Как найти модуль от числа в математике

Модуль числа — теория и решение задач

Модуль числа – это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности 🙂

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Вот смотри…

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что  «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Модуль числа — коротко о главном

Определение модуля:

Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):

( displaystyle left| x right|=left{ begin{array}{l}x, xge 0\-x, x<0end{array} right.)

Свойства модуля:

  • Модуль числа есть число неотрицательное: ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0);
  • Модули противоположных чисел равны: ( left| -x right|=left| x right|);
  • Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
  • Модуль частного двух чисел равен частному их модулей: ( displaystyle left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0});
  • Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
  • Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
  • Квадрат модуля числа равен квадрату этого числа: ( {{left| x right|}^{2}}={{x}^{2}}).

Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.

И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).

Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).

Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).

То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).

Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).

Какое расстояние было пройдено в первом и во втором случае?

Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).

Таким образом, мы приблизились к понятию модуля.

Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).

Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.

Обозначается модуль просто:

( |mathbf{a}|,) (( a) — любое число).

Итак, найдём модуль числа ( 3) и ( -3):

( left| mathbf{3} right|=mathbf{3})

( left| -mathbf{3} right|=mathbf{3}.)

Основные свойства модуля

Первое свойство модуля

Модуль не может быть выражен отрицательным числом ( |mathbf{a}|text{ }ge text{ }mathbf{0})

То есть, если ( mathbf{a}) – число положительное, то его модуль будет равен этому же числу.

Если ( mathbf{a}text{ }>text{ }mathbf{0},) то ( displaystyle left| a right|=a).

Если ( a) – отрицательное число, то его модуль равен противоположному числу.

Если ( atext{ }<text{ }mathbf{0},) то ( |mathbf{a}|text{ }=text{ }-mathbf{a})

А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):

Если ( a=0), то ( |mathbf{a}|=mathbf{a}), или ( displaystyle left| 0 right|=0).

Из этого следует, что модули противоположных чисел равны, то есть:

( left| -4 right|text{ }=text{ }left| 4 right|text{ }=text{ }4;)

( left| -7 right|text{ }=text{ }left| 7 right|text{ }=text{ }7.)

А теперь потренируйся:

  • ( left| 9 right|text{ }=text{ }?;)
  • ( left| -3 right|text{ }=text{ }?;)
  • ( left| 16 right|text{ }=text{ }?;)
  •  ( left| 8 right|text{ }=text{ }?;)
  • ( left| -17 right|text{ }=text{ }?.)

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt{5} right|=?)

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим ( 2-sqrt{5}):

( 2<sqrt{5}) (Забыл, что такое корень? Бегом повторять!)

Если ( 2<sqrt{5}), то какой знак имеет ( 2-sqrt{5})? Ну конечно, ( 2-sqrt{5}<0)!

А, значит, знак модуля раскрываем, меняя знак у выражения:

( left| 2-sqrt{5} right|=-left( 2-sqrt{5} right)=-2+sqrt{5}=sqrt{5}-2)

Разобрался? Тогда попробуй сам:

  • ( left| sqrt{3}-1 right|=?)
  • ( left| 3-sqrt{7} right|=?)
  • ( left| 2-sqrt{7} right|=?)
  • ( left| sqrt{13}-4 right|=?)

Ответы:

( sqrt{3}-1; 3-sqrt{7}; sqrt{7}-2; 4-sqrt{13.})

Какими же ещё свойствами обладает модуль?

Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

То есть: ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|)

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

Например:

( left| mathbf{5}cdot mathbf{7} right|text{ }=text{ }left| mathbf{5} right|cdot left| mathbf{7} right|text{ }=text{ }mathbf{5}cdot mathbf{7}text{ }=text{ }mathbf{35};)

( left| mathbf{3}cdot left( -mathbf{2} right) right|text{ }=text{ }left| mathbf{3} right|cdot left| -mathbf{2} right|text{ }=text{ }mathbf{3}cdot mathbf{2}text{ }=text{ }mathbf{6}.)

А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

( displaystyle |frac{a}{b}|=frac{|a|}{|b|}) при условии, что ( mathbf{b}ne mathbf{0}) (так как на ноль делить нельзя).

Еще одно свойство модуля…

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.

( |a+bleft| text{ }le text{ } right|aleft| + right|b|)

Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.

Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:

( left| mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{10} right|text{ }=text{ }mathbf{10}) ( left| mathbf{3} right|+left| mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Выражения также равны, если оба числа отрицательны:

( displaystyle |-3+(-7)|~=~|-3-7|~)( displaystyle=|-10|=10) ( |-mathbf{3}left| + right|-mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

( left| -mathbf{3}+mathbf{7} right|text{ }=text{ }left| mathbf{4} right|text{ }=text{ }mathbf{4}) ( |-mathbf{3}left| + right|mathbf{7}|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

или

( left| mathbf{3}+left( -mathbf{7} right) right|text{ }=text{ }left| -mathbf{4} right|text{ }=text{ }mathbf{4}) ( left| mathbf{3} right|+left| -mathbf{7} right|text{ }=text{ }mathbf{3}+mathbf{7}text{ }=text{ }mathbf{10})

( mathbf{4}<mathbf{10})

Рассмотрим еще парочку полезных свойств модуля

Что если перед нами такое выражение:

( left| 7x right|)

Что мы можем сделать с этим выражением?

Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text{ }=text{ } right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:

( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

( left| cx right|=ccdot left| x right|,) при ( c>0)

А чему равно такое выражение:

( {{left| x right|}^{2}}=?)

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.

И что же получается? А вот что:

( {{left| x right|}^{2}}={{x}^{2}})

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

( {{left| 5 right|}^{2}}={{5}^{2}}=25)

( {{left| -5 right|}^{2}}=?)

Ну, и почему сомнения? Действуем смело!

( {{left| -5 right|}^{2}}={{5}^{2}}=25)

Во всем разобрался? Тогда вперед тренироваться на примерах!

Тренировка на примерах

1. Найдите значение выражения ( |xleft| text{ }+text{ } right|y|), если ( x=text{ }-7,5text{ },y=text{ }12.)

2. У каких чисел модуль равен ( 5)?

3. Найдите значение выражений:

а) ( |3|text{ }+text{ }|-9|;)

б) ( |-5|text{ }-text{ }|6|;)

в) ( |15left| cdot right|-3|;)

г) ( displaystyle frac{|8|}{|-2|}).

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1:

Итак, подставим значения ( x) и ( y) в выражение ( |mathbf{x}left| text{ }-text{ } right|mathbf{y}|.) Получим:

( |-7,5|text{ }+text{ }|12|text{ }=7,5text{ }+text{ }12text{ }=text{ }19,5.)

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).

Решение 3:

а) ( |3|text{ }+text{ }|-9|=text{ }3+9=text{ }12;)
б) ( |-5|-text{ }left| 6 right|text{ }=text{ }5-6=text{ }-1;)
в) ( |15left| cdot right|-3|text{ }=text{ }15cdot 3=text{ }45;)
г) ( frac{|8|}{|-2|}=frac{8}{2}=4.)

Все уловил? Тогда пора перейти к более сложному!

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):

( left| x right|=left{ begin{array}{l}x,text{ }xge 0\-x,text{ }x<0end{array} right.)

Например: ( left| 4 right|=4;text{ }left| 0 right|=0;text{ }left| -3 right|=-left( -3 right)=3.)

Пример:

Упростите выражение ( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|).

Решение:

( sqrt{5}-3<0Rightarrow left| sqrt{5}-3 right|=-left( sqrt{5}-3 right)=3-sqrt{5};)

( sqrt{5}+1>0Rightarrow left| sqrt{5}+1 right|=sqrt{5}+1;)

( left| sqrt{5}-3 right|+left| sqrt{5}+1 right|=3-sqrt{5}+sqrt{5}+1=4.)

Основные свойства модуля (итог)

Для всех ( x,yin mathbb{R}):

  • ( left| x right|ge 0,text{ }left| x right|=0Leftrightarrow x=0;)
  • ( left| -x right|=left| x right|;)
  • ( left| xcdot y right|=left| x right|cdot left| y right|;)
  • ( left| frac{x}{y} right|=frac{left| x right|}{left| y right|},text{ y}ne text{0};)
  • ( left| x+y right|le left| x right|+left| y right|)
  • ( left| cx right|=ccdot left| x right|, при text{ }c>0)
  • ( {{left| x right|}^{2}}={{x}^{2}})

Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})

а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text{ }c>0)

Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text{ }Rightarrow text{ }left| c right|=c), тогда

( left| cx right|=ccdot left| x right|), ч.т.д.

Упростите выражение ( left| frac{31}{8}-sqrt{15} right|+left| frac{15}{4}-sqrt{15} right|)

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

Похоже, вы используете блокировщик рекламы. Наш сайт существует и развивается
только за счет дохода от рекламы.

Пожалуйста, добавьте нас в исключения блокировщика.

