Как найти модуль разности крайних чисел

Как найти модуль разности корней

Из курса школьной математики многие помнят, что корень – это решение уравнения, то есть те значения Х, при которых достигается равенство его частей. Как правило, задача нахождения модуля разности корней ставится в отношении квадратных уравнений, ведь именно они могут иметь два корня, разность которых вы сможете вычислить.

Как найти модуль разности корней

Инструкция

Для начала решите уравнение, то есть найдите его корни или докажите, что они отсутствуют. Перед вами уравнение второй степени: посмотрите, имеет ли оно вид AX2 + BX + C = 0, где А, В и С – простые числа и А не равно 0.

Если уравнение не равно нулю или во второй части равенства присутствует неизвестная Х, приведите его к стандартному виду. Для этого перенесите все числа в левую часть, заменив стоящий перед ними знак. Например, 2Х^2 + 3X + 2 = (-2X). Привести это уравнение можно следующим образом: 2Х^2 + (3Х + 2Х) + 2 = 0. Теперь, когда ваше уравнение приведено к стандартному виду, можно приступить к нахождению его корней.

Вычислите дискриминант уравнения D. Он равен разности B, возведенного в квадрат, и А, умноженного на С, и на 4. Приведенное в пример уравнение 2Х^2 + 5Х + 2 = 0 имеет два корня, так как его дискриминант равен 5^2 + 4 х 2 х 2 = 9, то есть больше 0. Если же дискриминант равен нулю, вы сможете решить уравнение, но оно иметь всего один корень. Отрицательный дискриминант свидетельствует об отсутствии корней уравнения.

Найдите корень из дискриминанта (√D). Для этого вы можете воспользоваться калькулятором с алгебраическими функциями, онлайн-кулькулятором или специальной таблицей корней (обычно она приводится в конце учебников и справочников по алгебре). В нашем случае √D = √9 = 3.

Чтобы вычислить первый корень квадратного уравнения (X1), подставьте в выражение (-В + √D) полученное число и разделите результат на А, умноженное на 2. То есть Х1 = (-5 + 3) / (2 х 2) = -0,5.

Найти второй корень квадратного уравнения X2 можно заменив в формуле сумму на разность, то есть Х2 = (-В – √D) / 2A. В приведённом примере Х2 = (-5 – 3) / (2 х 2) = -2.

Отнимите от первого корня уравнения второй, то есть X1 – X2. При этом абсолютно не имеет значения то, в каком порядке вы подставите корни: конечный результат будет тот же. Полученное число – это разность корней, и вам осталось только найти модуль этого числа. В нашем случае X1 – X2 = -0,5 – (-2) = 1,5 или Х2 – Х1 = (-2) – (-0,5) = -1,5.

Модуль – это расстояние на оси координат от нуля до точки N, измеряемое в единичных отрезках, поэтому модуль любого числа не может быть отрицательным. Найти модуль числа можно следующим образом: модуль положительного числа равен ему самому, а модуль отрицательного – противоположное ему число. То есть |1,5| = 1,5 и |-1,5| = 1,5.

Видео по теме

Источники:

  • модуль разности чисел

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Как найти модуль разности корней

Из курса школьной математики многие помнят, что корень – это решение уравнения, то есть те значения Х, при которых достигается равенство его частей. Как правило, задача нахождения модуля разности корней ставится в отношении квадратных уравнений, ведь именно они могут иметь два корня, разность которых вы сможете вычислить.

Для начала решите уравнение, то есть найдите его корни или докажите, что они отсутствуют. Перед вами уравнение второй степени: посмотрите, имеет ли оно вид AX2 + BX + C = 0, где А, В и С – простые числа и А не равно 0.

Если уравнение не равно нулю или во второй части равенства присутствует неизвестная Х, приведите его к стандартному виду. Для этого перенесите все числа в левую часть, заменив стоящий перед ними знак. Например, 2Х^2 + 3X + 2 = (-2X). Привести это уравнение можно следующим образом: 2Х^2 + (3Х + 2Х) + 2 = 0. Теперь, когда ваше уравнение приведено к стандартному виду, можно приступить к нахождению его корней.

Вычислите дискриминант уравнения D. Он равен разности B, возведенного в квадрат, и А, умноженного на С, и на 4. Приведенное в пример уравнение 2Х^2 + 5Х + 2 = 0 имеет два корня, так как его дискриминант равен 5^2 + 4 х 2 х 2 = 9, то есть больше 0. Если же дискриминант равен нулю, вы сможете решить уравнение, но оно иметь всего один корень. Отрицательный дискриминант свидетельствует об отсутствии корней уравнения.

Найдите корень из дискриминанта (√D). Для этого вы можете воспользоваться калькулятором с алгебраическими функциями, онлайн-кулькулятором или специальной таблицей корней (обычно она приводится в конце учебников и справочников по алгебре). В нашем случае √D = √9 = 3.

Чтобы вычислить первый корень квадратного уравнения (X1), подставьте в выражение (-В + √D) полученное число и разделите результат на А, умноженное на 2. То есть Х1 = (-5 + 3)/ (2 х 2)= -0,5.

Найти второй корень квадратного уравнения X2 можно заменив в формуле сумму на разность, то есть Х2 = (-В – √D) / 2A. В приведённом примере Х2 = (-5 – 3)/ (2 х 2) = -2.

Отнимите от первого корня уравнения второй, то есть X1 – X2. При этом абсолютно не имеет значения то, в каком порядке вы подставите корни: конечный результат будет тот же. Полученное число – это разность корней, и вам осталось только найти модуль этого числа. В нашем случае X1 – X2 = -0,5 – (-2) = 1,5 или Х2 – Х1 = (-2) – (-0,5) = -1,5.

Модуль – эторасстояние на оси координат от нуля до точки N, измеряемое в единичных отрезках, поэтому модуль любого числа не может быть отрицательным. Найти модуль числа можно следующим образом: модуль положительного числа равен ему самому, а модуль отрицательного – противоположное ему число. То есть|1,5| = 1,5 и |-1,5| = 1,5.

Разность модулей и модуль разности

Существуют следующие свойства модуля действительных чисел:

Проведем доказательства, рассматривая различные случаи значений a и b .

Доказательство 1) |a + b| ≤ |a| + |b|:

Если a и b – положительные числа, то их модули совпадают с их значениями: |a| = a, |b| = b . Из этого следует, что |a + b| = |a| + |b| .

Если a – отрицательное число, а b – положительное число, то выражение |a + b| можно записать как |b – a| . Выражение же |a| + |b| равно сумме абсолютных значений a и b , что больше, чем b – a . Поэтому |a + b| .

