Как найти модуль радиус вектора точки

Ра́диус-ве́ктор (обозначается буквой r со стрелкой: {vec {r}} или набираемой жирным шрифтом: mathbf {r} ) — вектор, задающий положение точки в пространстве (например, евклидовом) относительно некоторой заранее фиксированной точки, называемой началом координат. Понятие используется в математике (геометрии) и физике.

Радиус-вектор в геометрии[править | править код]

Для произвольной точки в пространстве радиус-вектор — это вектор, идущий из начала координат в эту точку.

Длина, или модуль радиус-вектора — расстояние, на котором точка находится от начала координат, стрелка вектора — указывает направление на эту точку пространства.

На плоскости углом радиус-вектора называется угол, на который радиус-вектор повёрнут относительно оси абсцисс в направлении против часовой стрелки.

Запись в различных системах координат[править | править код]

Двумерное пространство[править | править код]

Трёхмерное пространство[править | править код]

n-мерное пространство[править | править код]

  • Декартовы координаты: {displaystyle quad {vec {r}}=x_{1}{vec {e}}_{1}+x_{2}{vec {e}}_{2}+...+x_{n}{vec {e}}_{n}}

Радиус-вектор в кинематике[править | править код]

В кинематике изменение радиус-вектора со временем, то есть функция {vec  r}(t), определяет движение материальной точки. Если указанная функция известна, на её основе могут быть вычислены скорость и ускорение:

{displaystyle {vec {v}}(t)={frac {{mbox{d}}{vec {r}}(t)}{{mbox{d}}t}}={dot {vec {r}}}(t)}
{displaystyle {vec {a}}(t)={frac {{mbox{d}}^{2}{vec {r}}(t)}{{mbox{d}}t^{2}}}={ddot {vec {r}}}(t)},

где точка сверху обозначает дифференцирование по времени, а две точки — двукратное дифференцирование.

В таком виде запись применима к системе координат любого типа. Но переход к трём координатам декартовой, цилиндрической и сферической систем осуществляется по-разному. Например, если для декартовых координат {displaystyle {vec {v}}={dot {x}}{vec {e}}_{x}+{dot {y}}{vec {e}}_{y}+{dot {z}}{vec {e}}_{z}}, то для цилиндрической системы имеем не
{displaystyle {vec {v}}={dot {rho }}{vec {e}}_{rho }+{dot {varphi }}{vec {e}}_{varphi }+{dot {z}}{vec {e}}_{z}}, а выражение: {displaystyle {vec {v}}={dot {rho }}{vec {e}}_{rho }+rho {dot {varphi }}{vec {e}}_{varphi }+{dot {z}}{vec {e}}_{z}}; ускорение в последнем случае: {displaystyle {vec {a}}=({ddot {rho }}-rho {dot {varphi }}^{2}){vec {e}}_{rho }+(2{dot {rho }}{dot {varphi }}+rho {ddot {varphi }}){vec {e}}_{varphi }+{ddot {z}}{vec {e}}_{z}}.

Радиус вектор. Радиус вектор точки. Радиус вектор материальной точки. Модуль радиус вектора

Что называется радиус-вектором?

Радиус-векторы широко используются в физике для описания физических процессов.

Положение материальной точки относительно системы отсчета можно определить с помощью радиус-вектора.

Радиус-вектор пример

Рассмотрим радиус вектор точки на простом примере.

Пусть задана координатная система с началом в точке О.

Проведем вектор из начала координат к точке А:

Радиус-вектор определение

Радиус-вектор модуль

Длина радиус-вектора, т.е. его модуль, равна расстоянию от начала координат до точки А.

Итак, модуль радиус-вектора:

Таким образом модуль радиус-вектора определяется как и модуль обычного вектора.

Радиус-вектор действия

К радиусу-вектору применимы все действия, которые применимы к обычным векторам: сложение векторов, вычитание векторов и т.д.

Физика

А Вы уже инвестируете?
Слышали про акцию в подарок?

Зарегистрируйся по этой ссылке
и получи акцию до 100.000 руб

План урока:

Механическое движение. Система отсчёта. Закон относительности движения

Механическим движением в физике называется изменение с течением времени положения тела (или его частей) в пространстве относительно других тел.

То есть, чтобы сказать, что тело или система совершает механическое движение, нам необходимо: 1) наблюдать его во времени; 2) сравнивать его положение с положением какого-то другого тела (относительно этого тела).

Например, пассажир в едущем автомобиле неподвижен относительно кресла, на котором он сидит, но он движется относительно людей, стоящих на автобусной остановке и самой остановки. А сама автобусная остановка неподвижна относительно стоящих людей, ждущих автобус (см. рисунок 1). Однако она движется относительно проезжающих мимо машин. В первом случае наблюдаемым объектом был человек в машине, а точкой отсчета кресло и люди на остановке. Во втором случае наблюдаемой была автобусная остановка, а точками отсчета – люди на остановке и проезжающие мимо машины.

Рисунок 1 – Иллюстрация к примеру

Из примеров можно сделать вывод, что важно, какой именно объект находится под наблюдением и относительно какого объекта – тела отсчета – рассматривается его движение. Отсюда можно сформулировать закон относительности движения: характер движения тела зависит от того, относительно какого объекта мы рассматриваем данное движение.