На главную страницу
На главную страницу

на главную

Модуль числа

Поддержать сайтспасибо

Обозначим на
координатной прямой две точки, которые соответствуют числам
«−4» и 2.

модуль числа на координатной прямой

Точка «A», соответствующая числу «−4»,
находится на расстоянии
4 единичных отрезков от точки 0
(начала отсчёта), то есть длина отрезка «OA»
равна 4 единицам.

Число 4 (длина отрезка «OA») называют модулем
числа «−4».

Обозначают модуль числа так: |−4| = 4

Читают символы выше следующим образом: «модуль числа
минус четыре равен четырём».

Точка «B», соответствующая
числу «+2», находится на расстоянии двух единичных отрезков от начала отсчёта,
то есть длина отрезка «OB» равна двум единицам.

Число 2 называют модулем числа
«+2» и записывают:
|+2| = 2 или |2| = 2.

Если взять некоторое число «a» и изобразить его
точкой «A» на координатной прямой, то
расстояние от точки «A» до начала отсчёта
(другими словами длина отрезка «OA») и будет называться
модулем числа «a».

|a| = OA

Запомните!
!

Модулем рационального числа называют расстояние от
начала отсчёта до точки координатной прямой, соответствующей этому числу.

Так как расстояние (длина отрезка) может выражаться только положительным числом или нулём, можно сказать,
что модуль числа не может быть отрицательным.

Запишем свойства модуля с помощью буквенных выражений, рассмотрев все возможные случаи.

  1. Модуль положительного числа равен самому числу.

    |a| = a, если a > 0
  2. Модуль отрицательного числа равен противоположному числу.

    |−a| = a, если a < 0
  3. Модуль нуля равен нулю.

    |0| = 0, если a = 0
  4. Противоположные числа имеют равные модули.

    |−a| = |a| = a

Примеры модулей рациональных чисел:

  • |−4,8| = 4,8
  • |5| = 5
  • |0| = 0
  • | | =


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:

18 января 2016 в 17:47

Евгения Плотникова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Евгения Плотникова
Профиль
Благодарили: 0

Сообщений: 1

Модуль координаты точки равен 1)2;2)4;3)3.Вопрос.Какую координату может иметь точка.

0
Спасибоthanks
Ответить

19 сентября 2016 в 10:45
Ответ для Евгения Плотникова

Евгений Колосов
(^-^)
Профиль
Благодарили: 12

Сообщений: 197

(^-^)
Евгений Колосов
Профиль
Благодарили: 12

Сообщений: 197


Знак моддуля, означает, что под ним может скрываться как отрицательное, так и положительное значение. Следовательно: 
1) 2;2
-2;2
-2;-2
2;-2
2) 4;0
-4;0
0;4
0;-4
3) 3;0
-3;0
0;3
0;-3

подробнее здесь.

0
Спасибоthanks
Ответить

17 января 2016 в 18:05

Заира Надырова
(^-^)
Профиль
Благодарили: 0

Сообщений: 1

(^-^)
Заира Надырова
Профиль
Благодарили: 0

Сообщений: 1

а) Что можно сказать о числе х, если известно, что модуль х=х?
б)модуль х=?х

0
Спасибоthanks
Ответить

21 января 2016 в 16:18
Ответ для Заира Надырова

Сергей Фадеев
(^-^)
Профиль
Благодарили: 0

Сообщений: 6

(^-^)
Сергей Фадеев
Профиль
Благодарили: 0

Сообщений: 6


то что х=х больше х

0
Спасибоthanks
Ответить


На этой странице вы узнаете

  • Как перевернуть график модуля?
  • Одной ногой тут, другой там: к какому промежутку относить граничные точки?
  • Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Модуль числа — это великая математическая мудрость, которая показывает дружбу и соперничество противоположных знаков: минуса и плюса. О том, что держит число в рамках, узнаем в статье.  

Модуль 

Мы легко можем найти расстояние от точки до точки, достаточно просто измерить его линейкой. Но можно ли найти расстояние от 0 до любого числа? 

Представим, что наш дом находится посередине между школой и магазином. И до школы, и до магазина 500 метров, но они стоят по разные стороны от дома. 

Расположим их на координатной прямой. Поскольку и школа, и магазин располагаются на одинаковом расстоянии, то от дома до них мы будем идти 500 метров. Но на координатной прямой до школы мы пройдем −500 метров, поскольку движемся против направления оси, а до магазина 500 метров. 

Будет ли являться полученный результат противоречием? Нет, поскольку когда мы ищем расстояние, нам неважно направление движения и знак. В математике существует специальное определение — это модуль, или абсолютная величина. 

Модуль — расстояние от любой точки на координатной прямой до начала координат. 

Поскольку на координатной прямой мы можем отложить расстояние в две стороны, то такое расстояние можно найти и с отрицательными точками, и с положительными. Расстояние измеряет длину отрезка, то есть оно всегда будет положительно. 

Можно сказать, что от любого числа модуль берет только цифры, а на знаки не обращает внимания. Например, |−8| = 8 и |8| = 8. 

Может возникнуть вопрос: куда исчезает минус? Чтобы избавиться от минуса, достаточно умножить число на −1: (-8) * (-1) = 8. Значит, модуль просто умножает число на -1. 

Отсюда получается, что модулем числа а называют выражение:

Возьмем два случая: a = 8 и a = -8. Для первого получаем |8| = 8, а для второго |-8| = -(-8) = 8, то есть определение выполняется. 

Можно ли взять модуль функции? Да. Модулем произвольной функции называют выражение:

Свойства модуля

Модуль, как и все понятия в математике, обладает своими свойствами

Свойство 1. |a| >= 0. 

Как мы уже говорили, модуль всегда будет положительным числом, поскольку он не обращает внимания на знак числа. 

Свойство 2. |a| = |-a|. 

Это свойство также подтверждает рассуждения выше. Модули противоположных чисел, то есть чисел с разными знаками, равны. 

Свойство 3. |a| >= a. 

Если число а будет положительным, например, 5, то неравенство |5| >= 5 (rightarrow) 5 >= 5  выполняется, поскольку знак неравенства нестрогий. 

Если число а будет отрицательным, например, -5, то неравенство |-5| >= -5 (rightarrow) 5 >= -5  выполняется, поскольку положительное число всегда больше отрицательного. 

Свойство 4. |a * b| = |a| * |b|. 

Пусть a = 5, b = -2, тогда |5 * (-2) | = |-10| = 10, и |5| * |-2| = 5 * 2 = 10, то есть выражения равны между собой. 

Свойство 5. (|frac{a}{b}| = frac{|a|}{|b|}). 

Рассуждения такие же, как и в предыдущем свойстве. Пусть a = 10, b = -5, тогда (|frac{10}{(-5)}| = |-2| = 2 и frac{|10|}{|-5|} = frac{10}{5} = 2). 

Свойство 6. |a + b| <= |a| + |b|.

Почему появилось неравенство, а не уравнение, как в предыдущих двух свойствах? Разберем два примера. 

Пусть a = 1, b = 2, тогда |1 + 2| = |3| = 3 и |1| + |2| = 1 + 2 = 3 — неравенство выполняется, поскольку знак нестрогий.

Но если a = -1, b = 2, тогда |-1 +2| = |1| = 1 и |-1| + |2| = 1 + 2 = 3, откуда получаем 1 < 3. 

Свойство 7. (sqrt{a^2} = |a|). 

Докажем это свойство. Пусть (sqrt{a^2} = x), тогда x0, поскольку квадратный «Корень» не может быть отрицательным. Возведем полученное уравнение в квадрат: a2 = x2 
a2 — x2 = 0
(a — x)(a + x) = 0

Из уравнения x = a,  из-за ограничений на x получаем a >= 0.

И x = -a,  из-за ограничений на x получаем a < 0. 

То есть получается выражение модуля. 

Свойство 8. |a|2 = a2.

Поскольку и модуль, и квадрат числа дают положительный результат, модуль в квадрате можно заменить просто квадратом числа. 

График модуля

Как изобразить функцию с модулем? Для начала разберемся, что делает модуль с графиком функции. 

Рассмотрим функцию y = x — это прямая. При этом у может быть и положительным, и отрицательным. 

Занесем х под знак модуля: y = |x|. Теперь у может быть только положительным. Что происходит с частью графика, которая лежит ниже оси х? Она зеркально отражается. В итоге мы получаем галочку: 

Модуль отражает любой график относительно оси х

Что будет, если перед х будет стоять коэффициент? Построим графики: 

Галочка будет сужаться и расширяться. Причем чем больше коэффициент перед х, тем ýже будет галочка. 

Попробуем добавить слагаемое к подмодульному выражению. 

График модуля будет двигаться вдоль оси х. Причем:

  • если мы прибавляем число, то график сдвигается влево;
  • если мы вычитаем число, то график сдвигается вправо. 