Если b – отрицательное число, а a – положительное, то |a + b| принимает вид |a – b| , что также меньше суммы модулей |a| + |b| .

Если a и b – отрицательные числа, то получим |–a – b| . Результат этого выражения равен |a + b| (т. к. |–a – b| = |–(a + b)| = |a + b| ). Но уже было доказано, что |a + b| = |a| + |b| , следовательно и |–a – b| = |a| + |b| .

Доказательство 2) |ab| = |a| × |b|:
Здесь, в отличие от сложения, рассматривать все случаи особо не требуется, т. к. абсолютное значение произведения любых чисел (положительных ли, отрицательных ли) не зависит от знаков множителей. В выражении |ab| мы сначала перемножаем числа, а потом «отбрасываем» знак (отрицательный, если он есть), в выражении |a| × |b| сначала избавляемся от знаков, а потом перемножаем. Но от того, в какой момент был взят модуль (до или после умножения), не зависит абсолютное значение произведения.

Доказательство 3) , a ≠ 0:

Если a – положительное число, то |a| = a и, следовательно, доказываемое равенство верно, т. к. и правая и левая части равны 1/ a .

Доказательство 4) |a – b| ≥ |a| – |b|:

Если a и b – положительные числа, то их модули совпадают с самими числами. Поэтому |a – b| = |a| – |b| , потому что можно не брать модули вообще и тогда с двух сторон получим a – b .

Если a – положительное число, а b – отрицательное, то выражение |a – b| примет вид |a + b| , что больше, чем |a| – |b| .

Если a – отрицательное число, а b – положительное, то имеем |–a – b| = |–(a + b)| = |a + b| , что больше, чем |a| – |b| .

В этой статье мы детально разберем модуль числа. Мы дадим различные определения модуля числа, введем обозначения и приведем графические иллюстрации. При этом рассмотрим различные примеры нахождения модуля числа по определению. После этого мы перечислим и обоснуем основные свойства модуля. В конце статьи поговорим о том, как определяется и находится модуль комплексного числа.

Навигация по странице.

Модуль числа – определение, обозначение и примеры

Сначала введем обозначение модуля числа. Модуль числа a будем записывать как , то есть, слева и справа от числа будем ставить вертикальные черточки, образующие знак модуля. Приведем пару примеров. Например, модуль целого числа −7 можно записать как ; модуль рационального числа 4,125 записывается как , а модуль иррационального числа имеет запись вида .

Так мы определились с обозначением, теперь пришло время дать определение модуля числа. Чтобы хорошо понять определение модуля числа необходимо хорошо владеть материалом статьи положительные и отрицательные числа, а также статьи противоположные числа.

Следующее определение модуля относится к действительным числам, а следовательно, и к натуральным числам, и к целым, и к рациональным, и к иррациональным числам, как к составляющим частям множества действительных чисел. О модуле комплексного числа мы поговорим в последнем пункте этой статьи.

Модуль числа a – это либо само число a , если a – положительное число, либо число −a , противоположное числу a , если a – отрицательное число, либо 0 , если a=0 .

Озвученное определение модуля числа часто записывают в следующем виде , эта запись означает, что , если a>0 , , если a=0 , и , если a .

Запись можно представить в более компактной форме . Эта запись означает, что , если ( a больше или равно 0 ), и , если a .

Также имеет место и запись . Здесь отдельно следует пояснить случай, когда a=0 . В этом случае имеем , но −0=0 , так как нуль считают числом, которое противоположно самому себе.

Приведем примеры нахождения модуля числа с помощью озвученного определения. Для примера найдем модули чисел 15 и . Начнем с нахождения . Так как число 15 – положительное, то его модуль по определению равен самому этому числу, то есть, . А чему равен модуль числа ? Так как — отрицательное число, то его модуль равен числу, противоположному числу , то есть, числу . Таким образом, .

В заключение этого пункта приведем один вывод, который очень удобно применять на практике при нахождении модуля числа. Из определения модуля числа следует, что модуль числа равен числу под знаком модуля без учета его знака, а из рассмотренных выше примеров это очень отчетливо видно. Озвученное утверждение объясняет, почему модуль числа называют еще абсолютной величиной числа. Так модуль числа и абсолютная величина числа – это одно и то же.

Модуль числа как расстояние

Геометрически модуль числа можно интерпретировать как расстояние. Приведем определение модуля числа через расстояние.

Модуль числа a – это расстояние от начала отсчета на координатной прямой до точки, соответствующей числу a.

Данное определение согласуется с определением модуля числа, данного в первом пункте. Поясним этот момент. Расстояние от начала отсчета до точки, которой соответствует положительное число, равно этому числу. Нулю соответствует начало отсчета, поэтому расстояние от начала отсчета до точки с координатой 0 равно нулю (не нужно откладывать ни одного единичного отрезка и ни одного отрезка, составляющего какую-нибудь долю единичного отрезка, чтобы от точки O попасть в точку с координатой 0 ). Расстояние от начала отсчета до точки с отрицательной координатой равно числу, противоположному координате данной точки, так как равно расстоянию от начала координат до точки, координатой которой является противоположное число.

Например, модуль числа 9 равен 9 , так как расстояние от начала отсчета до точки с координатой 9 равно девяти. Приведем еще пример. Точка с координатой −3,25 находится от точки O на расстоянии 3,25 , поэтому .

Озвученное определение модуля числа является частным случаем определения модуля разности двух чисел.

Модуль разности двух чисел a и b равен расстоянию между точками координатной прямой с координатами a и b .

То есть, если даны точки на координатной прямой A(a) и B(b) , то расстояние от точки A до точки B равно модулю разности чисел a и b . Если в качестве точки В взять точку O (начало отсчета), то мы получим определение модуля числа, приведенное в начале этого пункта.

Определение модуля числа через арифметический квадратный корень

Иногда встречается определение модуля через арифметический квадратный корень.

Модуль числа a – это арифметический квадратный корень из квадрата числа a , то есть, .

Для примера вычислим модули чисел −30 и на основании данного определения. Имеем . Аналогично вычисляем модуль двух третьих: .

Определение модуля числа через арифметический квадратный корень также согласуется с определением, данным в первом пункте этой статьи. Покажем это. Пусть a – положительное число, при этом число −a – отрицательное. Тогда и , если же a=0 , то .

Свойства модуля

Модулю присущ ряд характерных результатов — свойства модуля. Сейчас мы приведем основные и наиболее часто используемые из них. При обосновании этих свойств мы будем опираться на определение модуля числа через расстояние.

Начнем с самого очевидного свойства модуля – модуль числа не может быть отрицательным числом. В буквенном виде это свойство имеет запись вида для любого числа a . Это свойство очень легко обосновать: модуль числа есть расстояние, а расстояние не может выражаться отрицательным числом.

Переходим к следующему свойству модуля. Модуль числа равен нулю тогда и только тогда, когда это число есть нуль. Модуль нуля есть нуль по определению. Нулю соответствует начало отсчета, никакая другая точка на координатной прямой нулю не соответствует, так как каждому действительному числу поставлена в соответствие единственная точка на координатной прямой. По этой же причине любому числу, отличному от нуля, соответствует точка, отличная от начала отсчета. А расстояние от начала отсчета до любой точки, отличной от точки O , не равно нулю, так как расстояние между двумя точками равно нулю тогда и только тогда, когда эти точки совпадают. Приведенные рассуждения доказывают, что нулю равен лишь модуль нуля.

Идем дальше. Противоположные числа имеют равные модули, то есть, для любого числа a . Действительно, две точки на координатной прямой, координатами которых являются противоположные числа, находятся на одинаковом расстоянии от начала отсчета, значит модули противоположных чисел равны.

Следующее свойство модуля таково: модуль произведения двух чисел равен произведению модулей этих чисел, то есть, . По определению модуль произведения чисел a и b равен либо a·b , если , либо −(a·b) , если . Из правил умножения действительных чисел следует, что произведение модулей чисел a и b равно либо a·b , , либо −(a·b) , если , что доказывает рассматриваемое свойство.

Модуль частного от деления a на b равен частному от деления модуля числа a на модуль числа b , то есть, . Обоснуем это свойство модуля. Так как частное равно произведению , то . В силу предыдущего свойства имеем . Осталось лишь воспользоваться равенством , которое справедливо в силу определения модуля числа.

Следующее свойство модуля записывается в виде неравенства: , a , b и c – произвольные действительные числа. Записанное неравенство представляет собой ни что иное как неравенство треугольника. Чтобы это стало понятно, возьмем точки A(a) , B(b) , C(c) на координатной прямой, и рассмотрим вырожденный треугольник АВС , у которого вершины лежат на одной прямой. По определению модуля разности равен длине отрезка АВ , — длине отрезка АС , а — длине отрезка СВ . Так как длина любой стороны треугольника не превосходит сумму длин двух других сторон, то справедливо неравенство , следовательно, справедливо и неравенство .

Только что доказанное неравенство намного чаще встречается в виде . Записанное неравенство обычно рассматривают как отдельное свойство модуля с формулировкой: «Модуль суммы двух чисел не превосходит сумму модулей этих чисел». Но неравенство напрямую следует из неравенства , если в нем вместо b положить −b , и принять c=0 .

Модуль комплексного числа

Дадим определение модуля комплексного числа. Пусть нам дано комплексное число, записанное в алгебраической форме , где x и y – некоторые действительные числа, представляющие собой соответственно действительную и мнимую части данного комплексного числа z , а – мнимая единица.

Модулем комплексного числа z=x+i·y называется арифметический квадратный корень из суммы квадратов действительной и мнимой части данного комплексного числа.

Модуль комплексного числа z обозначается как , тогда озвученное определение модуля комплексного числа может быть записано в виде .

Данное определения позволяет вычислить модуль любого комплексного числа в алгебраической форме записи. Для примера вычислим модуль комплексного числа . В этом примере действительная часть комплексного числа равна , а мнимая – минус четырем. Тогда по определению модуля комплексного числа имеем .

Геометрическую интерпретацию модуля комплексного числа можно дать через расстояние, по аналогии с геометрической интерпретацией модуля действительного числа.

Модуль комплексного числа z – это расстояние от начала комплексной плоскости до точки, соответствующей числу z в этой плоскости.

По теореме Пифагора расстояние от точки O до точки с координатами (x, y) находится как , поэтому, , где . Следовательно, последнее определение модуля комплексного числа согласуется с первым.

Данное определение также позволяет сразу указать, чему равен модуль комплексного числа z , если оно записано в тригонометрической форме как или в показательной форме . Здесь . Например, модуль комплексного числа равен 5 , а модуль комплексного числа равен .

Можно также заметить, что произведение комплексного числа на комплексно сопряженное число дает сумму квадратов действительной и мнимой части. Действительно, . Полученное равенство позволяет дать еще одно определение модуля комплексного числа.

Модуль комплексного числа z – это арифметический квадратный корень из произведения этого числа и числа, комплексно сопряженного с ним, то есть, .

В заключение отметим, что все свойства модуля, сформулированные в соответствующем пункте, справедливы и для комплексных чисел.

Хочешь подготовиться к ОГЭ или ЕГЭ по математике на отлично?

Хочешь проверить свои силы и узнать результат насколько ты готов к ЕГЭ или ОГЭ?

Важное замечание!
Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь: «Как почистить кэш браузера».

Модуль числа — это такая забавная концепция в математике, с пониманием которой у многих людей возникают трудности.

А между тем она проста как апельсин. Но чтобы ее понять, давай сначала разберемся зачем нужен модуль.

Вот смотри, ситуация первая.

В жизни, часто встречаются ситуации, где отрицательные числа не имеют никакого практического смысла.

Например, мы не можем проехать на машине “минус 70 километров” (мы проедем 70 километров, неважно, в каком направлении), как и не можем купить “минус 5 кг апельсинов”. Эти значения всегда должны быть положительными.

Именно для обозначения таких ситуаций математики придумали специальный термин – модуль или абсолютная величина.

Ситуация вторая.

Ты покупаешь пакет чипсов “Lay’s”. На пакете написано, что он весит 100 грамм. Но если ты начнешь взвешивать пакеты, вряд ли они будут весить ровно 100 грамм. Какой-то из них будет весить 101 грамм, а какой-то 99.

И что, можно идти судиться с компанией Lays, если они тебе недовесили?

Нет. Потому что Lays устанавливает допуск и говорит, что пакет будет весить 100 грамм, плюс-минус 1 грамм. Вот это “плюс-минус” — это и есть модуль.

Ситуация третья.

В жизни вообще не бывает 100% точных величин. Всегда есть вот такие допуски. В зарплате, например: “Я согласен работать за 250 тыс рублей в месяц, плюс-минус 20 тыс!” 20 тысяч — это и есть модуль.

А вообще для простоты запомни, что модуль это расстояние от нуля в любую сторону.

Ну вот, ты уже почти все знаешь. Давай теперь подробнее.

Что же такое модуль числа?

Представь, что это ты.

Предположим, что ты стоишь на месте и можешь двигаться как вперёд, так и назад. Обозначим точку отправления .

Итак, ты делаешь шага вперёд и оказываешься в точке с координатой .

Это означает, что ты удалился от места, где стоял на шага ( единичных отрезка). То есть, расстояние от начала движения до точки, где ты в итоге оказался, равно .
Но ведь ты же можешь двигаться и назад!

Если от отправной точки с координатой сделать шага в обратную сторону, то окажешься в точке с координатой .

Какое расстояние было пройдено в первом и во втором случае? Конечно же, расстояние, пройденное в первом и во втором случае, будет одинаковым и равным трем, ведь обе точки ( и ), в которых ты оказался одинаково удалены от точки, из которой было начато движение ( ).

Таким образом, мы приблизились к понятию модуля . Получается, что модуль показывает расстояние от любой точки на координатном отрезке до точки начала координат.

Так, модулем числа будет . Модуль числа также равен , потому что расстояние не может быть отрицательным !

Модуль – это абсолютная величина

Обозначается модуль просто:

Итак, найдём модуль числа и :

Основные свойства модуля

Вот мы и приблизились к первому свойству модуля:

Модуль не может быть выражен отрицательным числом.

То есть, если – число положительное, то его модуль будет равен этому же числу:

если ext mathbf ,”> то .

Если – отрицательное число, то его модуль равен противоположному числу:

А если ? Ну, конечно! Его модуль также равен :

Из этого следует, что модули противоположных чисел равны, то есть:

А теперь потренируйся:

Ответы: 9; 3; 16; 8; 17.

Довольно легко, правда?

А если перед тобой вот такое число:

Как быть здесь? Как раскрыть модуль в этом случае? Действуем по тому же сценарию.

Сначала определяем знак выражения под знаком модуля, а потом раскрываем модуль :

  • если значение выражения больше нуля, то просто выносим его из-под знака модуля,
  • если же выражение меньше нуля, то выносим его из-под знака модуля, меняя при этом знак, как делали это ранее в примерах.

Ну что, попробуем? Оценим :

Если , то какой знак имеет ? Ну конечно, !

А, значит, знак модуля раскрываем, меняя знак у выражения:

Разобрался? Тогда попробуй сам:

Какими же ещё свойствами обладает модуль?

Если нам нужно перемножить числа внутри знака модуля, мы спокойно можем перемножить модули этих чисел.

Выражаясь математическим языком, модуль произведения чисел равен произведению модулей этих чисел.

А что, если нам нужно разделить два числа (выражения) под знаком модуля?

Да то же, что и с умножением! Разобьем на два отдельных числа (выражения) под знаком модуля:

при условии, что (так как на ноль делить нельзя).

Стоит запомнить ещё одно свойство модуля:

Модуль суммы чисел всегда меньше или равен сумме модулей этих чисел:

Почему так? Всё очень просто!

Как мы помним, модуль всегда положителен. Но под знаком модуля может находиться любое число: как положительное, так и отрицательное. Допустим, что числа и оба положительные. Тогда левое выражение будет равно правому выражению.

Рассмотрим на примере:

Выражения также равны, если оба числа отрицательны:

Если же под знаком модуля одно число отрицательное, а другое положительно, левое выражение всегда окажется меньше правого:

Вроде с этим свойством все ясно, рассмотрим еще парочку полезных свойств модуля.

Что если перед нами такое выражение:

Что мы можем сделать с этим выражением? Значение x нам неизвестно, но зато мы уже знаем, что , а значит .

Число больше нуля, а значит можно просто записать:

Вот мы и пришли к другому свойству, которое в общем виде можно представить так:

А чему равно такое выражение:

Итак, нам необходимо определить знак под модулем. А надо ли здесь определять знак?

Конечно, нет, если помнишь, что любое число в квадрате всегда больше нуля! Если не помнишь, смотри тему степень и ее свойства. И что же получается? А вот что:

Здорово, да? Довольно удобно. А теперь конкретный пример для закрепления:

Ну, и почему сомнения? Действуем смело!

Во всем разобрался? Тогда вперед тренироваться на примерах!

1. Найдите значение выражения , если .

2. У каких чисел модуль равен ?

3. Найдите значение выражений:

Если не все пока ясно и есть затруднения в решениях, то давай разбираться:

Итак, подставим значения и в выражение

Как мы помним, противоположные числа по модулю равны. Значит, значение модуля, равное имеют два числа: и .

Все уловил? Тогда пора перейти к более сложному!

Попробуем упростить выражение

Итак, мы помним, что значение модуля не может быть меньше нуля. Если под знаком модуля число положительное, то мы просто можем отбросить знак: модуль числа будет равен этому числу.

Но если под знаком модуля отрицательное число, то значение модуля равно противоположному числу (то есть числу, взятому со знаком «–»).

Для того, чтобы найти модуль любого выражения, для начала нужно выяснить, положительное ли значение оно принимает, или отрицательное.

Получается, значение первого выражения под модулем .

, следовательно, выражение под знаком модуля отрицательно. Второе выражение под знаком модуля всегда положительно, так как мы складываем два положительных числа.

Итак, значение первого выражения под знаком модуля отрицательно, второго – положительно:

Это значит, раскрывая знак модуля первого выражения, мы должны взять это выражение со знаком «–». Вот так:

Во втором случае просто отбросим знак модуля:

Упростим данное выражение целиком:

Модуль числа и его свойства (строгие определения и доказательства)

Модуль (абсолютная величина) числа — это само число , если , и число , если :

Квадратное уравнение. Парабола

Квадратичная функция

$s=frac<2>$ – путь, которое проходит свободно падающее тело за время t с нулевой начальной скоростью.

В общем виде эту зависимость можно записать так: $y=ax^2$. График этой функции – парабола, вершина которой находится в точке (0,0). Ветви направлены вверх. Четная функция.

Квадратичной называется функция, которую можно задать формулой y=ax² + bx + c, причем а отлично от 0. Здесь a,b,c – некоторые числа, x – переменная.

Корень — это значение переменной, обращающее квадратный трёхчлен в ноль, а квадратное уравнение в верное равенство.

Vertex form

Можно выделить квадратный двучлен, поэтому это тоже парабола со сдвигом и растяжением.

Вершина параболы в точке (m,n), $m = frac<-b><2a>, n = frac<-D><4a>$

Квадратное уравнение

a – первый или старший коэффициент

b – второй коэффициент или средний или коэффициент при x

c – свободный член

Дискриминант $D = b^2-4ac$

Схематическое расположение параболы в зависимости от знаков первого коэффициента и дискриминанта.

Приведённым называют квадратное уравнение, в котором старший коэффициент равен единице. Такое уравнение может быть получено делением всего выражения на старший коэффициент.

Полным называют такое квадратное уравнение, все коэффициенты которого отличны от нуля.

Неполным называется такое квадратное уравнение, в котором хотя бы один из коэффициентов кроме старшего (либо второй коэффициент, либо свободный член) равен нулю.

Теорема Виета

Теорема. Cумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Если приведенное квадратное уравнение $x^2 + px + q = 0$ имеет действительные корни, то их сумма равна $-p$, а произведение равно $q$, то есть

$$x_1 + x_2 = –p, \ x_1 cdot x_2 = q$$

Примечание. Любое квадратное уравнение можно привести к такому виду делением на a.

Пример. Найти сумму корней уравнения $x^2-7x+13=0$. Корней нет, поэтому ответ «сумма корней равна 7» – неверный. Для определения количества корней необходимо найти дискриминант.

Таким образом, в формулировку теоремы Виета необходимо добавить условие: если корни существуют, то … Или если дискриминант неотрицателен. Заметим, что при нулевом дискриминанте теорема Виета тоже работает (считать, что уравнение имеет два равных корня).

Пример. (Мерзляк, Алгебра 8 углубл, 2016)

Применения теоремы Виета

Теорема Виета позволяет угадывать целые корни квадратного трехчлена (не решая уравнение).

Так, находя корни квадратного уравнения x² – 5x + 6 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 6) на два множителя так, чтобы их сумма равнялась бы числу 5. Это разложение очевидно: $$6 = 2 cdot 3, , 2 + 3 = 5. $$

Отсюда должно следовать, что числа 2 и 3 являются искомыми корнями.

Определение знаков корней

Определение знаков корней без решения уравнения (при условии что D > 0).

p > 0 p 0 Корни имеют одинаковые знаки
оба корня отрицательны оба корня положительны
Свободный член q 0

Геометрический смысл теоремы Виета

Мы привыкли произносить «икс квадрат», «квадрат суммы», «удвоенный квадрат», не придавая этим выражениям геометрического смысла. На самом деле все они отражают взгляд на алгебру, который сложился еще в глубокой древности, потому что людям приходилось решать геометрические задачи на вычисление площадей.

В клинописных текстах древнего Вавилона (около 2000 лет до нашей эры) обнаружена такая задача. «Площадь 1000 состоит из суммы двух квадратов, и сторона меньшего составляет две трети стороны другого, уменьшенные на 10. Какова сторона бóльшего квадрата?»

Решить такую задачу – это все равно, что решить уравнение $x^2+(frac 2 3 x-10)^2=1000$. В клинописном тексте нет формулы для решения этого уравнения, но перечисляются необходимые этапы вычисления, которые приводят к корню $x = 30$.

Фактически вавилонский метод дает решение системы $beginx+y=p \ xy= qend$,

которая представляет собой запись задачи нахождения сторон прямоугольника с данным периметром и площадью. Теорема Виета, с изучения которой начинается этот параграф, связывает решение этой системы с решением квадратного уравнения.

Обобщение теоремы Виета

Теорема Вієта для зведеного многочлена $f(x)=x^n+a_x^+ldots+a_1x+a_0$ формулюється так: «Якщо $x_1, x_2, x_3, ldots, x_, x_n$ — всі комплексні корені (включаючи рівні) цього многочлена степеня n, то мають місце рівності:

$$ x_1+x_2+ldots+x_n=-a_ $$ $$ x_1x_2+x_1x_3+ldots+x_1x_n+x_2x_3+ldots+x_x_n=a_ $$ $$ x_1x_2x_3+x_1x_2x_4+ldots+x_1x_x_n+ldots+x_x_x_n=-a_ $$ $$x_1x_2x_3 ldots x_n=(-1)^n a_0$$

Разность корней квадратного уравнения

Для приведенного уравнения $$ x_1-x_2 = sqrt $$

$$ <(x_1-x_2)^2>= x_1^2 – 2x_1x_2 + x_2^2 = (x_1+x_2)^2-4x_1x_2$$

Для приведенного уравнения с учетом теоремы Виета:

$$(x_1-x_2)^2 = (-b)^2-4c = b^2-4ac = D$$

Таким образом, если корни квадратного уравнения существуют, то расстояние между ними равно корню из дискриминанта. Грубо говоря, чем больше дискриминант, тем больше расстояние между корнями.

Обобщение дискриминанта

Дискриминантом многочлена $p(x)$ называется функция, задаваемая его коэффициентами.

Если точнее, то дискриминант – это произведение квадратов разностей корней многочлена, умноженное на старший коэффициент в степени на 2 меньше удвоенной степени многочлена.

1. Любая точка параболы равноудалена от некоторый точки, называемой фокусом параболы, и некоторой прямой, называемой ее директрисой.

2. Если вращать параболу вокруг ее оси симметрии (например, параболу $y = x^2$ вокруг оси Oy), то получается очень интересная поверхность, которая называется параболоидом вращения.

Поверхность жидкости, вращающейся в сосуде, имеет форму параболоида вращения. Вы можете увидеть эту поверхность, если помешаете ложечкой в неполном стакане чая, а потом вынете ложечку.

3. Если в пустоте бросить камень под некоторым углом к горизонту, то он полетит по параболе.

4. Если пересечь поверхность конуса плоскостью, параллельной какой-либо одной его образующей, то в сечении получится парабола.

5. В парках культуры устраивают иногда забавный аттракцион «Параболоид чудес». Каждому из стоящих внутри вращающегося параболоида кажется, что он стоит на полу, а остальные люди каким-то чудом держатся на стенках.

6. В зеркальных телескопах тоже применяют параболические зеркала: свет от далекой звезды, идущий параллельным пучком, упав на зеркало телескопа, собирается в фокусе.

7. У прожекторов зеркало обычно делается в форме параболоида. Если поместить источник света в фокусе параболоида, то лучи света, отразившись от параболического зеркала, образуют параллельный пучок.

Опыты, описанные в пунктах 2 и 5, основаны на одном и том же свойстве параболоида: если вращать параболоид с подходящей скоростью вокруг его оси, расположенной вертикально, то равнодействующая центробежной силы и силы тяготения в любой точке параболоида направлена перпендикулярно к его поверхности.

Солнечные концентраторы

Солнечные концентраторы используют энергию солнечной радиации, которая попадает на параболическую поверхность зеркала, в фокусе которой обычно располагается трубка с циркурирующим по ней теплоносителем. Как правило в качестве теплоносителя выступает масло. Теплоноситель нагревает воду, которая испаряясь поступает в турбогенератор в виде пара.

Параболические концентраторы с двигателем Стирлинга представляют собой СЭС с параболическими концентраторами, которые фокусируются на двигатель Стирлинга. Такие электростанции характеризуются высоким КПД (более 31%). В качестве рабочего тела двигателя Стирлинга используется, как правило, водород, или гелий.

Согласно известной исторической легенде, Архимед почти полностью сжег флот римского полководца Марка Марцелла, используя медные параболические зеркала.

8-этажное сооружение, включающее около 10 тысяч отдельных параболических зеркал. На сегодняшний день Солнечная Печь, выстроенная в 1970 году в Восточных Пиренеях – крупнейшая в мире. Массив зеркал действует в качестве параболического отражателя. Свет фокусируется в одном центре. И температура там может достигать 3500 градусов по Цельсию. При такой температуре можно плавить сталь. Но температуру можно регулировать, устанавливая зеркала под разными углами.

Подвесные мосты

Вантовый мост — тип висячего моста, состоящий из одного или более пилонов, соединённых с дорожным полотном посредством прямолинейных стальных тросов — вантов. В отличие от висячих мостов, где дорожное полотно поддерживается вертикальными тросами, прикреплёнными к протянутым по всей длине моста основным несущим тросам, у вантовых мостов тросы (ванты) соединяются непосредственно с пилоном.

Русский мост (Владивосток) — вантовый мост с самым длинным основным пролётом в мире (1104 м), при общей длине в 1886 м

Висячий мост — мост, в котором основная несущая конструкция выполнена из гибких элементов (кабелей, канатов, цепей и др.), работающих на растяжение, а проезжая часть подвешена.

Висячие мосты находят наиболее удачное применение в случае большой длины моста, невозможности или опасности установки промежуточных опор (например в судоходных местах).

Золотые Ворота (Сан-Франциско) – один из самых узнаваемых мостов в мире. Мост был самым большим висячим мостом в мире с момента открытия в 1937 году и до 1964 года. Общая длина моста — 2737 м, длина основного пролёта — 1280 м, высота опор — 227 м над водой, масса — 894 500 т. В среднем, по мосту проезжают сто тысяч автомобилей в сутки. 6 полос.

Основные несущие тросы (или цепи) подвешивают между установленными по берегам пилонами. К этим тросам крепят вертикальные тросы или балки, на которых подвешивается дорожное полотно основного пролёта моста. Основные тросы продолжаются за пилонами и закрепляются на уровне земли. Продолжение тросов может использоваться для поддержки двух дополнительных пролётов.

Под действием сосредоточенной нагрузки несущая конструкция может изменять свою форму, что уменьшает жёсткость моста. Для избежания прогибов в современных висячих мостах дорожное полотно усиливают продольными балками или фермами, распределяющими нагрузку.

Используются также конструкции, в которых дорожное полотно поддерживается системой прямолинейных канатов, закреплённых непосредственно на пилонах. Такие мосты называются вантовыми.

Основной пролёт можно сделать очень длинным при минимальном количестве материала. Поэтому использование такой конструкции очень эффективно при строительстве мостов через широкие ущелья и водные преграды. В современных висячих мостах широко применяют проволочные тросы и канаты из высокопрочной стали с пределом прочности около 2—2,5 ГПа(200-250 кгс/мм²), что существенно снижает собственный вес моста.

Отсутствует необходимость ставить промежуточные опоры, что даёт большие преимущества, например, в случае горных разломов или рек с сильным течением.

Будучи относительно податливыми, висячие мосты могут, без ущерба для целостности конструкции, изгибаться под действием сильного ветра или сейсмических нагрузок, тогда как более жёсткие мосты нужно строить более крепкими и тяжёлыми.

Полотно моста сильно прогибается, если на одном участке сосредоточена нагрузка существенно больше, чем на других. Из-за этого висячие мосты реже используются в качестве железнодорожных, чем другие типы.

Основные напряжения в висячем мосте — это напряжения растяжения в основных тросах и напряжения сжатия в опорах, напряжения в самом пролёте малы. Почти все силы в опорах направлены вертикально вниз и стабилизируются за счёт тросов, поэтому опоры могут быть очень тонкими. Сравнительно простое распределение нагрузок по разным элементам конструкции упрощает расчёт висячих мостов.

Под действием собственного веса и веса мостового пролёта тросы провисают и образуют дугу, близкую к параболе. Ненагруженный трос, подвешенный между двумя опорами, принимает форму т. н. «цепной линии», которая близка к параболе в почти горизонтальном участке. Если весом тросов можно пренебречь, а вес пролёта равномерно распределён по длине моста, тросы принимают форму параболы. Если вес троса сравним с весом дорожного полотна, то его форма будет промежуточной между цепной линией и параболой.

Клифтонский мост близ Бристоля (инженер Изамбард Кингдом Брюнель, 1864).

Акаси-Кайкё — самый длинный подвесной мост в мире. Полная длина составляет 3911 м. Пилоны имеют высоту 298 м, что выше 90-этажного дома.

Вначале были построены два бетонных основания для пилонов на дне пролива Акаси. Для строительства этого моста был разработан специальный бетон, который не растворяется в воде при заливке. Следующим этапом было протягивание тросов. Для этого нужно было с одного пилона на другой протянуть направляющий канат. Он был протянут с помощью вертолёта. Когда в 1995 году оба троса были протянуты, и можно было приступать к монтажу дорожного полотна, произошло непредвиденное: город Кобе стал жертвой крупного землетрясения магнитудой в 7,3 балла. Пилоны выдержали землетрясение, но из-за изменения рельефа дна пролива один из пилонов сдвинулся на 1 м в сторону, таким образом нарушив все расчёты. Инженеры предложили удлинить балки дорожного полотна и увеличить расстояние между вантами, свисающими с основных тросов. Строительные работы, задержанные не более чем на месяц, возобновились. Монтаж дорожного полотна закончился в 1998 году.

В конструкции моста имеется система двухшарнирных балок жёсткости, позволяющая выдерживать скорости ветра до 80 м/с, землетрясения магнитудой до 8,5 и противостоять сильным морским течениям. Для уменьшения действующих на мост нагрузок имеется система динамических гасителей колебаний.