Тело (или точка) отсчета, связанная с ним система координат и часы, вместе образуют систему отсчета. То есть все сказанное выше можно переформулировать в одно предложение: для наблюдения механического движения важно в какой системе отсчета будет происходить наблюдение.

Рисунок 2 – Пример системы отсчета (наблюдаемы объект – летящий мяч, тело отсчета – камень, лежащий в начале координат, система координат и секундомер для отсчета времени)

Однако объекты могут быть очень сложными для наблюдения. Например, автомобиль едет по прямой несколько километров и необходимо описать его движение относительно камня на обочине. Казалось бы, все просто. Но как именно описать движение автомобиля, если корпус его движется по прямой, а колеса совершают вращательные движения.

Для удобства решения подобных задач принято упрощение: если размер и форма тела в данной задаче не играют важной роли для наблюдателя, можно считать это тело за материальную точку.

Материальная точка – это такое тело, размером и формой которого в условиях данной задачи можно пренебречь.

Приведем пример: когда автобус едет из города А в город Б, его можно рассматривать как материальную точку. Когда пассажир идет из одного конца этого автобуса в другой, считать автобус материальной точкой нельзя. В общем случае можно сказать, что тело можно считать материальной точкой, если его размеры значительно меньше расстояния, на которое оно перемещается.

Уравнения движения. Радиус-вектор. Проекция вектора

Для описания движения тела необходимо уметь рассчитывать его положение в каждый момент времени. Как это сделать?

Самый очевидный способ – координатный. Если вернуться к примеру на рисунке 2, можно увидеть, что летящий мяч в каждый момент времени имеет три координаты по осям OX, OY и OZ. Эти координаты являются функциями времени (т.е. они зависят от времени), а значит, их можно записать в виде системы:

Вид этих уравнений будет зависеть от многих вещей: от того, с какой силой бросили мяч в начале, от массы мяча, под каким углом его бросили и так далее. В любом случае, если эти уравнения заданы, можно найти координаты (то есть положение) тела в любой момент времени. Поиск этих уравнений – основная задача кинематики.

Эта система является кинематическими уравнениями движения тела или материальной точки, записанными в координатной форме. Повторим: если вид уравнений движения задан, можно узнать координату движущейся точки в любой момент времени.

В общем случае, координат три, но иногда можно обойтись двумя или даже одной координатой. Например, для описания движения бильярдного шара достаточно двух координат (так как шар не может двигаться вверх и вниз), а для описания движения шарика, катящегося по прямому горизонтальному желобку достаточно одной координаты (шарик не может двигаться вверх-вниз и вправо-влево).

Еще один способ описания движения – векторный.

*Перед дальнейшим прочтением данной статьи желательно вспомнить основную теорию по теме «Векторы» и «Метод координат»

Вектор, проведенный из начала координат к материальной точке, называется радиус-вектором (см. рисунок 3).

Рисунок 3 – Радиус-вектор (серой линией изображены траектория движения материальной точки, r1 и r2* радиус-векторы, проведенные к этой материальной точке в разные моменты времени)

Радиус-вектор проведенный к материальной точке в разные моменты времени будет разным. Значит, его тоже можно представить, как функцию времени:

r = r(t)

Такая функция и будет уравнением движения в векторной форме. Если ее вид задан, можно описать движение тела с той же полнотой, как и при координатной записи.

Еще раз обозначим отличия: при записи уравнения движения в координатной форме в каждый момент времени наблюдающий будет знать три координаты тела; при записи в векторной форме в каждый момент времени известен радиус-вектор (его модуль и направление). Обе записи равносильны.

*На письме векторы обычно обозначаются стрелкой сверху, над величиной. Однако в печатном тексте не всегда удобно нагромождать формулы дополнительными знаками, поэтому в печати векторные величины пишут просто жирным шрифтом. В данной статье далее жирным шрифтом будут написаны только векторные величины.

Покажем, что векторная и координатная записи равносильны. Для этого необходимо вспомнить, как построить проекцию вектора на ось (см. рисунок 4).

Рисунок 4 – Построение проекции вектора на ось

Чтобы построить проекцию вектора на ось, необходимо опустить перпендикуляра из начала и конца вектора на эту ось. Длина получившегося отрезка между проекциями начала и конца вектора, взятая со знаком «+», если вектор а сонаправлен с осью Х, или со знаком «-», если вектор а противонаправлен оси Х, – это и есть искомая проекция.

Если вектор выходит из начала координат, задача облегчается – необходимо опустить перпендикуляр только из конца вектора.

Напоминания из геометрии:

два вектора равны, если они параллельны или лежат на одной прямой, сонаправлены, а их модули равны;

проекции равных векторов равны.

Рассмотрим пример (см. рисунок 5)

Рисунок 5 – Задача на нахождение проекции векторов

Предлагаем читателю самому подумать, а затем сравнить свои рассуждения с приведенными ниже.

Итак, вектор а: его начала соответствует координате хн=1, а конец хк = 4. Значит ax = хк – хн = 4-1 = 3. Вектор b: его начало лежит в точке хн=2, а конец хк =0. Значит bx = хк – хн = 0-2 = -2.

В двумерном случае, проецировать нужно на две оси, но принцип остается тем же.