Добавим число к модулю, а не подмодульному выражению:

График будет двигаться вдоль оси у

Как перевернуть график модуля?

Для этого достаточно добавить перед модулем минус. Важно, чтобы минус стоял именно перед модулем, а не внутри него. Тогда график будет отзеркален относительно оси х и лежать только ниже нее. 

Это легко проследить с помощью уравнений: если y = -|x|, то, при x = 3 получаем:
y = -|3| = -3

Уравнения с модулем

1. Возьмем уравнение вида |f(x)| = a. Поскольку модуль не может быть отрицательным, то и а  не может быть отрицательным. Получаем следующий переход:

Пример 1. Решите уравнение |4x + 5| = 7. 

Решение. В уравнении f(x) = 4x + 5, a = 7. Воспользуемся переходом:

Из первого уравнения x = 0,5, а из второго уравнения x = -3. 

Ответ: 0,5: -3. 

2. В уравнениях и неравенствах можно встретить два разных модуля. Как быть в этом случае? 

Алгоритм решения уравнений с несколькими модулями 

Шаг 1. Находим нули подмодульных выражений. 

Шаг 2. Чертим числовую прямую и ищем знаки на промежутках для каждого модуля. Если подмодульное выражение отрицательно на промежутке, то ставится минус, если положительно — ставится плюс. 

Шаг 3. Для каждого промежутка раскрываем модули. Если подмодульное выражение на промежутке отрицательно, то модуль раскрывается со знаком минус. Если положительно — модуль раскрывается со знаком плюс. Важно: полученные корни должны принадлежать промежуткам, на которых раскрывается модуль, иначе они не будут решениями уравнения. 

Шаг 4. Записать все полученные корни в ответ. 

Пример 2. Решите уравнение |x — 2| — |x + 2| = 4x — 5.

Решение. Найдем, в каких точках модули будут равны 0. Для этого подмодульное выражение также должно быть равно 0:

x — 2 = 0 (rightarrow) x = 2
x + 2 = 0 (rightarrow) x = -2

Нарисуем числовую прямую с этими точками: 

У нас получилось три промежутка: 

  • (-(infty);-2)
  • [-2;2)
  • [2;+(infty))

Обратим внимание, какие знаки имеет первый модуль на промежутках: x — 2 > 0 при x > 2. Следовательно, на первых двух промежутках модуль будет отрицательным, а на третьем положительным. Расставим его знаки красным цветом. 

Проанализируем второй модуль: x + 2 > 0 (rightarrow) x>-2. Получается, подмодульное выражение будет положительно на втором и третьем промежутке, и отрицательным на первом промежутке. Расставим его знаки синим цветом. 

Теперь мы можем рассмотреть уравнение на всех трех промежутках. Однако для этого обязательно ввести ограничения: полученные точки должны принадлежать только этому промежутку, поскольку на следующем модули будут раскрываться уже по-другому. 

2. Рассмотрим первый промежуток: x<-2. Оба модуля раскрываются с отрицательным знаком, и мы получаем следующее уравнение:

-(x — 2) — (-(x + 2)) = 4x — 5
-x + 2 + x + 2 = 4x — 5
4 = 4x — 5
4x = 9
x = 2,25

Точка не удовлетворяет ограничению, поскольку не лежит в промежутке (-(infty);-2):

Рассмотрим второй промежуток: [-2;2). Первый модуль раскрывается с минусом, а второй с плюсом:

-(x — 2) — (x + 2) = 4x — 5
-x + 2 — x — 2 = 4x — 5
-2x = 4x — 5
6x = 5
(x = frac{5}{6})

Эта точка лежит в заданном промежутке и является решением уравнения. 

Рассмотрим третий промежуток [2;+(infty)). Оба модуля раскрываются со знаком плюс, мы получаем уравнение:

(x — 2) — (x + 2) = 4x — 5
x — 2 — x — 2 = 4x — 5
-4 = 4x — 5
4x = 1

x = 0,25 — эта точка не лежит в промежутке, то есть не является решением уравнения. 

Решением уравнения будет только (x = frac{5}{6}). 

Ответ: (frac{5}{6})

Одной ногой тут, другой там: к какому промежутку относить граничные точки?

Разбивая прямую на промежутки, может возникнуть вопрос: а что делать с точками, в которых модуль равен 0? Их обязательно нужно проверять. Можно сделать это как отдельно, подставив точки в уравнение, так и сразу включить их в условие раскрытия модуля. 

Если точки включаются в условие раскрытия модуля, то достаточно включить их только в один из двух промежутков. Включать их в два промежутка нецелесообразно: одна и та же точка будет проверяться дважды. 

3. Уравнения вида |f(x)| = g(x)

Поскольку вместо функций могут стоять любые выражения, раскрыть модуль можно двумя способами. Выбор одного из них зависит от того, какая функция проще: f(x) или g(x). 

Как можно раскрыть модуль?

  • Можно раскрыть его в зависимости от знаков подмодульного выражения: если подмодульное выражение отрицательное, то модуль раскрывается с минусом, если положительное, то с плюсом. 
  • Можно возвести уравнение в квадрат. Но здесь необходимо ввести ограничения на g(x) — поскольку функция равна модулю, она не может быть отрицательной. 

Для удобства можно пользоваться следующей схемой: 

Пример 3. Решите уравнение |8 — x| = x2 — 5x + 11.

Решение. Заметим, что подмодульное выражение значительно проще функции справа, в этом случае удобнее будет раскрыть модуль. Получаем совокупность двух систем: 

Рассмотрим первую систему.

8 — x >= 0 (rightarrow) x <= 8

Решим уравнение:

8 — x = x2 — 5x + 11
x2 — 4x + 3 = 0
D = 16 — 12 = 4
(x_1 = frac{4 + 2}{2} = 3)
(x_2 = frac{4 — 2}{2} = 1)

Оба корня уравнения удовлетворяют условию x <= 8, значит, решением системы будут 1 и 3. 

Рассмотрим вторую систему. 

8 — x < 0 (rightarrow) x > 8

Решим уравнение: 

8 — x = -x2 + 5x — 11
x2 — 6x + 19 = 0
D = 36 — 76 = -40 — при отрицательном дискриминанте решения уравнений нет. 

Решением всего уравнения будут x = 1 и x = 3. 

Ответ: 1, 3

4. Разберем еще один тип уравнений, когда модуль равен модулю. Неужели придется рассматривать целых 4 случая раскрытия модуля? Нет, достаточно будет возвести в квадрат обе части уравнения. Таким образом, мы получаем следующий переход: 

Пример 4. Решите уравнение |x — 2| = |2x + 8|.

Решение. Возведем обе части уравнения в квадрат. Для этого воспользуемся свойством 8.

(x — 2)2 = (2x + 8)2
(x — 2)2 — (2x + 8)2 = 0

Воспользуемся формулой сокращенного умножения:

((x — 2) — (2x + 8))((x — 2) + (2x + 8) = 0

Если произведение множителей равно 0, то каждый множитель равен 0. Тогда:

x — 2 — (2x + 8) = 0 (rightarrow) x — 2 = 2x + 8
x — 2 + (2x + 8) = 0 (rightarrow) x — 2 = -(2x + 8)

Получаем совокупность: 

Решим первое уравнение совокупности:

x — 2 = 2x + 8
x = -10

Решим второе уравнение совокупности:

x — 2 = -2x — 8
3x = -6
x = -2

Решением уравнения будут x = -10 и x = -2

Ответ: -2, -10

Неравенства с модулем

Разобравшись, как решаются уравнения с модулем, можно приступать к неравенствам. 

Пример 5. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Найдем, при каких значениях х модуль равен 0. Получаем 3x = 7 (rightarrow) (x = frac{7}{3}). 

Определим, с какими знаками модуль будет раскрываться на каждом промежутке. 

Осталось рассмотреть неравенство на двух промежутках. 

1. (x leq frac{7}{3}), тогда
x2 — (-(3x — 7)) + 7 >= 0
x2 + 3x — 7 + 7 >= 0
x2 + 3x >= 0
x(x + 3) >= 0

Решим это неравенство «Методом интервалов». Сразу учтем ограничение (x leq frac{7}{3}). 

Получаем, что решением неравенства на заданном промежутке будет (x in (-infty; -3] U[0; frac{7}{3}]). 

2. (x > frac{7}{3}), тогда 
x2 — 3x + 7 + 7 >= 0
x2 — 3x + 14 >= 0
x2 — 3x + 14 = 0
D = 9 — 56 = -47 — корней на заданном отрезке не будет. 

Может ли решением квадратного неравенства быть любое число, если дискриминант меньше 0? 

Вспомним, что корни квадратного уравнения — это точки пересечения параболы и оси х. Если парабола не пересекает ось х, то неизбежно лежит выше или ниже ее. Поскольку в нашем случае ветви параболы направлены вверх, мы можем нарисовать ее примерный график. 

Так как парабола задается функцией y = x2 — 3x + 14, то неравенство будет выполняться при всех y >= 0. Парабола целиком попадает в эту область, а решением неравенства будет любое х

Однако не стоит забывать про ограничение (x > frac{7}{3}). Накладывая его, получаем решение ((frac{7}{3}; + infty)). 

Осталось только объединить полученные на промежутках решения: 

Получаем, что (x in (-infty;- 3] U [0; +infty)).

Ответ: (x in (-infty;- 3] U [0; +infty))

Рассмотрим неравенства вида |f(x)| > a и |f(x)| < a, где а — некоторое число и a >= 0. Модуль можно раскрыть двумя способами и получить два неравенства. Но будет это совокупность или система?

Это зависит от знака. Разберем случай |f(x)| > a. Заметим, что строгость знака может быть любой. Тогда модуль раскрывается как: 

f(x) > a и -f(x) > a (rightarrow) f(x) < -a. 

Отметим эти промежутки на числовой прямой:

В ответе должны оказаться оба промежутка — их нужно объединить. В этом случае модуль раскрывается в совокупности. 

Рассмотрим случай |f(x)| < a, здесь строгость знака также может быть любой. Раскроем модуль: f(x) < 0 и -f(x) < a (rightarrow) f(x) > -a. На числовой прямой это будет выглядеть следующим образом: 

В в ответе должен оказаться промежуток от —а до а. Следовательно, необходимо воспользоваться системой, чтобы “отсечь” лишние промежутки. 

Можно ли обойтись в этом случае без раскрытия модуля? Да, но необходимо возвести неравенство в квадрат. 

|f(x)| ⋁ a | (uparrow) 2 — вместо ⋁ может стоять любой знак неравенства. 
f2(x) ⋁ a2
f2(x) — a2 ⋁ 0

Воспользуемся формулой сокращенного умножения:

(f(x) — a)(f(x) + a) ⋁ 0

Однако стоит помнить, что обе части неравенства можно возвести в квадрат только в том случае, если они неотрицательны. То есть обязательно должно выполняться условие a0. 

Мы получили равносильный переход. Но существуют ли равносильные переходы, если вместо числа а стоит другая функция или даже модуль? Да. Они выводятся таким же способом, как и переход для неравенства с числом. Получаем еще два равносильных перехода:

  • |f(x)| ⋁ g(x) (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0  

g(x) обязательно должно быть неотрицательным, чтобы можно было возвести неравенства в квадрат. 

  • |f(x)| ⋁ |g(x)| (rightarrow) (f(x) — g(x))(f(x) + g(x)) ⋁ 0

Разберем на примере, как можно использовать равносильный переход. Для этого возьмем то же неравенство, что и в примере 5, но решим его по-другому. 

Пример 6. Решите неравенство x2 — |3x — 7| + 7 >= 0. 

Решение. Перенесем модуль в другую часть неравенства:

|3x — 7| <= x2 + 7. Модуль всегда неотрицателен. Правая часть неравенства неотрицательна, поскольку число в квадрате всегда положительно. 

Повторим действия, чтобы прийти к равносильному переходу:

(3x — 7)2 <= (x2+7)2
(3x-7)2 — (x2 + 7)2 <= 0
(3x — 7 — (x2 + 7))(3x — 7 + x2 + 7) <= 0
(3x — 7 — x2 — 7)(3x + x2) <= 0
(-x2 + 3x — 14) * x(3 + x) <= 0
-(x2 — 3x + 14) * x(3 + x) <= 0
(x2 — 3x + 14) * x(3 + x) <= 0

Рассмотрим первую скобку:

x2 — 3x + 14 = 0

D = 9 — 56 = -47 — корней нет. Выражение всегда будет положительно, то есть на него можно разделить все неравенство. Получаем:

x(3 + x) <= 0

Тогда (x in (-infty;- 3] U [0; +infty))

Ответ: (x in (-infty;- 3] U [0; +infty))

При решении можно сразу использовать равносильный переход, не расписывая его. 

Итак, неравенства с модулем можно решить двумя способами: раскрывать модуль и воспользоваться равносильным переходом. Выбор способа зависит от личных предпочтений и удобства решения.

Фактчек

  • Модуль расстояние от любой точки на координатной прямой до начала координат. Модуль обозначается двумя вертикальными черточками: |a| = a и |-a| = a. 
  • Модулем числа называют выражение: 
  • График модуля представляет собой “галочку”, которая лежит выше оси х. Модуль отражает график любой функции зеркально оси х так, что значения у всегда больше 0. 
  • Модуль можно раскрыть двумя способами. Этим свойством можно пользоваться при решении уравнений с модулем. 
  • При решении неравенств с модулем можно раскрывать его, либо воспользоваться равносильным переходом, если в неравенстве выполняются все условия для него. 

Проверь себя

Задание 1. 
Чему равно выражение |-16 * 2|?

  1. 32
  2. −32
  3. −16
  4. 16

Задание 2. 
Какой график имеет функция y = |x|?

  1. Парабола
  2. Гипербола
  3. Прямая
  4. Галочка

Задание 3. 
Решите уравнение |x| = -3. 

  1. 3
  2. −3
  3. Решений нет
  4. 3 и −3 

Задание 4. 
Решите уравнение |x + 2| = 15. 

  1. −13
  2. 17
  3. 13 и -17
  4. Решений нет 

Задание 5.
Какой равносильный переход можно использовать для неравенства вида |f(x) |⋁ |g(x)|?

  1. f(x) ⋁ g(x)
  2. f(x) ⋀ g(x)
  3. f2(x) — 2 * f(x) * g(x) + g2(x) ⋁ 0
  4. (f(x) — g(x))(f(x) + g(x)) ⋁ 0 

Ответы: 1. — 1 2. — 4 3. — 3 4. — 3 5. — 4

Модуль числа — теория и решение задач

А между тем она проста как апельсин. Но, чтобы ее понять, давай сначала разберемся, зачем и кому он нужен.

Ситуация первая

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине «минус 70 километров» (мы проедем 70 километров, не важно, в каком направлении), как и не можем купить «минус 5 кг апельсинов». Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая

Ты покупаешь пакет чипсов «Lay’s». На пакете написано, что он весит 100 грамм. Но, если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией «Lay’s», если они тебе недовесили?

Нет. Потому что «Lay’s» устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это «плюс-минус» – это и есть модуль.

Ситуация третья

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: «Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!» 20 тысяч – это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от точки отсчета в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее…

Модуль числа — коротко о главном

Модуль (абсолютная величина) числа ( displaystyle x) — это само число ( displaystyle x), если ( displaystyle xge 0), и число ( displaystyle -x), если ( displaystyle x<0):

  • Модуль числа есть число неотрицательное: ( left| x right|ge 0,text< >left| x right|=0Leftrightarrow x=0);
  • Модули противоположных чисел равны: ( left| -x right|=left| x right|);
  • Модуль произведения двух (и более) чисел равен произведению их модулей: ( left| xcdot yright|=left| x right|cdot left|yright|);
  • Модуль частного двух чисел равен частному их модулей: ( displaystyle left| fracright|=frac<left| x right|><left| y right|>,text< y>ne text<0>);
  • Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:( left| x+y right|le left| x right|+left| y right|);
  • Постоянный положительный множитель можно выносить за знак модуля: ( left| cx right|=ccdot left| x right|) при ( displaystyle c>0);
  • Квадрат модуля числа равен квадрату этого числа: ( <<left| x right|>^<2>>=<^<2>>).

Кстати, в продолжение этой темы у нас есть отличная статья: «Уравнения с модулем«. Когда прочитаешь эту статью, обязательно ознакомься и со второй.

И просто чтобы ты знал, модуль часто попадается при решении квадратных уравнений или иррациональных.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления ( 0).

Итак, ты делаешь ( 3) шага вперёд и оказываешься в точке с координатой ( 3).

Это означает, что ты удалился от места, где стоял на (3) шага (( 3) единичных отрезка).

То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно ( 3).

Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой ( 0) сделать ( 3) шага в обратную сторону, то окажешься в точке с координатой ( -3).

Какое расстояние было пройдено в первом и во втором случае?

Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки (( 3) и ( -3)), в которых ты оказался одинаково удалены от точки, из которой было начато движение (( 0)).

Таким образом, мы приблизились к понятию модуля.

Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа ( 5) будет ( 5). Модуль числа ( -5) также равен ( 5).

Потому что расстояние не может быть отрицательным! Модуль – это абсолютная величина.

Обозначается модуль просто:

Итак, найдём модуль числа ( 3) и ( -3):

( left| mathbf <3>right|=mathbf<3>)

Основные свойства модуля

Первое свойство модуля

Если ( a) – отрицательное число, то его модуль равен противоположному числу.

А если ( a=0)? Ну, конечно! Его модуль также равен ( 0):

Из этого следует, что модули противоположных чисел равны, то есть:

( left| -4 right|text< >=text< >left| 4 right|text< >=text< >4;)

( left| -7 right|text< >=text< >left| 7 right|text< >=text< >7.)

А теперь потренируйся:

  • ( left| 9 right|text< >=text< >?;)
  • ( left| -3 right|text< >=text< >?;)
  • ( left| 16 right|text< >=text< >?;)
  • ( left| 8 right|text< >=text< >?;)
  • ( left| -17 right|text< >=text< >?.)

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда? А если перед тобой вот такое число: ( left| 2-sqrt <5>right|=?)

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль:

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим ( 2-sqrt<5>):

( 2<sqrt<5>) (Забыл, что такое корень? Бегом повторять!)

Если ( 2<sqrt<5>), то какой знак имеет ( 2-sqrt<5>)? Ну конечно, ( 2-sqrt<5><0)!

А, значит, знак модуля раскрываем, меняя знак у выражения:

( left| 2-sqrt <5>right|=-left( 2-sqrt <5>right)=-2+sqrt<5>=sqrt<5>-2)

Разобрался? Тогда попробуй сам:

  • ( left| sqrt<3>-1 right|=?)
  • ( left| 3-sqrt <7>right|=?)
  • ( left| 2-sqrt <7>right|=?)
  • ( left| sqrt<13>-4 right|=?)

Ответы:

Какими же ещё свойствами обладает модуль?

Во-первых, если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

То есть: ( |acdot bleft| text< >=text < >right|aleft| cdot right|b|)

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

( left| mathbf<5>cdot mathbf <7>right|text< >=text< >left| mathbf <5>right|cdot left| mathbf <7>right|text< >=text< >mathbf<5>cdot mathbf<7>text< >=text< >mathbf<35>;)

( left| mathbf<3>cdot left( -mathbf <2>right) right|text< >=text< >left| mathbf <3>right|cdot left| -mathbf <2>right|text< >=text< >mathbf<3>cdot mathbf<2>text< >=text< >mathbf<6>.)

А что, если нам нужно разделить два числа (выражения) под знаком модуля? Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

Еще одно свойство модуля…

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел.

( |a+bleft| text< >le text < >right|aleft| + right|b|)

Почему так? Всё очень просто! Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное.

Допустим, что числа ( a) и ( b) оба положительные. Тогда левое выражение будет равно правому выражению. Рассмотрим на примере:

( left| mathbf<3>+mathbf <7>right|text< >=text< >left| mathbf <10>right|text< >=text< >mathbf<10>) ( left| mathbf <3>right|+left| mathbf <7>right|text< >=text< >mathbf<3>+mathbf<7>text< >=text< >mathbf<10>)

Выражения также равны, если оба числа отрицательны:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

( left| -mathbf<3>+mathbf <7>right|text< >=text< >left| mathbf <4>right|text< >=text< >mathbf<4>) ( |-mathbf<3>left| + right|mathbf<7>|text< >=text< >mathbf<3>+mathbf<7>text< >=text< >mathbf<10>)
( left| mathbf<3>+left( -mathbf <7>right) right|text< >=text< >left| -mathbf <4>right|text< >=text< >mathbf<4>) ( left| mathbf <3>right|+left| -mathbf <7>right|text< >=text< >mathbf<3>+mathbf<7>text< >=text< >mathbf<10>)

( mathbf<4><mathbf<10>)

Рассмотрим еще парочку полезных свойств модуля

Что если перед нами такое выражение:

( left| 7x right|)

Что мы можем сделать с этим выражением?

Значение x нам неизвестно, но зато мы уже знаем, что ( |acdot bleft| text< >=text < >right|aleft| cdot right|b|), а значит ( left| 7x right|=left| 7 right|cdot left| x right|). Число ( 7) больше нуля, а значит можно просто записать:

( left| 7x right|=left| 7 right|cdot left| x right|=7left| x right|)

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

( left| cx right|=ccdot left| x right|,) при ( c>0)

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства.

И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

Тренировка на примерах

1. Найдите значение выражения ( |xleft| text< >+text < >right|y|), если ( x=text< >-7,5text< >,y=text< >12.)

2. У каких чисел модуль равен ( 5)?

3. Найдите значение выражений:

в) ( |15left| cdot right|-3|;)

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Решение 1:

Итак, подставим значения ( x) и ( y) в выражение ( |mathbfleft| text< >-text < >right|mathbf|.) Получим:

Решение 2:

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное ( 5) имеют два числа: ( 5) и ( -5).

Решение 3:

Все уловил? Тогда пора перейти к более сложному!

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt<3>-2 right|+left| sqrt<3>+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt <3>approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt<3>-2approx 1,7-2approx -0,3text< >).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Читать далее…

Мы хотим постоянно улучшать этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа ( x) — это само число ( x), если ( xge 0), и число ( -x), если ( x<0):

Например: ( left| 4 right|=4;text< >left| 0 right|=0;text< >left| -3 right|=-left( -3 right)=3.)

Пример:

Упростите выражение ( left| sqrt<5>-3 right|+left| sqrt<5>+1 right|).

Решение:

( sqrt<5>-3<0Rightarrow left| sqrt<5>-3 right|=-left( sqrt<5>-3 right)=3-sqrt<5>;)

( sqrt<5>+1>0Rightarrow left| sqrt<5>+1 right|=sqrt<5>+1;)

( left| sqrt<5>-3 right|+left| sqrt<5>+1 right|=3-sqrt<5>+sqrt<5>+1=4.)

Основные свойства модуля (итог)

Для всех ( x,yin mathbb):

  • ( left| x right|ge 0,text< >left| x right|=0Leftrightarrow x=0;)
  • ( left| -x right|=left| x right|;)
  • ( left| xcdot y right|=left| x right|cdot left| y right|;)
  • ( left| fracright|=frac<left| x right|><left| y right|>,text< y>ne text<0>;)
  • ( left| x+y right|le left| x right|+left| y right|)
  • ( left| cx right|=ccdot left| x right|, при text< >c>0)
  • ( <<left| x right|>^<2>>=<^<2>>)

Докажите свойство модуля: ( left| x+y right|le left| x right|+left| y right|)

Доказательство:

Предположим, что существуют такие ( x;yin mathbb), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle beginleft| x+y right|>left| x right|+left| y right|Leftrightarrow \<<left( x+y right)>^<2>>><<left( left| x right|+left| y right| right)>^<2>>Leftrightarrow \<^<2>>+2xy+<^<2>>><^<2>>+2cdot left| x right|cdot left| y right|+<^<2>>Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end)

а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb) не существует, а значит, при всех ( x,text< >yin mathbb) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Докажите свойство модуля: ( left| cx right|=ccdot left| x right|, при text< >c>0)

Воспользуемся свойством №3: ( left| ccdot x right|=left| c right|cdot left| x right|), а поскольку ( c>0text< >Rightarrow text< >left| c right|=c), тогда

( left| cx right|=ccdot left| x right|), ч.т.д.

Упростите выражение ( left| frac<31><8>-sqrt <15>right|+left| frac<15><4>-sqrt <15>right|)

Чтобы упростить, нужно раскрыть модули. А чтобы раскрыть модули, нужно узнать, положительны или отрицательны выражения под модулем:

Читать далее…

Мы хотим постоянно улучшать этот учебник и вы можете нам в этом помочь.
Оформите доступ и пользуйтесь учебником ЮКлэва без ограничений (100+ статей по всем темам ОГЭ и ЕГЭ, 2000+ разобранных задач, 20+ вебинаров-практикумов)

Наши курсы по подготовке к ЕГЭ по математике, информатике и физике

Курсы для тех, кому нужно получить 90+ и поступить в топовый ВУЗ страны.

Алексей Шевчук — ведущий курсов

Твой ход!

Теперь ты знаешь все о модуле! Я уверен, что ты справишься с любой задачей! И я очень горжусь тобой.

Это было не так сложно, правда? Особенно, когда разбираешь все подробно и поэтапно.

А сейчас мы хотим услышать тебя! Как тебе статья? Понравился разбор понятия модуля? ��

Напиши в комментариях свое мнение об этой статье!

Мы читаем все. И ответим на любые твои вопросы.

Добавить комментарий Отменить ответ

11 комментариев

Лилия :

Здравствуйте, ещё раз. Пока писала Вам отзыв вставки с предложением зарегистрироваться исчезли. И теперь я могу прочитать статью полностью! Вот Спасибо!
С уважением Лилия.