Если вытянуть в длину все стальные нити (диаметром 5,23 мм) несущих тросов моста Акаси-Кайкё, то ими можно опоясать земной шар более семи раз.

Модель параболы

Легко получить параболу с помощью обычного карманного фонарика. Световое пятно от вертикально расположенного фонаря будет кругом. Немного повернём его, и пятно будет иметь форму эллипса. При дальнейшем повороте фонарика эллипс будет всё больше и больше вытягиваться, а в некоторый момент его наиболее удалённая точка уйдёт в бесконечность. Кривая, ограничивающая такое пятно, называется параболой. Неограниченные кривые, которые получаются при дальнейшем вращении фонарика, называются гиперболами. Все получившиеся кривые – окружность, эллипс, парабола, гипербола – конические сечения. Такое название они получили заслуженно, поскольку световой столб, выходящий из фонарика, является конусом.

Парабола, как огибающая

Параболу можно рассматривать, как огибающую семейства прямых.

См. также Конические сечения – Параболическое зеркало. Параболический бильярд

Цепочки окружностей, вписанных в кривую 2-го порядка

Если радиус окружности, вписанной в параболу $y=x^2$ равен 1, то радиус второй окружности, вписанной в эту же параболу и касающейся первой окружности, равен 2, радиус аналогичной 3-й окружности равен 3 и т. д.

Интересно, что радиусы подобной цепочки окружностей, вписанных в угол, образуют геометрическую прогрессию.

Фокус и директриса параболы

Задача. Постройте график функции $y = x^2$. Масштаб возьмите покрупней: 1 = 4 клетки. Отметьте на оси Oy точку F(0; 1/4). Полоской бумаги измерьте расстояние от точки F до какой-нибудь точки M параболы. Затем приколите полоску в точке M и поверните ее вокруг этой точки так, чтобы она стала вертикальной. Конец полоски опустится немного ниже оси абсцисс. Отметьте на полоске, насколько она выйдет за ось абсцисс. Возьмите теперь другую точку на параболе и повторите измерение еще раз. Насколько теперь опустился край полоски за ось абсцисс?

Результат мы Вам сможем сказать заранее: какую бы точку на параболе вы ни взяли, расстояние от этой точки до точки (0; 1/4) будет больше расстояния от той же точки до оси абсцисс всегда на одно и то же число — на 1/4. Можно сказать иначе: расстояние от любой точки параболы $y = x^2$ до точки (0; 1/4) равно расстоянию от той же точки параболы до прямой y = −1/4, параллельной оси Ox.

Замечательная точка F(0; 1/4) называется фокусом параболы, а прямая y = −1/4 — директрисой (по-русски направляющая) этой параболы. Директриса и фокус есть у всякой параболы.

Геометрический смысл параболы

Парабола — это множество точек, равноудалённых от данной прямой (директрисы параболы) и не лежащей на директрисе данной точки (фокуса параболы).

Парабола — это множество центров окружностей, касающихся данного круга и данной прямой, касающейся этого круга.

Источник – подробнее, больше картинок

Задача. Свободно падающее тело

Тело, свободно падающее без начальной скорости с некоторой высоты, за последнюю секунду падения проходит путь в 7 раз больший чем за первую секунду движения. Найдите высоту, с которой падает тело.

За первую секунду тело пройдёт расстояние равное: $S=frac<2>=10 cdot 1/2=5 $ м.

Тогда за последнюю секунду тело пройдёт расстояние равное 35 м. С другой стороны, за последнюю секунду тело пройдет расстояние: $$ frac <2>- frac<2>= 35$$

Решив это уравнение получим t = 4 с, откуда S = 80 м

t, с 1 2 3 4 5 6
s общий, м 5 20 45 80 125 180
s за последнюю секунду 5 15=20-5 25=45-20 35=80-45 45=125-80 55

Таким образом, любое падающее тело за первую секунду проходит 5м, за вторую секунду – в 3 раза больше, за третью – в 5 раз больше, за четвертую – в 7 раз больший путь, за пятую – в 9 раз, за шестую – в 11 раз. Арифметическая прогрессия, физики называют это закон нечетных чисел. Путь, пройденный за секунду, тоже образует арифметическую прогрессию с разность 10, что соответствует ускорению свободного падения g.

Задача. Тело, падающее без начальной скорости, за последнюю секунду падения прошло путь s = 35 м. Какую скорость имело тело в момент падения на землю? Сопротивлением воздуха пренебречь.

Решение. Время падения = 4 с. Скорость $v = s’ = gt = 40$ м/с.

[spoiler title=”источники:”]

http://planshet-info.ru/kompjutery/raznost-modulej-i-modul-raznosti

http://xlench.bget.ru/doku.php/mat/algebra/sq-equ?do=export_xhtml

[/spoiler]

Как найти модуль разности корней

Из курса школьной математики многие помнят, что корень – это решение уравнения, то есть те значения Х, при которых достигается равенство его частей. Как правило, задача нахождения модуля разности корней ставится в отношении квадратных уравнений, ведь именно они могут иметь два корня, разность которых вы сможете вычислить.

Для начала решите уравнение, то есть найдите его корни или докажите, что они отсутствуют. Перед вами уравнение второй степени: посмотрите, имеет ли оно вид AX2 + BX + C = 0, где А, В и С – простые числа и А не равно 0.

Если уравнение не равно нулю или во второй части равенства присутствует неизвестная Х, приведите его к стандартному виду. Для этого перенесите все числа в левую часть, заменив стоящий перед ними знак. Например, 2Х^2 + 3X + 2 = (-2X). Привести это уравнение можно следующим образом: 2Х^2 + (3Х + 2Х) + 2 = 0. Теперь, когда ваше уравнение приведено к стандартному виду, можно приступить к нахождению его корней.

Вычислите дискриминант уравнения D. Он равен разности B, возведенного в квадрат, и А, умноженного на С, и на 4. Приведенное в пример уравнение 2Х^2 + 5Х + 2 = 0 имеет два корня, так как его дискриминант равен 5^2 + 4 х 2 х 2 = 9, то есть больше 0. Если же дискриминант равен нулю, вы сможете решить уравнение, но оно иметь всего один корень. Отрицательный дискриминант свидетельствует об отсутствии корней уравнения.

Найдите корень из дискриминанта (√D). Для этого вы можете воспользоваться калькулятором с алгебраическими функциями, онлайн-кулькулятором или специальной таблицей корней (обычно она приводится в конце учебников и справочников по алгебре). В нашем случае √D = √9 = 3.

