плотностями зарядаи.

Напряженность электрического поля,
создаваемого каждой из половинок равна:

,

.

Согласно
принципу суперпозиции найдем результирующее
поле в центре

.

Из рисунка видно, что направления
векторов
исовпадают,
поэтому результирующее поле в центре
такого кольца равно

.

Соседние файлы в папке Примеры решений

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий