Как найти модуль силы архимеда

Видеоурок: закон Архимеда

Зако́н Архиме́да — закон гидростатики и аэростатики: на тело, погружённое в жидкость или газ, действует выталкивающая сила, численно равная весу объема жидкости или газа, вытесненного телом. Закон открыт Архимедом в III веке до н. э. Выталкивающая сила также называется архимедовой силой или гидростатической подъёмной силой[1][2] (её не следует путать с аэро- и гидродинамической подъёмной силой, возникающей при обтекании тела потоком газа или жидкости).

Так как сила Архимеда обусловлена силой тяжести, то в невесомости она не действует.

В соответствии с законом Архимеда для выталкивающей силы выполняется[3]:

{displaystyle F_{A}=rho gV,}

где:

Описание[править | править код]

Выталкивающая или подъёмная сила по направлению противоположна силе тяжести, прикладывается к центру тяжести объёма, вытесняемого телом из жидкости или газа.

Если тело плавает (см. плавание тел) или равномерно движется вверх или вниз, то выталкивающая или подъёмная сила по модулю равна силе тяжести, действующей на вытесненный телом объём жидкости или газа.

Плавание тела. Сила Архимеда (F_{A}) уравновешивает вес тела (F_{p}):

{displaystyle F_{A}=F_{p};}
ρж g Vж = ρт g Vт

Например, воздушный шарик объёмом V, наполненный гелием, летит вверх из-за того, что плотность гелия ({displaystyle rho _{He}}) меньше плотности воздуха ({displaystyle rho _{air}}):

{displaystyle F_{A}>F_{p};}

{displaystyle rho _{air}gV>rho _{He}gV.}

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела, погруженного в жидкость или газ. В силу симметрии прямоугольного тела, силы давления, действующие на боковые грани тела, уравновешиваются. Давление ({displaystyle P_{A}}) и сила давления ({displaystyle F_{A}}), действующие на верхнюю грань тела, равны:

{displaystyle P_{A}=rho gh_{A};}
{displaystyle F_{A}=rho gh_{A}S,}

где:

Давление ({displaystyle P_{B}}) и сила давления ({displaystyle F_{B}}), действующие на нижнюю грань тела, равны:

{displaystyle P_{B}=rho gh_{B};}
{displaystyle F_{B}=rho gh_{B}S,}

где:

Сила давления жидкости или газа на тело определяется разностью сил {displaystyle F_{B}} и {displaystyle F_{A}}:

{displaystyle F_{B}-F_{A}=rho gh_{B}S-rho gh_{A}S=rho gleft(h_{B}-h_{A}right)S=rho ghS=rho gV,}

где:

Разница давлений:

{displaystyle P_{B}-P_{A}=rho gh_{B}-rho gh_{A}=rho gh.}

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляцию жилых отсеков космических аппаратов необходимо производить принудительно вентиляторами.

Обобщения[править | править код]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, к полю центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править код]

Вывод через мысленный эксперимент[править | править код]

Если мысленно заменить погружённое в жидкость тело той же жидкостью, мысленно размещённая в том же объёме порция воды будет находиться в равновесии и действовать на окружающую воду с силой, равной силе тяжести, действующей на порцию воды. Так как перемешивания частиц воды не происходит, можно утверждать, что окружающая вода действует на выделенный объём с той же силой, но направленной в противоположном направлении, то есть с силой, равной {displaystyle mg=rho gV}[4][5][6].

Расчёт силы[править | править код]

Гидростатическое давление p на глубине h, оказываемое жидкостью с плотностью rho на тело, есть {displaystyle p=rho gh}. Пусть плотность жидкости (rho ) и напряжённость гравитационного поля (g) — постоянные величины, а h — параметр. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости, направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{displaystyle {vec {F}}_{A}=-int limits _{S}{p,d{vec {S}}}=-int limits _{S}{rho gh,d{vec {S}}}=-rho gint limits _{S}{h,d{vec {S}}}=^{*}-rho gint limits _{V}{operatorname {grad} (h),dV}=^{**}-rho gint limits _{V}{{vec {e}}_{z}dV}=-rho g{vec {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec {e}}_{z}).}