Чтобы вычислить первый корень квадратного уравнения (X1), подставьте в выражение (-В + √D) полученное число и разделите результат на А, умноженное на 2. То есть Х1 = (-5 + 3)/ (2 х 2)= -0,5.

Найти второй корень квадратного уравнения X2 можно заменив в формуле сумму на разность, то есть Х2 = (-В — √D) / 2A. В приведённом примере Х2 = (-5 — 3)/ (2 х 2) = -2.

Отнимите от первого корня уравнения второй, то есть X1 – X2. При этом абсолютно не имеет значения то, в каком порядке вы подставите корни: конечный результат будет тот же. Полученное число – это разность корней, и вам осталось только найти модуль этого числа. В нашем случае X1 – X2 = -0,5 – (-2) = 1,5 или Х2 – Х1 = (-2) – (-0,5) = -1,5.

Модуль – эторасстояние на оси координат от нуля до точки N, измеряемое в единичных отрезках, поэтому модуль любого числа не может быть отрицательным. Найти модуль числа можно следующим образом: модуль положительного числа равен ему самому, а модуль отрицательного – противоположное ему число. То есть|1,5| = 1,5 и |-1,5| = 1,5.

Найти модуль разности корней уравнения

Если , то равно:

Найдем x из первого уравнения:

.

Подставим найденный x во второе выражение:

.

Правильный ответ указан под номером 3.

Даны квадратные уравнения:

Укажите уравнение, которое не имеет корней.

Рассмотрим каждое из уравнений:

1), дискриминант больше нуля, значит, корни есть.

2), дискриминант равен нулю, значит, корень есть.

3), дискриминант меньше нуля, значит, корней нет.

4), дискриминант больше нуля, значит, корни есть.

5), дискриминант равен нулю, значит, корень есть.

Квадратные уравнения с параметром

Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.

Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!

Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:

— Что такое квадратное уравнение, как оно выглядит и как решается?

— Что такое дискриминант и куда его пристроить?

— Что такое теорема Виета и где её можно применить?

Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.

Для начала рассмотрим совсем безобидную задачку. Для разминки. 🙂

Пример 1

Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:

Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.

Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!

Теперь надо приравнять наш дискриминант к нулю:

Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !

Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!

Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)

Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.

Пример 2

Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:

0,5x 2 — 2x + 3a + 1,5 = 0

Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:

Выписываем в столбик наши коэффициенты a, b, c:

Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!

А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:

«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным

Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:

Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.

Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:

Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:

А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.

Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:

Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:

А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.

Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:

А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:

Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:

Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:

Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:

Осталось раскрыть скобки и решить простенькое линейное неравенство:

Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.

Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!

Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.

Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.

Например, такая задачка из реального варианта ЕГЭ:

Пример 3

Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»

Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:

А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:

Что ж, аккуратно расписываем наш дискриминант через параметр а:

А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:

Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)

А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука

принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.

Что ж, считаем корни по общей формуле:

Дальше составляем модуль разности этих самых корней:

Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:

И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)

Дифференцируем нашу функцию и приравниваем производную к нулю:

Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).

Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.

Всё. Вот теперь наша задача полностью решена.

Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).

Пример 4

Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?

Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)

При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.

А далее по накатанной колее. Считаем дискриминант:

D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a

Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.

Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:

Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.

Значит, ответом на вопрос задачи является решение вот такой системы:

Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:

Отлично. Корни получены. Теперь начинаем формировать наше расстояние:

Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:

Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.

Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:

Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.

Случай 1 (a>0, |a|=a)

В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:

Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:

Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.

Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:

А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a

Упрощаем нашу совокупность с учётом главного условия a>0:

Вот так. А теперь решаем самое обычное квадратное неравенство:

Нас интересует промежуток между корнями. Стало быть,

Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:

Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:

Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.

Случай 2 (a

В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:

Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):

С учётом общего требования a

А дальше снова решаем обычное квадратное неравенство:

И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:

Осталось лишь пересечь этот интервал с нашим новым условием a

Вот и второй кусочек ответа готов:

Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число

с нулём. Вот так:

А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):

Готово дело. Эти два интервала — это пока ещё только решение неравенства

Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!

Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:

Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:

Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:

Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:

Всё, задача полностью решена и можно записывать окончательный ответ.

Ну как? Уловили суть? Тогда решаем самостоятельно.)

1. Найдите все значения параметра b, при которых уравнение

ax 2 + 3x +5 = 0

имеет единственный корень.

2. Найдите все значения параметра а, при каждом из которых больший корень уравнения

x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0

3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения

x 2 — 4ax + 5a = 0

4. Найдите все значения параметра а, при каждом из которых уравнение

x 2 + 2(a-2)x + a + 3 = 0

имеет два различных корня, расстояние между которыми больше 3.

источники:

http://math.reshuct.by/test?theme=6

http://abudnikov.ru/ege/chast-2.2/zadachi-s-parametrami/kvadratnyie-uravneniya-s-parametrom.html

Вычислите модуль удвоенной разности крайних членов пропорции.

А) – 10, 4

б) – 24, 8

в)10, 4

г)5, 2.

Вычислите модуль удвоенной разности крайних членов пропорции?

На этой странице вы найдете ответ на вопрос Вычислите модуль удвоенной разности крайних членов пропорции?. Вопрос
соответствует категории Математика и уровню подготовки учащихся 5 – 9 классов классов. Если ответ полностью не удовлетворяет критериям поиска, ниже можно
ознакомиться с вариантами ответов других посетителей страницы или обсудить с
ними интересующую тему. Здесь также можно воспользоваться «умным поиском»,
который покажет аналогичные вопросы в этой категории. Если ни один из
предложенных ответов не подходит, попробуйте самостоятельно сформулировать
вопрос иначе, нажав кнопку вверху страницы.

�������

����� 1, 2, …, 100 ����� �� ����� � ��������� �������.
����� �� ���������, ��� � ����� ���� �������� ����� ������ �������� �� ������ 30, �� �� ������ 50?

�������

�����������, ������� ���������. ����ף� ����� �� 26 �� 75 ��������, � ��������� – ��������. ��� ������� ����� ������ ���� �� ����� (������ �� �������� ������ 25 ��� ������ 50). �� ������� ����� ���������� ����� �������� ������ ���������� �����. ������� ������� � ������� ����� ������ ������������. �� ����� �� ������� ������ 26 ����� ������ ������ ���� ������� ����� – 76. ������������.

�����

�� �����.

���������

6 ������

��������� � ���������� �������������

���������
�������� ������ �������
������
���� 2012/13
����� 34
�������
������� �������� ���, ������� �������, 8-9 �����
������
����� 4

Добавить комментарий