Иногда еще нужно находить составляющие компоненты вектора ах и ау. Рассмотрим пример, для простоты возьмем вектор, выходящий из начал координат (см. рисунок 6).

Сумма векторов ах и ау равна а. Модули векторов ах и ау численно равны координатам точек, куда попали перпендикуляры, опущенные из конца вектора а на оси ОХ и ОУ.

Еще следует отметить, что, если известен угол β между вектором а и осью ОХ, воспользовавшись основами тригонометрии, можно найти величины проекций:

Если бы вектор а совпадал с радиус-вектором какой-нибудь точки, то величины ах и ау совпадали бы с координатами тела по осям ОХ и ОY.

Способ с использованием тригонометрических функций удобен, когда координата конца вектора попадает в нецелое число и опустив перпендикуляр на ось его трудно найти точно. В физических задачах такое часто случается.

Рисунок 6 – Нахождение компонент вектора а

Рассмотрим пример (см. рисунок 7). Модуль вектора r равен 2. Сам вектор направлен под углом в 45 градусов к оси ОХ. Необходимо найти величины проекций (они же координаты) этого вектора на оси ОХ и ОУ.

Рисунок 7 – Задача на нахождение проекций вектора в двумерном пространстве

В общем случае радиус-вектор находится в трехмерном пространстве (см. рисунок 8). Построение проекции осуществляется по тому же принципу, что и в рассмотренных выше примерах. Когда строятся проекции на оси ОХ и ОУ, перпендикуляр сначала опускается на плоскость, в которой лежат оси ОХ и ОУ, а затем точка, в которую упал перпендикуляр к плоскости, проецируется на оси ОХ и ОУ.

Точки, в которые попал перпендикуляры к осям – rx, ry, rz – это и есть координаты x, y, z тела в текущий момент времени.

Следует оговориться, что большинство задач 10-го класса будут ограничиваться двумерным пространством.

Рисунок 8 – Построение проекций радиус-вектора

Траектория. Путь. Перемещение

Траектория – это линия, вдоль которой движется тело.

Траектория движения может быть прямолинейной, если тело движется по прямой линии, и криволинейной, если тело движется по кривой.

Путь (S), пройденный телом, равен длине траектории.

Перемещение (r)* – это вектор, проведенный из начала пути в конец.

В случае прямолинейного движения путь и модуль перемещения тела совпадают (см. рисунок 9а). В случае криволинейного – путь и перемещение различаются (см. рисунок 9б), так как длина линии движения тела больше длины вектора, соединяющего начало и конец траектории.

Рисунок 9 – Путь (S) и перемещение (r) при прямолинейном (а) и криволинейном (б) движении

*Иногда перемещение так же, как и путь, называют буквой S – (на письме с вектором над ней, при печати – жирным шрифтом, так как это векторная величина). В данной статье, чтобы не путаться, перемещение называется только буквой r. В целом, обозначения равноправны, поэтому при решении задач можно использовать то, которое удобнее. Однако не стоит забывать отмечать, что именно обозначено под той или иной буквой.

Равномерное прямолинейное движение: скорость и уравнение движения

Путь и перемещение при равномерном прямолинейном движении

Прямолинейное равномерное движение уже рассматривалось в курсе физики ранее, однако приведем основные определения.

Прямолинейное движение – это движение по прямой линии. Равномерное движение – такое, в процессе которого тело за равные временные промежутки проходит один и тот же путь. Если объединить эти два определения получится третье:

  • равномерное прямолинейное движение – это такое движение, в ходе которого 1) тело совершает движение по прямой линии; 2) за одинаковые временные промежутки проходит одинаковый путь.

Зная определения пути и перемещения, это определение можно упростить: прямолинейное равномерное движение тела – это такое движение, в процессе которого тело за одинаковые временные промежутки совершает равные перемещения.

Важной характеристикой является скорость механического движения. Предположим, что при равномерном прямолинейном движении тело за промежуток времени △t перемещается из точки А в точку Б (см. рисунок 8). Радиус-вектор, проведенный в точку A обозначим r0, а радиус-вектор в точку Б обозначим r1. Изменение радиус-вектора назовем r – нетрудно заметить, что это есть перемещение тела за время △t.

Рисунок 8 – Поиск перемещения тела через радиус-векторы при равномерном прямолинейном движении

Тогда скорость движения (v) будет вычисляться по формуле:

Так как △r – вектор, △t – скаляр, скорость v тоже будет вектором, сонаправленным перемещению.

Если тело начинает двигаться в момент начала отсчета, то △t = t*. Из правила сложения векторов следует, что △r = r1 – r0. Тогда выражение для скорости можно переписать в виде:

Из этого выражения следует:

Это выражение можно применить к любому произвольно взятому моменту времени, поэтому можно опустить индекс в левой части и переписать:

Данное уравнение является уравнением движения при прямолинейном равномерном движении.

*Напоминание: символом (дельта) обозначают изменение какой-нибудь величины. Например t = t – t1, где t – конечный момент времени, t1 – начальный. Если же начальный момент времени совпадает с началом отсчета t1 = 0, то t = t – 0 = t.

Фактически уравнение равномерного прямолинейного движения означает, что радиус-вектор в произвольный момент времени t можно посчитать, сложив начальный радиус-вектор и приращение v*t.

Найдя проекции радиус-вектора и вектора скорости, можно разложить уравнение движения тела на три составляющие вдоль осей ОX, ОY и ОZ.

В этих выражениях r0x, r0y, r0z и vx, vy, vz – это компоненты изначальных векторов r0 и v вдоль осей ОХ, ОY и ОZ соответственно. И теперь можно перейти к скалярному виду:

Стоит отметить, что при проецировании какие-то компоненты вектора могут стать отрицательными, тогда знаки в выражениях поменяются на противоположные.

В рассмотренном выше примере движение происходит только вдоль оси ОХ (остальные координаты не изменяются). На рисунке 9 приведены проекции начальной (х0) и конечной (х1) точки на ось ОХ.

Рисунок 9 – Перемещение тела в координатном представлении

Уравнение координаты (х) движения будет выглядеть:

А это уже похоже на знакомую из прошедшего курса физики формулу для нахождения пути:

Если точка начала двигаться из начала отсчета S0 = 0, можно переписать эту формулу в виде:

Отсюда следуют известные уже формулы для нахождения скорости и времени при равномерном прямолинейном движении:

Приведем последний в этой статье пример: известно, что тело движется вдоль оси ОХ, начиная из точки x0 = 3 см. Скорость тела равна v = 5 м/с и направлена вдоль оси ОХ. Необходимо записать уравнение движения по координате х для этого тела.

Итак, для начала приведем все единицы измерения к СИ:

Теперь можно записывать уравнение для координаты х:

Из этого уравнения можно найти координату тела в любой момент времени. Например, через 2 секунды после начала отсчета тело находилось в точке:

x(2) = 0,03 + 5*2 = 10, 03.

А какой путь прошло тело к этому моменту? В начале оно находилось в точке x(2) = 0,03 м, а через 2 секунды оно стало находиться в точке x(2) = 10, 03. Значит за 2 секунды тело прошло:

S = x(2) – x0 = 10, 03 – 0,03 = 10 м.

А если скорость тела была направлена противоположно оси ОХ, как тогда выглядело бы уравнение движения?

Тогда проекция вектора скорости на ось ОХ была бы отрицательной и в уравнении знак перед скоростью поменялся бы на противоположный:

Что такое радиус-вектор

Радиус-вектор – это вектор, начало которого совпадает с точкой (0 ; 0) — началом координат.

Почему радиус-вектор так называют

Если начертить окружность с центром в точке (0 ; 0), этот вектор станет её радиусом.

Любой вектор можно превратить в радиус-вектор. Для этого сдвигаем его так, чтобы начало этого вектора совместить с точкой (0 ; 0).

При этом, помним: перемещать вектор можно, а поворачивать его нельзя!

Чем радиус-вектор удобен для использования

Чтобы найти координаты вектора, нужно найти разности соответственных координат точек, расположенных в конце и начале вектора.

Для радиус-вектора вычислять координаты не нужно. Можно воспользоваться правилом:

Координаты радиус-вектора — это координаты его конечной точки.

Сравните координаты конечной точки и координаты вектора на рисунке 2.

[spoiler title=”источники:”]

http://100urokov.ru/predmety/kinematika-tverdogo-tela-chast-1

[/spoiler]

1

Механическое
движение

– это процесс изменения положения
данного тела в пространстве с течением
времени относительно другого тела,
которое мы считаем неподвижным.

Тело,
условно принятое за неподвижное – тело
отсчета.

Тело
отсчета

– это тело, относительно которого
опре-деляется положение другого тела.

Обычно
в качестве тела отсчета выбирается
земля, но может быть и движущийся
относительно земли предмет: автомобиль,
лодка, самолет и т.д.

Система
отсчета

– это тело отсчета, система координат,
жестко связанная с ним, и прибор для
измерения времени движения.

Простейшей
системой координат является прямоугольная
декартова система (рис. 2). Система
координат нужна для определения положения
тела относительно тела отсчета. Выбор
системы отсчета зависит от условий
дан-ной задачи.

Рис.

Движение
реальных тел, как правило, сложное. Для
упрощения рас-смотрения движений
пользуются моделями. Одними из первых
моделей реальных тел являются абсолютное
твердое тело и материальная точка.

Материальной
точкой

называется тело, размерами и формой
которого можно пренебречь в данной
задаче. Данное понятие является
математической абстракцией. Одно и то
же тело в одних задачах можно рассматривать
как материальную точку, а в других
задачах – нельзя. Например, радиус Земли
RЗемли
равен 6400 км, расстояние между Солнцем
и Землей L равно 150 000 000 км (L >> RЗемли).
Рассматривая движение Земли относительно
Солнца, радиусом Земли можно пре-небречь
и считать, что Земля – материальная
точка. Однако если нужно выяснить причины
смены времен года, то Землю уже нельзя
считать матери-альной точкой, а надо
учитывать ее размеры, вращение вокруг
оси и т.д. Мы будем изучать механическое
движение материальной точки для того,
чтобы потом определить движение реального
тела.

2

Ра́диус-ве́ктор
(обычно обозначается или просто ) —
вектор,
задающий
положения точки
в
пространстве
(например,
гильбертовом
или
векторном)
относительно
некоторой заранее фиксированной точки,
называемой началом
координат.

Для
произвольной точки в пространстве,
радиус-вектор
— это вектор, идущий из начала координат
в эту точку.

Длина
радиус-вектора
,
или
его модуль, определяет расстояние, на
котором точка находится от начала
координат, а стрелка указывает направление
на эту точку пространства.

На
плоскости углом радиус-вектора называется
угол, на который радиус-вектор повёрнут
относительно оси
абсцисс

в
направлении против часовой стрелки.

Радиус-вектор
в декартовых координатах

Радиус-вектор
точки – это называется вектор,
начало которого совпадает с началом
системы координат, а конец – с данной
точкой.

Таким
образом, особенностью радиус-вектора,
отличающего его от всех других векторов,
является то, что его начало всегда
находится в точке начала координат
(рис. 17).

Рис.
17

Введение
понятия радиус-вектора
оказалось чрезвычайно плодотворным
при изучении различных физических
явлений. В частности, это понятие широко
используется в механике.

Как
известно, положение точки можно задать
с помощью ее координат. Так, если известны
координаты x1
и y1
точки В или координаты x2
и y2
точки С, то мы легко находим положения
этих точек на плоскости. Этот способ
определения положения точки с помощью
ее координат называется координатным
способом.

Модуль
радиус-вектора


по
теореме Пифагора.

Механическое
движение – это процесс изменения
положения данного тела в пространстве
с течением времени относительно другого
тела, которое мы считаем неподвижным.

Тело,
условно принятое за неподвижное – тело
отсчета.

Тело
отсчета – это тело, относительно которого
опре-деляется положение другого тела.

Обычно
в качестве тела отсчета выбирается
земля, но может быть и движущийся
относительно земли предмет: автомобиль,
лодка, самолет и т.д.

Система
отсчета – это тело отсчета, система
координат, жестко связанная с ним, и
прибор для измерения времени движения.

Простейшей
системой координат является прямоугольная
декартова система (рис. 2). Система
координат нужна для определения положения
тела относительно тела отсчета. Выбор
системы отсчета зависит от условий
дан-ной задачи.

Рис.

Движение
реальных тел, как правило, сложное. Для
упрощения рас-смотрения движений
пользуются моделями. Одними из первых
моделей реальных тел являются абсолютное
твердое тело и материальная точка.

Материальной
точкой называется тело, размерами и
формой которого можно пренебречь в
данной задаче. Данное понятие является
математической абстракцией. Одно и то
же тело в одних задачах можно рассматривать
как материальную точку, а в других
задачах – нельзя. Например, радиус Земли
RЗемли равен 6400 км, расстояние между
Солнцем и Землей L равно 150 000 000 км (L >>
RЗемли). Рассматривая движение Земли
относительно Солнца, радиусом Земли
можно пре-небречь и считать, что Земля
– материальная точка. Однако если нужно
выяснить причины смены времен года, то
Землю уже нельзя считать матери-альной
точкой, а надо учитывать ее размеры,
вращение вокруг оси и т.д. Мы будем
изучать механическое движение материальной
точки для того, чтобы потом определить
движение реального тела.

2 Радиус-вектор. Проекции радиус-вектора. Модуль радиус-вектора.

Ра?диус-ве?ктор
(обычно обозначается или просто ) —
вектор, задающий положения точки в
пространстве (например, гильбертовом
или векторном) относительно некоторой
заранее фиксированной точки, называемой
началом координат.

Для
произвольной точки в пространстве,
радиус-вектор — это вектор, идущий из
начала координат в эту точку.

Длина
радиус-вектора, или его модуль, определяет
расстояние, на котором точка находится
от начала координат, а стрелка указывает
направление на эту точку пространства.

На
плоскости углом радиус-вектора называется
угол, на который радиус-вектор повёрнут
относительно оси абсцисс в направлении
против часовой стрелки.

Радиус-вектор
в декартовых координатах

Радиус-вектор
точки – это называется вектор, начало
которого совпадает с началом системы
координат, а конец – с данной точкой.

Таким
образом, особенностью радиус-вектора,
отличающего его от всех других векторов,
является то, что его начало всегда
находится в точке начала координат
(рис. 17).

Рис.
17

Введение
понятия радиус-вектора оказалось
чрезвычайно плодотворным при изучении
различных физических явлений. В частности,
это понятие широко используется в
механике.

Как
известно, положение точки можно задать
с помощью ее координат. Так, если известны
координаты x1 и y1 точки В или координаты
x2 и y2 точки С, то мы легко находим положения
этих точек на плоскости. Этот способ
определения положения точки с помощью
ее координат называется координатным
способом.

Модуль
радиус-вектора


по
теореме Пифагора.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что называется радиус-вектором?

Радиус-векторы широко используются в физике для описания физических процессов.

Положение материальной точки относительно системы отсчета можно определить с помощью радиус-вектора.

Радиус-вектор пример

Рассмотрим радиус вектор точки на простом примере.

Пусть задана координатная система с началом в точке О.

Проведем вектор из начала координат к точке А: Радиус-вектор

Радиус-вектор определение

Определение радиус-вектора:

Вектор, проведенный от начала системы координат к точке, называется радиус-вектором.

Радиус-вектор модуль

Длина радиус-вектора, т.е. его модуль, равна расстоянию от начала координат до точки А.

Итак, модуль радиус-вектора:

Модуль радиус-вектора – это длина радиус-вектора.

Таким образом модуль радиус-вектора определяется как и модуль обычного вектора.

Радиус-вектор действия

К радиусу-вектору применимы все действия, которые применимы к обычным векторам: сложение векторов, вычитание векторов и т.д.

План урока:

Механическое движение. Система отсчёта. Закон относительности движения

Уравнения движения. Радиус-вектор. Проекция вектора

Траектория. Путь. Перемещение

Равномерное прямолинейное движение: скорость и уравнение движения

Механическое движение. Система отсчёта. Закон относительности движения

Механическим движением в физике называется изменение с течением времени положения тела (или его частей) в пространстве относительно других тел.

То есть, чтобы сказать, что тело или система совершает механическое движение, нам необходимо: 1) наблюдать его во времени; 2) сравнивать его положение с положением какого-то другого тела (относительно этого тела).

Например, пассажир в едущем автомобиле неподвижен относительно кресла, на котором он сидит, но он движется относительно людей, стоящих на автобусной остановке и самой остановки. А сама автобусная остановка неподвижна относительно стоящих людей, ждущих автобус (см. рисунок 1). Однако она движется относительно проезжающих мимо машин. В первом случае наблюдаемым объектом был человек в машине, а точкой отсчета кресло и люди на остановке. Во втором случае наблюдаемой была автобусная остановка, а точками отсчета – люди на остановке и проезжающие мимо машины.

1 illustracia k primeru
Рисунок 1 – Иллюстрация к примеру

Из примеров можно сделать вывод, что важно, какой именно объект находится под наблюдением и относительно какого объекта – тела отсчета – рассматривается его движение. Отсюда можно сформулировать закон относительности движения: характер движения тела зависит от того, относительно какого объекта мы рассматриваем данное движение.

Тело (или точка) отсчета, связанная с ним система координат и часы, вместе образуют систему отсчета. То есть все сказанное выше можно переформулировать в одно предложение: для наблюдения механического движения важно в какой системе отсчета будет происходить наблюдение.

2 primer sistemy otcheta
Рисунок 2 – Пример системы отсчета (наблюдаемы объект – летящий мяч, тело отсчета – камень, лежащий в начале координат, система координат и секундомер для отсчета времени)

Однако объекты могут быть очень сложными для наблюдения. Например, автомобиль едет по прямой несколько километров и необходимо описать его движение относительно камня на обочине. Казалось бы, все просто. Но как именно описать движение автомобиля, если корпус его движется по прямой, а колеса совершают вращательные движения.

Для удобства решения подобных задач принято упрощение: если размер и форма тела в данной задаче не играют важной роли для наблюдателя, можно считать это тело за материальную точку.

Материальная точка – это такое тело, размером и формой которого в условиях данной задачи можно пренебречь.

Приведем пример: когда автобус едет из города А в город Б, его можно рассматривать как  материальную точку. Когда пассажир идет из одного конца этого автобуса в другой, считать автобус материальной точкой нельзя. В общем случае можно сказать, что тело можно считать материальной точкой, если его размеры значительно меньше расстояния, на которое оно перемещается.

Уравнения движения. Радиус-вектор. Проекция вектора

Для описания движения тела необходимо уметь рассчитывать его положение в каждый момент времени. Как это сделать?

Самый очевидный способ – координатный. Если вернуться к примеру на рисунке 2, можно увидеть, что летящий мяч в каждый момент времени имеет три координаты по осям OX, OY и OZ. Эти координаты являются функциями времени (т.е. они зависят от времени), а значит, их можно записать в виде системы:

3 sistema koordinat

Вид этих уравнений будет зависеть от многих вещей: от того, с какой силой бросили мяч в начале, от массы мяча, под каким углом его бросили и так далее. В любом случае, если эти уравнения заданы, можно найти координаты (то есть положение) тела в любой момент времени. Поиск этих уравнений – основная задача кинематики.

Эта система является кинематическими уравнениями движения тела или материальной точки, записанными в координатной форме. Повторим: если вид уравнений движения задан, можно узнать координату движущейся точки в любой момент времени.

В общем случае, координат три, но иногда можно обойтись двумя или даже одной координатой. Например, для описания движения бильярдного шара достаточно двух координат (так как шар не может двигаться вверх и вниз), а для описания движения шарика, катящегося по прямому горизонтальному желобку достаточно одной координаты (шарик не может двигаться вверх-вниз и вправо-влево).

Еще один способ описания движения – векторный.

*Перед дальнейшим прочтением данной статьи желательно вспомнить основную теорию по теме «Векторы» и «Метод координат»

Вектор, проведенный из начала координат к материальной точке, называется радиус-вектором (см. рисунок 3).

4 radius vektor
Рисунок 3 – Радиус-вектор (серой линией изображены траектория движения материальной точки, r1 и r2* радиус-векторы, проведенные к этой материальной точке в разные моменты времени)

Радиус-вектор проведенный к материальной точке в разные моменты времени будет разным. Значит, его тоже можно представить, как функцию времени:

r = r(t)

Такая функция и будет уравнением движения в векторной форме. Если ее вид задан, можно описать движение тела с той же полнотой, как и при координатной записи.

Еще раз обозначим отличия: при записи уравнения движения в координатной форме в каждый момент времени наблюдающий будет знать три координаты тела; при записи в векторной форме в каждый момент времени известен радиус-вектор (его модуль и направление). Обе записи равносильны.

*На письме векторы обычно обозначаются стрелкой сверху, над величиной. Однако в печатном тексте не всегда удобно нагромождать формулы дополнительными знаками, поэтому в печати векторные величины пишут просто жирным шрифтом. В данной статье далее жирным шрифтом будут написаны только векторные величины.

Покажем, что векторная и координатная записи равносильны. Для этого необходимо вспомнить, как построить проекцию вектора на ось (см. рисунок 4).

5 postroenie proekcii vektora
Рисунок 4 – Построение проекции вектора на ось

Чтобы построить проекцию вектора на ось, необходимо опустить перпендикуляра из начала и конца вектора на эту ось. Длина получившегося отрезка между проекциями начала и конца вектора, взятая со знаком «+», если вектор а сонаправлен с осью Х, или со знаком «-», если вектор а противонаправлен оси Х, – это и есть искомая проекция.

Если вектор выходит из начала координат, задача облегчается – необходимо опустить перпендикуляр только из конца вектора.

Напоминания из геометрии:

  • два вектора равны, если они параллельны или лежат на одной прямой, сонаправлены, а их модули равны;

  • проекции равных векторов равны.

Рассмотрим пример (см. рисунок 5)

6 nahozhdenie proekcii vektorov
Рисунок 5 – Задача на нахождение проекции векторов

Предлагаем читателю самому подумать, а затем сравнить свои рассуждения с приведенными ниже.

Итак, вектор а: его начала соответствует координате хн=1, а конец хк = 4. Значит ax = хк – хн = 4-1 = 3. Вектор b: его начало лежит в точке хн=2, а конец хк =0. Значит bx = хк – хн = 0-2 = -2.

В двумерном случае, проецировать нужно на две оси, но принцип остается тем же.

Иногда еще нужно находить составляющие компоненты вектора ах и ау. Рассмотрим пример, для простоты возьмем вектор, выходящий из начал координат (см. рисунок 6).

Сумма векторов ах и ау равна а. Модули векторов ах и ау численно равны координатам точек, куда попали перпендикуляры, опущенные из конца вектора а на оси ОХ и ОУ.

Еще следует отметить, что, если известен угол β между вектором а и осью ОХ, воспользовавшись основами тригонометрии, можно найти величины проекций:

ах = а*cos(β);

аy = а*sin(β).

Если бы вектор а совпадал с радиус-вектором какой-нибудь точки, то величины ах и ау совпадали бы с координатами тела по осям ОХ и ОY.

Способ с использованием тригонометрических функций удобен, когда координата конца вектора попадает в нецелое число и опустив перпендикуляр на ось его трудно найти точно. В физических задачах такое часто случается.

7 nahozhdenie komponenta vektora
Рисунок 6 – Нахождение компонент вектора а

Рассмотрим пример (см. рисунок 7). Модуль вектора r равен 2. Сам вектор направлен под углом в 45 градусов к оси ОХ. Необходимо найти величины проекций (они же координаты) этого вектора на оси ОХ и ОУ.

8 zadacha na nahozhdenie proekcii
Рисунок 7 – Задача на нахождение проекций вектора в двумерном пространстве

В общем случае радиус-вектор находится в трехмерном пространстве (см. рисунок 8). Построение проекции осуществляется по тому же принципу, что и в рассмотренных выше примерах. Когда строятся проекции на оси ОХ и ОУ, перпендикуляр сначала опускается на плоскость, в которой лежат оси ОХ и ОУ, а затем точка, в которую упал перпендикуляр к плоскости, проецируется на оси ОХ и ОУ.

Точки, в которые попал перпендикуляры к осям – rx, ry, rz – это и есть координаты x, y, z тела в текущий момент времени.

Следует оговориться, что большинство задач 10-го класса будут ограничиваться двумерным пространством.

9 postroenie proekcii radius vektora
Рисунок 8 – Построение проекций радиус-вектора

Траектория. Путь. Перемещение

Траектория – это линия, вдоль которой движется тело.

Траектория движения может быть прямолинейной, если тело движется по прямой линии, и криволинейной, если тело движется по кривой.

Путь (S), пройденный телом, равен длине траектории.

Перемещение (r)* – это вектор, проведенный из начала пути в конец.

В случае прямолинейного движения путь и модуль перемещения тела совпадают (см. рисунок 9а). В случае криволинейного – путь и перемещение различаются (см. рисунок 9б), так как длина линии движения тела больше длины вектора, соединяющего начало и конец траектории.

10 put i peremeshchenie
Рисунок 9 – Путь (S) и перемещение (r) при прямолинейном (а) и криволинейном (б) движении

*Иногда перемещение так же, как и путь, называют буквой S – (на письме с вектором над ней, при печати  – жирным шрифтом, так как это векторная величина). В данной статье, чтобы не путаться, перемещение называется только буквой r. В целом, обозначения равноправны, поэтому при решении задач можно использовать то, которое удобнее. Однако не стоит забывать отмечать, что именно обозначено под той или иной буквой.