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{displaystyle {}^{*}h(x,y,z)=z;}
{displaystyle ^{**}operatorname {grad} h=nabla h={vec {e}}_{z}.}

Получаем, что модуль силы Архимеда равен {displaystyle rho gV}, и направлена сила Архимеда в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Вывод через закон сохранения энергии[править | править код]

Закон Архимеда можно также вывести из закона сохранения энергии. Работа силы, действующей со стороны погружённого тела на жидкость, приводит к изменению её потенциальной энергии:

{displaystyle  A=-F*(h_{1}-h_{2})=-Delta E_{p}=-m_{text{ж}}gDelta h,}

где {displaystyle m_{text{ж}}} — масса вытесненной части жидкости, Delta h — перемещение её центра масс. Отсюда модуль вытесняющей силы:

{displaystyle  F=m_{text{ж}}g.}

По третьему закону Ньютона эта сила, равна по модулю и противоположна по направлению силе Архимеда, действующей со стороны жидкости на тело. Объём вытесненной жидкости равен объёму погруженной части тела, поэтому массу вытесненной жидкости можно записать как:

{displaystyle  m_{text{ж}}=rho _{text{ж}}V_{text{т}},} где {displaystyle V_{text{т}}} — объем погружённой части тела.

Таким образом, для силы Архимеда имеем:

{displaystyle  F_{A}= F=m_{text{ж}}g=rho _{text{ж}}gV_{text{т}}.}

Условие плавания тел[править | править код]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle F_{T}} и силы Архимеда {displaystyle F_{A}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle F_{T}>F_{A}} — тело тонет;
  • {displaystyle F_{T}=F_{A}} — тело плавает в жидкости или газе;
  • {displaystyle F_{T}<F_{A}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую тело погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

Примечания[править | править код]

  1. Архимеда закон : [арх. 1 января 2023] // Анкилоз — Банка. — М. : Большая российская энциклопедия, 2005. — С. 331. — (Большая российская энциклопедия : [в 35 т.] / гл. ред. Ю. С. Осипов ; 2004—2017, т. 2). — ISBN 5-85270-330-3.
  2. Архимеда закон // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 123. — 707 с. — 100 000 экз.
  3. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, к полю, действующему вблизи поверхности планеты).
  4. Перышкин А. , Оригинальное доказательство закона Архимеда. Дата обращения: 28 сентября 2020. Архивировано 20 июля 2020 года.
  5. Доказательство закона Архимеда для тела произвольной формы. Дата обращения: 28 сентября 2020. Архивировано 21 сентября 2020 года.
  6. Buoyancy (англ.). Архивировано 14 июля 2007 года.

Ссылки[править | править код]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

Сила Архимеда

Вместе с преподавателем физики разбираемся, в чем измеряется и от чего зависит сила Архимеда. А в конце статьи вспомним известную легенду о том, как был открыт закон Архимеда, и узнаем, действует ли он в условиях невесомости

Сила Архимеда. Фото: pexels.com

Как объяснить, почему плавают огромные корабли из стали, которая тяжелее воды? Да еще и перевозят тонны грузов. Это происходит благодаря открытию, сделанному за два с лишним столетия до нашей эры изобретателем и ученым Архимедом.

История сохранила нам немного имен ученых-практиков, чьи изобретения изменили мир. Навсегда забыт гений, который придумал колесо. Но любой современный школьник назовет Архимеда, даже если знает о нем только легенду про мокрого голого философа, бежавшего по улице Сиракуз с криком: «Эврика!», то есть «Нашел!». А ведь ученый заслужил вечную благодарную память человечества благодаря многим изобретениям и открытиям:

  • Теория рычага и способы его расчета. На этой основе построены боевые машины для метания тяжелых камней и «коготь Архимеда» — машина для переворачивания римских трирем;
  • Шкив и многоступенчатый блок, полиспаст;
  • Червячная передача;
  • Архимедов винт и насосы, работающие на его принципе;
  • Одометр, машина для измерения пройденного пути;
  • «Архимедово число»: отношение длины окружности к ее диаметру

  • Фокусировка световых лучей при помощи зеркал. По легенде, так были сожжены римские корабли, осаждавшие Сиракузы. Недавно энтузиасты провели экспериментальную проверку и удалось поджечь деревянный баркас.

Однако самое знаменитое открытие — закон Архимеда, основа гидростатики. Удивительно, что он был почти забыт, пока корабли строили из дерева. И только когда они стали железными, а потом стальными, инженеры осознали важность силы Архимеда и стали применять ее формулу при расчетах водных и воздушных судов.

Определение закона Архимеда простыми словами

На тело, погруженное в жидкость или газ, действует подъемная, она же выталкивающая сила (сила Архимеда), равная весу вытесненного объема жидкости или газа.

Вектор силы Архимеда направлен против направления действия силы тяжести. Следствия закона Архимеда:

  • В невесомости закон Архимеда не действует.
  • Если сила Архимеда меньше силы тяжести, то тело утонет.
  • Если силы одинаковы по величине, тело «повисает» в окружающей среде.
  • Если сила Архимеда больше силы тяжести, то тело всплывает, пока они не уравновесятся. В воде этот момент наступит на поверхности.

Принцип Архимеда

Принцип Архимеда. Фото: shutterstock.com

Формула силы Архимеда

Предыдущая формулировка годится только для участка цепи, где отсутствует сам источник электродвижущей силы. В реальности ток течет по замкнутому контуру, где обязательно есть батарея или генератор, имеющий собственное внутреннее сопротивление. Поэтому формула закона Ома для полной цепи выглядит несколько сложнее

Где: FA — сила Архимеда;
ρ — плотность жидкости или газа, в которое погружают тело;
g — ускорение свободного падения, которое зависит от того, на какой планете или спутнике мы находимся. Для поверхности Земли, например, ускорение примерно равно 9,8 м/с2;
V — объем погруженной в среду части тела.

Закон Паскаля

Объяснение закона простыми словами и его формула

подробнее

В чем измеряется сила Архимеда

Единица измерения силы Архимеда в системе СИ — ньютон (Н).

1Н = 1 кг·м/с2

Архимед и наше время

В перечне военных трофеев, взятых римлянами в Сиракузах, есть некий «Планетарий Архимеда» — механическая модель движения планет. Он не сохранился, но есть подозрение, что загадочное устройство, случайно обнаруженное в затонувшем корабле у острова Антикитера, тоже сделано золотыми руками Архимеда. Прямых доказательств этого факта нет, но уже выяснено, что время изготовления приблизительно соответствует годам жизни гениального инженера.

Популярные вопросы и ответы

Отвечает Николай Герасимов, старший преподаватель по физике Домашней школы «ИнтернетУрок».

От чего зависит сила Архимеда?

Например, для определения выталкивающей силы, действующей на камень, лежащий на дне озера, нужно брать весь его объем. Если же определяем силу Архимеда, действующую на мяч, плавающий по этому озеру, то нужно брать лишь объем той части, которая находится под водой. Зависимость выталкивающей силы от ускорения свободного падения позволяет сделать интересный вывод о том, что в невесомости силы Архимеда нет.

Зная, что сила Архимеда зависит от плотности жидкости, можно объяснить следующее явление: куриное яйцо, помещенное в обычную воду, утонет и будет лежать на дне банки. Но стоит добавить в эту банку насыщенный раствор поваренной соли и тем самым изменить плотность воды — и яйцо начинает всплывать.

Как был открыт закон Архимеда?

Открытие закона Архимеда связано с интересной легендой. Древнегреческий царь Герон II приказал ювелирам изготовить золотую корону, что и было вскоре выполнено. Царь заподозрил, что ювелиры его обманули и сделали корону из электрона, сплава золота и серебра. Отличить подделку на глаз не удалось. Для проверки пригласили ученого из Сиракуз по имени Архимед. Достаточно было сравнить объем короны с объемом куска золота такой же массы.