Александр Кель :

Ну вот и славно! )

Лилия :

Здравствуйте, Александр.
Изумительная статья! Восхитительная! ВСЁ очень-очень доходчиво и понятно.
Большое спасибо за неё.
Но, изучая её, я наткнулась на вставочки, которые прерывают рассуждения автора. В этих вставках предлагается зарегистрироваться. Я это сделала.
Попав на страницы учебника, я не нашла этой статьи о модулях. И вообще не нашла ничего про модули.
Подскажите, пожалуйста, возможно ли так изменить статью, чтобы в ней не было вставок, а был текст полностью?
С огромным уважением к автору статьи Лилия

Александр Кель :

Спасибо, Лилия!
В другом комментарии я вижу, что вы уже разобрались, но просто на будущее, вот здесь содержание всего учебника: https://youclever.org/book/
По нему можно найти любую тему по подготовке к ОГЭ и ЕГЭ по математике.

Ольга Карасева :

Спасибо! Все очень доходчиво

Александр Кель :

И вам спасибо! Заходите ещё)

Матвеева Ксения :

Спасибо, я 7 -ой класс, как-то модуль в школе прошел тихо, незаметно, а сейчас столкнулась и поняла, что «0». Проработав Вашу статью все стало в голове на место.

Александр Кель :

Ксения — ты супер! Самостоятельно разобраться с модулем дорогого стоит. Приходи в ЭТО воскресенье 26 сентября на бесплатный вебинар, где Алексей будет разбирать как решать уравнения с модулем. Он для ЕГЭшников, но раз ты сама модуль разобрала, справишься и будешь по модулям совсем крутышка. ) Вот ссылка на доступ к вебинару: https://app.livewebinar.com/991-815-000

Pretty :

Спасибо большое, сидела психовала из за этой темы. А сейчас всё понятно.

Александр Кель :

Спасибо, Pretty. Заходи еще, мы сейчас улучшаем каждую статью — будет еще понятнее )

Александр Кель :

Некоторые комментарии прошлых лет к этой статье:

Виктория
27 мая 2018
Спасибо!

Александр (админ)
27 мая 2018
Пожалуйста, Виктория!

Мария
13 ноября 2018
огромное спасибо, многое вспомнила

Александр (админ)
13 ноября 2018
Пожалуйста, Мария!

Денис
17 февраля 2019
Спасибо большое за эту статью, многое вспомнил))

Александр (админ)
17 февраля 2019
Денис! Рады слышать! И тебе спасибо! )

Анастасия
13 мая 2019
Спасибо большое! Очень понятно рассмотрен материал!

Александр (админ)
13 мая 2019
Пожалуйста, Анастасия! Удачи на экзаменах!

Иван
25 мая 2019
В самом начале рассматриваются не все случаи выражения ∣√5 — 3∣ + ∣√5 + 1∣. Пропущен случай, когда √5 < 0, в этом случае выражение будет иметь вид 2√5 — 2 или 2(√5 — 1), а не 4.

Алексей Шевчук
29 мая 2019

Иван, √5 не может быть меньше нуля, это ведь вполне конкретное число (равное приблизительно 2,24, поэтому мы и пишем, что √5 — 30). И вообще, квадратный корень по определению не может быть отрицательным, какое бы число под ним не стояло.

МАРИЯ
31 июля 2019
Огромное спасибо, очень помогло!

Александр (админ)
31 июля 2019
Приятно слышать, Мария! Успехов!

Анастасия
15 февраля 2020
Большое спасибо! Все просто и понятно. Я вообще учусь в 6 классе и впервые сталкиваюсь с таким понятием как модуль. Ни учебник по математике, ни учитель не мог мне понятно объяснить! Я зашла сюда и удивилась : -это же легко!! Большое спасибо администратору.

Александр (админ)
15 февраля 2020
О, как круто! Спасибо, Анастасия. Ты молодец, что сама разобралась в такой теме. Хоть и с помощью нашего учебника, но все равно молодец! Так держать!

Модуль

В этой статье введем и очень подробно разберем такое важное понятие, как модуль числа. Разберемся, откуда модуль взялся, какими свойствами обладает. Научимся решать уравнения и неравенства с модулем.

«Величина» числа

Сначала попытаемся сформулировать понятие о «величине» числа. Из этого понятия естественным образом получим понимание, откуда взялся и как определить модуль.

Геометрический смысл

Представьте, что вы стоите в точке 0 на числовой оси. Слева от вас, в точке − 1 0 0 , находится школа. Справа, в точке 5 0 , находится ваш дом. Математически число − 1 0 0 меньше, чем 5 0 . Но вот идти до школы 1 0 0 метров влево гораздо дольше, чем пройти 5 0 метров до дома вправо. В этом смысле «величина» пройденного расстояния в − 1 0 0 метров больше, чем 5 0 метров.

Пусть теперь школа находится в точке − 1 0 , а дом в точке 1 0 . Математически вновь получаем, что − 1 0 меньше 1 0 . Но вот нам, находящимся в 0 , совершенно нет разницы: идти − 1 0 метров влево или 1 0 метров вправо. В обоих случаях мы пройдем 1 0 метров. То есть, по «величине» числа − 1 0 и 1 0 равны.

Количественный смысл

Рассмотрим числа 5 0 и − 1 0 0 . В математическом смысле − 1 0 0 гораздо меньше 5 0 . А давайте посмотрим на эти числа под другим углом. У вас есть всего 5 0 рублей и вы задолжали другу. Ваш долг составляет − 1 0 0 рублей. В этом смысле «величина» вашего долга в − 1 0 0 рублей гораздо больше имеющихся у вас 5 0 рублей. Получается, что математически − 1 0 0 меньше 5 0 , но по «величине» − 1 0 0 больше 5 0 .

Теперь рассмотрим числа − 1 0 и 1 0 . Математически, опять же, − 1 0 меньше 1 0 . Но, пользуясь нашей аналогией с долгом, своими 1 0 рублями вы полностью покроете долг в − 1 0 рублей. То есть, по «величине» число − 1 0 равно числу 1 0 .

Понятие величины

Мы поняли, что каждое число имеет свою «величину». Причем эта величина не зависит от того, положительным или отрицательным является число. Можно даже сказать, что «величина» числа это и есть само число, от которого «отбросили» его знак.

Модуль числа

Сформулируем на строгом языке математики наше интуитивное представление о «величине» числа, которое мы сформировали в предыдущем разделе.

Модуль или абсолютная величина вещественного числа x — само число x , если оно неотрицательно, иначе − x .

Допустим, мы хотим найти модуль какого-то числа a . Согласно определению, нам надо провести элементарную проверку. Если число a положительное или равно 0 , то модулем a и является само a . Если же a меньше 0 , то результатом модуля будет − a .

∣ 5 ∣ = 5 ∣ 0 ∣ = 0 ∣ − 1 2 ∣ = − ( − 1 2 ) = 1 2

Легко убедиться, что модуль числа полностью соответсвует по смыслу «величине» числа, рассмотренной в предыдущем разделе. Там мы утверждали, что по «величине» − 1 0 0 больше 5 0 , а − 1 0 равно 1 0 . И действительно:

∣ − 1 0 0 ∣ = 1 0 0 ∣ − 1 0 ∣ = 1 0 ​ ∣ 5 0 ∣ = 5 0 ∣ − 1 0 0 ∣ > ∣ 5 0 ∣ ∣ 1 0 ∣ = 1 0 ∣ − 1 0 ∣ = ∣ 1 0 ∣ ​

Положение знака нестрогого неравенства в определении модуля не имеет значения:

Обозначим второе определение модуля числа x как ∣ x ∣ ′ . Покажем, что какой x не возьми, будет выполняться ∣ x ∣ = ∣ x ∣ ′ .

Пусть x > 0 . По классическому определению ∣ x ∣ = x . По второму: ∣ x ∣ ′ = x . То есть ∣ x ∣ = ∣ x ∣ ′ .

Пусть x = 0 . По классическому определению ∣ 0 ∣ = 0 . А вот во втором определении 0 попадает уже под второе условие, то есть ∣ 0 ∣ ′ = − 0 = 0 . Опять имеем ∣ 0 ∣ = ∣ 0 ∣ ′ .

Наконец, пусть x < 0 . По классическому определению ∣ x ∣ = − x . У второго определения та же ситуация: ∣ x ∣ ′ = − x . Получается, что и в этом случае ∣ x ∣ = ∣ x ∣ ′ .

Итак, мы рассмотрели все возможные значения для x и во всех случаях ∣ x ∣ = ∣ x ∣ ′ . Это и означает, что между двумя определениями нет никакой разницы ■

Такое определение иногда бывает полезно. Например, если x лежит в следующих пределах: − 1 0 ≤ x ≤ 0 , то можно сразу сказать, что ∣ x ∣ = − x , даже несмотря на то, что для x = 0 так выражаться будет некорректно, ведь ∣ 0 ∣ = 0 , а не − 0 .

Свойства модуля

У модуля есть очень много полезных свойств, которые сильно помогают при решении уравнений, неравенств, доказательстве теорем и так далее. Рассмотрим самые полезные из них. Все свойства ниже формулируем для любых вещественных чисел x и y .

Очевидные свойства

Наиболее очевидные свойства модуля напрямую вытекают из рассмотренного ранее понятия о «величине» числа. Например, мы определили «величину» числа как само число с «отброшенным» знаком. Это означает, что «величина» не может быть отрицательной.