Равномерное прямолинейное движение: скорость и уравнение движения

Путь и перемещение при равномерном прямолинейном движении

Прямолинейное равномерное движение уже рассматривалось в курсе физики ранее, однако приведем основные определения.

Прямолинейное движение – это движение по прямой линии. Равномерное движение – такое, в процессе которого тело за равные временные промежутки проходит один и тот же путь. Если объединить эти два определения получится третье:

  • равномерное прямолинейное движение – это такое движение, в ходе которого 1) тело совершает движение по прямой линии; 2) за одинаковые временные промежутки проходит одинаковый путь.

Зная определения пути и перемещения, это определение можно упростить: прямолинейное равномерное движение тела – это такое движение, в процессе которого тело за одинаковые временные промежутки совершает равные перемещения.

Важной характеристикой является скорость механического движения. Предположим, что при равномерном прямолинейном движении тело за промежуток времени △t перемещается из точки А в точку Б (см. рисунок 8). Радиус-вектор, проведенный в точку A обозначим r0, а радиус-вектор в точку Б обозначим r1. Изменение радиус-вектора назовем r – нетрудно заметить, что это есть перемещение тела за время △t.

11 poisk peremeshchenia

Рисунок 8 – Поиск перемещения тела через радиус-векторы при равномерном прямолинейном движении

Тогда скорость движения (v) будет вычисляться по формуле:

12 formula skorost dvizhenia

Так как △r – вектор, △t – скаляр, скорость v тоже будет вектором, сонаправленным перемещению.

Если тело начинает двигаться в момент начала отсчета, то △t = t*. Из правила сложения векторов следует, что △r = r1 – r0. Тогда выражение для скорости можно переписать в виде:

13 vyrazhenie skorosti

Из этого выражения следует:

r1 = r0 + v*t.

Это выражение можно применить к любому произвольно взятому моменту времени, поэтому можно опустить индекс в левой части и переписать:

r = r0 + v*t.

Данное уравнение является уравнением движения при прямолинейном равномерном движении.

*Напоминание: символом (дельта) обозначают изменение какой-нибудь величины. Например t = t – t1, где t – конечный момент времени, t1 – начальный. Если же начальный момент времени совпадает с началом отсчета t1 = 0, то t = t – 0 = t.

Фактически уравнение равномерного прямолинейного движения означает, что радиус-вектор в произвольный момент времени t можно посчитать, сложив начальный радиус-вектор и приращение v*t.

Найдя проекции радиус-вектора и вектора скорости, можно разложить уравнение движения тела на три составляющие вдоль осей ОX, ОY и ОZ.

rx = r0x + vx*t;

ry = r0y + vy*t;

rz = r0z + vz*t.

В этих выражениях r0x, r0y, r0z  и vx, vy, vz – это компоненты изначальных векторов r0 и v вдоль осей ОХ, ОY и ОZ соответственно. И теперь можно перейти к скалярному виду:

rx = r0x + vx*t;

ry = r0y + vy*t;

rz = r0z + vz*t.

Стоит отметить, что при проецировании какие-то компоненты вектора могут стать отрицательными, тогда знаки в выражениях поменяются на противоположные.

В рассмотренном выше примере движение происходит только вдоль оси ОХ (остальные координаты не изменяются). На рисунке 9 приведены проекции начальной (х0) и конечной (х1) точки на ось ОХ.

13 peremeshchenie tela v koordinatnom sootnoshenii
Рисунок 9 – Перемещение тела в координатном представлении

Уравнение координаты (х) движения будет выглядеть:

x(t) = x0 + v*t.

А это уже похоже на знакомую из прошедшего курса физики формулу для нахождения пути:

S(t) = S0 + v*t.

Если точка начала двигаться из начала отсчета S0 = 0, можно переписать эту формулу в виде:

S(t) = v*t.

Отсюда следуют известные уже формулы для нахождения скорости и времени при равномерном прямолинейном движении:

15 formula skorosti i vremeni

Приведем последний в этой статье пример: известно, что тело движется вдоль оси ОХ, начиная из точки x0 = 3 см. Скорость тела равна v = 5 м/с и направлена вдоль оси ОХ. Необходимо записать уравнение движения по координате х для этого тела.

Итак, для начала приведем все единицы измерения к СИ:

x0 = 3 см = 0,03 м.

Теперь можно записывать уравнение для координаты х:

x(t) = x0 + v*t = 0,03 + 5*t.

Из этого уравнения можно найти координату тела в любой момент времени. Например, через 2 секунды после начала отсчета тело находилось в точке:

x(2) = 0,03 + 5*2 = 10, 03.

А какой путь прошло тело к этому моменту? В начале оно находилось в точке x(2)  = 0,03 м, а через 2 секунды оно стало находиться в точке x(2) = 10, 03. Значит за 2 секунды тело прошло:

S = x(2) – x0 = 10, 03 – 0,03 = 10 м.

А если скорость тела была направлена противоположно оси ОХ, как тогда выглядело бы уравнение движения?

Тогда проекция вектора скорости на ось ОХ была бы отрицательной и в уравнении знак перед скоростью поменялся бы на противоположный:

x(t) = x0 – v*t = 0,03 – 5*t.

Добавить комментарий