Модуль числа

Модуль числа и уравнения с модулем — тема особенная, прямо-таки заколдованная 🙂 Она совсем не сложная, просто в школе её редко объясняют нормально. В результате без специальной подготовки почти никто из школьников не может дать правильное определение модуля и тем более решить уравнение с модулем. И эту картину мы наблюдаем на протяжении многих лет.

Поэтому осваивайте тему «Уравнения и неравенства с модулем» по нашим статьям и на наших занятиях! Вы сумеете обойти множество конкурентов на ЕГЭ, олимпиадах и вступительных экзаменах.

Модуль числа называют ещё абсолютной величиной этого числа. Попросту говоря, при взятии модуля нужно отбросить от числа его знак. В записи положительного числа и так нет. никакого знака, поэтому модуль положительного числа равен ему самому. Например, Модуль нуля равен нулю. А модуль отрицательного числа равен противоположному ему положительному
(без знака!). Например,

Обратите внимание: модуль числа всегда неотрицателен:

Определение модуля

От большинства известных из школы определений оно отличается лишь одним: в нём есть выбор. Есть условие. И в зависимости от этого условия мы раскрываем модуль либо так, либо иначе.

Так же, как в информатике — в разветвляющихся алгоритмах с применением условных операторов. Как, вообще-то, и в жизни: сдал ЕГЭ на минимальный балл — можешь подавать документы в ВУЗ. Не сдал на минимальный балл — можешь идти в армию 🙂

Таким образом, если под знаком модуля стоит выражение, зависящее от переменной, мы раскрываем модуль по определению. Например,

В некоторых случаях модуль раскрывается однозначно. Например, так как выражение под знаком модуля неотрицательно при любых x и y. Или: так так как выражение под модулем неположительно при любых z.

Геометрическая интерпретация модуля

Нарисуем числовую прямую. Модуль числа — это расстояние от нуля до данного числа. Например, То есть расстояние от точки −5 до нуля равно 5.
Эта геометрическая интерпретация очень полезна для решения уравнений и неравенств с модулем.

Рассмотрим простейшее уравнение />. Мы видим, что на числовой прямой есть две точки, расстояние от которых до нуля равно трём. Это точки 3 и −3. Значит, у уравнения />есть два решения: x = 3 и x = −3.

Вообще, если имеются два числа a и b, то равно расстоянию между ними на числовой прямой.
(В связи с этим нередко встречается обозначение длины отрезка AB, то есть расстояния от точки A до точки B.)

Ясно, что (расстояние от точки a до точки b равно расстоянию от точки b до точки a).

Решим уравнение . Эту запись можно прочитать так: расстояние от точки x до точки 3 равно 4. Отметим на числовой прямой точки, удовлетворяющие этому условию.

Мы видим, что наше уравнение имеет два решения: −1 и 7. Мы решили его самым простым способом — без использования определения модуля.

Перейдём к неравенствам. Решим неравенство .

Эту запись можно прочитать так: «расстояние от точки x до точки −7 меньше четырёх». Отмечаем на числовой прямой точки, удовлетворяющие этому условию.

Ответ: (-11; -3).

Другой пример. Решим неравенство |10 − x| ≥ 7.

Расстояние от точки 10 до точки x больше или равно семи. Отметим эти точки на числовой прямой.
Ответ:

График функции

Этот график надо знать обязательно. Для имеем y = x. Для имеем y = −x. В результате получаем:
С помощью этого графика также можно решать уравнения и неравенства.

Корень из квадрата

Нередко в задачах ЕГЭ требуется вычислить , где – некоторое число или выражение. Не забывайте, что

Действительно, по определению арифметического квадратного корня — это такое неотрицательное число, квадрат которого равен . Оно равно при и при , т. е. как раз .

Примеры заданий ЕГЭ

1. Найдите значение выражения при .
Заметим, что при . Следовательно, значение нашего выражения равно: .

2. Найдите значение выражения при .

В следующей статье мы рассмотрим более сложные уравнения и неравенства с модулем.

Модуль с точки зрения геометрии

Забегая вперед, попробуем сразу понять, что же представляет собой модуль на практике — так будет легче уловить его смысл. Нарисуем на листе бумаги прямую координат, возьмем нуль за точку отсчета, а по правую и по левую стороны на одинаковом расстоянии поставим некие две точки — например, 5 и -5.

Модулем будет считаться именно фактическое расстояние до нуля от -5 и от 5. Очевидно, что это расстояние будет совершенно одинаковым. Поэтому в обоих случаях модуль будет равняться числу «5» — и неважно, какой знак стоит перед исходным числом, которое мы рассматриваем.

Видео

Видео

Расстояние между точками

Представим числовую ось. Отметим на ней две точки, например 5 и 3. Какое между ними расстояние? Ничего сложного, скажете вы, расстояние равно 53=2. И это правильный ответ. Сразу заметим, что 35=(1)(53)=2, то есть при вычитании из меньшей точки большей получаем то же расстояние, но со знаком минус.

Расстояние между точками 2 и 4 равно 2(4)=2. И опять, если мы поменяем местами числа в разности, то получим отрицательное расстояние 4(2)=(1)(2(4))=2

Общий посыл вы уловили. Для нахождения расстояния

Общий посыл вы уловили. Для нахождения расстояния между двумя точками, надо из большей точки вычесть меньшую. Если сделать наоборот, то получим противоположное, отрицательное расстояние.

Вроде все ясно. Ну и причем здесь модуль? А вот представим, что у вас нет точных значений. Вам просто дали точки a и b, и попросили найти расстояние между ними. Какая-то из двух разностей ниже будет расстоянием:

abba

Но какая именно? Тут к нам и приходит на помощь модуль. Расстояние между a и b обозначим так:

ab

Если a>b, то мы угадали с разностью и получим положительный результат. Взятие модуля никак на него не повлияет. Если a<b, то мы не угадали и получаем отрицательное расстояние. Но, по определению модуля, в результате все-равно получим положительное расстояние.

О

Расстоянием между двумя точками a и b на числовой оси называется модуль их разности: ∣ a − b ∣ .

Наконец, поговорим о модулях одного числа, например 5 или 2. Их можно представить вот так:

5=52=2

В этом смысле модуль одного числа можно понимать как расстояние от до этого числа (до 5 и до 2) на числовой оси.

Решение более сложных примеров

Попробуем упростить выражение ( left| sqrt{3}-2 right|+left| sqrt{3}+5 right|)

Решение:

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

( displaystyle sqrt{3} approx 1,7). Получается, значение первого выражения под модулем ( displaystyle sqrt{3}-2approx 1,7-2approx -0,3text{ }).

( -0,3<0), следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Примеры графиков с модулем

Часто в тестах и на экзаменах встречаются задания, которые возможно решить, лишь проанализировав графики. Рассмотрим такие задания.

Пример 1.

Дана функция f(x) = |x|. Необходимо построить график от – 3 до 3 с шагом 1.

Решение:

Объяснение: из рисунка видно, что график симметрич

Объяснение: из рисунка видно, что график симметричен относительно оси Y.

Пример 2. Необходимо нарисовать и сравнить графики функций f(x) = |x–2| и g(x) = |x|–2.

Решение:

Объяснение: константа внутри абсолютной величины п

Объяснение: константа внутри абсолютной величины перемещает весь график вправо, если ее значение отрицательное, и влево, если положительное. Но постоянная снаружи будет передвигать график вверх, если значение положительное, и вниз, если оно отрицательное (как –2 в функции g (x)).

Координата вершины x (точка, в которой соединяются две линии, вершина графа) – это число, на которое график сдвигается влево или вправо. А координата y – это значение, на которое график сдвигается вверх или вниз.

Строить такие графики можно с помощью онлайн приложений для построения. С их помощью можно наглядно посмотреть, как константы влияют на функции.

Докажитесвойствомодуля: ( left

Доказательство:

Предположим, что существуют такие ( x;yin mathbb{R}), что ( left| x+y right|>left| x right|+left| y right|.) Возведем левую и правую части неравенства в квадрат (это можно сделать, т.к. обе части неравенства всегда неотрицательны):

( displaystyle begin{array}{l}left| x+y right|>left| x right|+left| y right|Leftrightarrow \{{left( x+y right)}^{2}}>{{left( left| x right|+left| y right| right)}^{2}}Leftrightarrow \{{x}^{2}}+2xy+{{y}^{2}}>{{x}^{2}}+2cdot left| x right|cdot left| y right|+{{y}^{2}}Leftrightarrow \xy>left| x right|cdot left| y right|Leftrightarrow \xy>left| xy right|,end{array})а это противоречит определению модуля.

Следовательно, таких ( x;yin mathbb{R}) не существует, а значит, при всех ( x,text{ }yin mathbb{R}) выполняется неравенство ( left| x+y right|le left| x right|+left| y right|.)

А теперь самостоятельно…

Уравнения с двумя модулями

До сих пор мы изучали лишь самые простые уравнения — там был один модуль и что-то ещё. Это «что-то ещё» мы отправляли в другую часть неравенства, подальше от модуля, чтобы в итоге всё свелось к уравнению вида $left| fleft( x right) right|=gleft( x right)$ или даже более простому $left| fleft( x right) right|=a$.

Но детский сад закончился — пора рассмотреть что-нибудь посерьёзнее. Начнём с уравнений вот такого типа:

[left| fleft( x right) right|=left| gleft( x right) right|]

Это уравнение вида «модуль равен модулю». Принципиально важным моментом является отсутствие других слагаемых и множителей: только один модуль слева, ещё один модуль справа — и ничего более.

Кто-нибудь сейчас подумает, что такие уравнения решаются сложнее, чем то, что мы изучали до сих пор. А вот и нет: эти уравнения решаются даже проще. Вот формула:

[left| fleft( x right) right|=left| gleft( x right) right|Rightarrow fleft( x right)=pm gleft( x right)]

Всё! Мы просто приравниваем подмодульные выражения, ставя перед одним из них знак «плюс-минус». А затем решаем полученные два уравнения — и корни готовы! Никаких дополнительных ограничений, никаких неравенств и т.д. Всё очень просто.

Давайте попробуем решать вот такую задачу:

[left| 2x+3 right|=left| 2x-7 right|]

Элементарно, Ватсон! Раскрываем модули:

[left| 2x+3 right|=left| 2x-7 right|Rightarrow 2x+3=pm left( 2x-7 right)]

Рассмотрим отдельно каждый случай:

[begin{align}& 2x+3=2x-7Rightarrow 3=-7Rightarrow emptyset ; \& 2x+3=-left( 2x-7 right)Rightarrow 2x+3=-2x+7. \end{align}]

В первом уравнении корней нет. Потому что когда это $3=-7$? При каких значениях $x$? «Какой ещё нафиг $x$? Ты обкурился? Там вообще нет $x$» — скажете вы. И будете правы. Мы получили равенство, не зависящее от переменной $x$, и при этом само равенство — неверное. Потому и нет корней.:)

Со вторым уравнением всё чуть интереснее, но тоже очень и очень просто:

[2x+3=-2x+7Rightarrow 4x=4Rightarrow x=1]

Как видим, всё решилось буквально в пару строчек — другого от линейного уравнения мы и не ожидали.:)

В итоге окончательный ответ: $x=1$.

Ну как? Сложно? Конечно, нет. Попробуем что-нибудь ещё:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|]

Опять у нас уравнение вида $left| fleft( x right) right|=left| gleft( x right) right|$. Поэтому сразу переписываем его, раскрывая знак модуля:

[{{x}^{2}}-3x+2=pm left( x-1 right)]

Возможно, кто-то сейчас спросит: «Эй, что за бред? Почему «плюс-минус» стоит у правого выражения, а не у левого?» Спокойно, сейчас всё объясню. Действительно, по-хорошему мы должны были переписать наше уравнение следующим образом:

[x-1=pm left( {{x}^{2}}-3x+2 right)]

Затем нужно раскрыть скобки, перенести все слагаемые в одну сторону от знака равенства (поскольку уравнение, очевидно, в обоих случаях будет квадратным), ну и дальше отыскать корни. Но согласитесь: когда «плюс-минус» стоит перед тремя слагаемыми (особенно когда одно из этих слагаемых — квадратное выражение), это как-то более сложно выглядит, нежели ситуация, когда «плюс-минус» стоит лишь перед двумя слагаемыми.

Но ведь ничто не мешает нам переписать исходное уравнение следующим образом:

[left| x-1 right|=left| {{x}^{2}}-3x+2 right|Rightarrow left| {{x}^{2}}-3x+2 right|=left| x-1 right|]

Что произошло? Да ничего особенного: просто поменяли левую и правую часть местами. Мелочь, которая в итоге немного упростит нам жизнь.:)

В общем, решаем это уравнение, рассматривая варианты с плюсом и с минусом:

[begin{align}& {{x}^{2}}-3x+2=x-1Rightarrow {{x}^{2}}-4x+3=0; \& {{x}^{2}}-3x+2=-left( x-1 right)Rightarrow {{x}^{2}}-2x+1=0. \end{align}]

Первое уравнение имеет корни $x=3$ и $x=1$. Второе вообще является точным квадратом:

[{{x}^{2}}-2x+1={{left( x-1 right)}^{2}}]

Поэтому у него единственный корень: $x=1$. Но этот корень мы уже получали ранее. Таким образом, в итоговый ответ пойдут лишь два числа:

[{{x}_{1}}=3;quad {{x}_{2}}=1.]

Миссия выполнена! Можно взять с полки и скушать пирожок. Там их 2, ваш средний.:)

Важное замечание. Наличие одинаковых корней при разных вариантах раскрытия модуля означает, что исходные многочлены раскладываются на множители, и среди этих множителей обязательно будет общий. Действительно:

[begin{align}& left| x-1 right|=left| {{x}^{2}}-3x+2 right|; \& left| x-1 right|=left| left( x-1 right)left( x-2 right) right|. \end{align}]

Одно из свойств модуля: $left| acdot b right|=left| a right|cdot left| b right|$ (т.е. модуль произведения равен произведению модулей), поэтому исходное уравнение можно переписать так:

[left| x-1 right|=left| x-1 right|cdot left| x-2 right|]

Как видим, у нас действительно возник общий множитель. Теперь, если собрать все модули с одной стороны, то можно вынести этот множитель за скобку:

[begin{align}& left| x-1 right|=left| x-1 right|cdot left| x-2 right|; \& left| x-1 right|-left| x-1 right|cdot left| x-2 right|=0; \& left| x-1 right|cdot left( 1-left| x-2 right| right)=0. \end{align}]

Ну а теперь вспоминаем, что произведение равно нулю, когда хотя бы один из множителей равен нулю:

[left[ begin{align}& left| x-1 right|=0, \& left| x-2 right|=1. \end{align} right.]

Таким образом, исходное уравнение с двумя модулями свелось к двум простейшим уравнениям, о которых мы говорили в самом начале урока. Такие уравнения решаются буквально в пару строчек.:)

Данное замечание, возможно, покажется излишне сложным и неприменимым на практике. Однако в реальности вам могут встретиться куда более сложные задачи, нежели те, что мы сегодня разбираем. В них модули могут комбинироваться с многочленами, арифметическими корнями, логарифмами и т.д. И в таких ситуациях возможность понизить общую степень уравнения путём вынесения чего-либо за скобку может оказаться очень и очень кстати.:)

Теперь хотелось бы разобрать ещё одно уравнение, которое на первый взгляд может показаться бредовым. На нём «залипают» многие ученики — даже те, которые считают, что хорошо разобрались в модулях.

Тем не менее, это уравнение решается даже проще, чем то, что мы рассматривали ранее. И если вы поймёте почему, то получите ещё один приём для быстрого решения уравнений с модулями.

Итак, уравнение:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0]

Нет, это не опечатка: между модулями именно плюс. И нам нужно найти, при каких $x$ сумма двух модулей равна нулю.:)

В чём вообще проблема? А проблема в том, что каждый модуль — число положительное, либо в крайнем случае ноль. А что будет, если сложить два положительных числа? Очевидно, снова положительное число:

[begin{align}& 5+7=12 gt 0; \& 0,004+0,0001=0,0041 gt 0; \& 5+0=5 gt 0. \end{align}]

Последняя строчка может натолкнуть на мысль: единственный случай, когда сумма модулей равна нулю — это если каждый модуль будет равен нулю:

[left| x-{{x}^{3}} right|+left| {{x}^{2}}+x-2 right|=0Rightarrow left{ begin{align}& left| x-{{x}^{3}} right|=0, \& left| {{x}^{2}}+x-2 right|=0. \end{align} right.]

А когда модуль равен нулю? Только в одном случае — когда подмодульное выражение равно нулю:

[x-{{x}^{3}}=0Rightarrow xleft( 1-{{x}^{2}} right)=0Rightarrow left[ begin{align}& x=0 \& x=pm 1 \end{align} right.]

[{{x}^{2}}+x-2=0Rightarrow left( x+2 right)left( x-1 right)=0Rightarrow left[ begin{align}& x=-2 \& x=1 \end{align} right.]

Таким образом, у нас есть три точки, в которых обнуляется первый модуль: 0, 1 и −1; а также две точки, в которых обнуляется второй модуль: −2 и 1. Однако нам нужно, чтобы оба модуля обнулялись одновременно, поэтому среди найденных чисел нужно выбрать те, которые входят в оба набора. Очевидно, такое число лишь одно: $x=1$ — это и будет окончательным ответом.

Теги

Добавить комментарий