Сложность состояла в определении объема короны, так как она была сложной формы, и вычислить объем по математическим формулам было невозможно. Долгие размышления не увенчались успехом, и Архимед решил сходить отдохнуть в баню. Именно там ученому пришла гениальная идея: погружаясь в воду, тело вытесняет ее в объеме, который равен объему погруженной части тела. «Эврика!» («Нашел!») — закричал Архимед и побежал к царю.

Сравнив объемы воды, вытесненной короной и куском золота такой же массы, он уличил ювелиров в нечестности и алчности. Так Архимедом был открыт закон, который позволяет нам объяснить, почему ходят по морям и океанам огромные корабли, изготовленные из железа, а маленькая металлическая гайка тонет.

Какой буквой обозначают силу Архимеда?

Как и большинство сил, сила Архимеда обозначается буквой F. Это первая буква английского слова force – сила. В индексе пишут букву А или В, которые позволяют отличить силу Архимеда FA или выталкивающую силу FВ от других сил в природе.

Определение

Архимедова сила (выталкивающая сила, подъемная сила) — сила, с которой жидкость или газ выталкивают погруженное в них тело.

Полезно знать и понимать!

  • Причина возникновения выталкивающей силы: нижняя грань тела находится на большей глубине, чем верхняя, поэтому давление жидкости снизу больше, чем сверху. Из-за разницы в давлениях возникает выталкивающая сила.
  • Архимедова сила всегда направлена вертикально вверх.
  • Архимедова сила равна разности сил давления на нижнюю и верхнюю грани:

FA = FH – FB

  • Также выталкивающая сила равна разности веса тела в воздухе и веса тела в жидкости:

FA = Pвозд – Pж

  • Модуль выталкивающей силы определяется с помощью закона Архимеда.

Закон Архимеда

Выталкивающая сила равна весу вытесненной жидкости.

FA = Pж

Частные случаи определения архимедовой силы

Полное погружение

Архимедова сила равна произведению плотности жидкости, объема тела и ускорения свободного падения:

FA = ρжVтg

Vт — объем погруженного в жидкость тела.

Неполное погружение

Архимедова сила равна произведению плотности жидкости, объема погруженной части тела и ускорения свободного падения:

FA = ρжVп.ч.g

Vп.ч. — объем погруженной в жидкость части тела.

Внимание! Если тело погружено в газ, то в формуле нужно использовать плотность этого газа.

Пример №1. При взвешивании груза в воздухе показание динамометра равно 1 Н. При опускании груза в воду показание динамометра уменьшается до 0,6 Н. Найдите значение выталкивающей силы.

Выталкивающая сила равна разности веса тела в воздухе и веса тело в воде. Следовательно:

FA = Pвозд – Pж = 1 – 0,6 = 0,4 (Н)

Воздухоплавание

Подъемной силой воздушного шара служит архимедова сила, равная:

FA = ρвоздVшg

Подъемной силе противостоят сила тяжести и сила сопротивления воздуха:

Fтяж = (Mшара + mгаза + mкорз + mгруза)g

Fсопр

Управление шаром:

  •  чтобы взлететь, шар заполняют нагретым воздухом или газом, плотность которого меньше плотности окружающего воздуха;
  • чтобы увеличить высоту полета, с шара сбрасывают балласт;
  •  чтобы спуститься на землю, газ охлаждают.

Пример №2. Аэростат объемом 1000 м3 заполнен гелием. Плотность гелия 0,18 кг/м3, плотность воздуха 1,29 кг/м3. Какая выталкивающая сила действует на аэростат?

Выталкивающая сила зависит только от плотности окружающей среды и объема погруженного в него тела. Так как аэростат погружен в воздух полностью:

FA = ρвVтg = 1,29∙1000∙10 = 12,9 (кН)

Архимедова сила и законы Ньютона

Если тело полностью погружено в жидкость (или газ):

  • Архимедова сила равна: FA = ρжVтg.
  • Сила тяжести, действующая на тело: Fтяж = mg = ρтVтg.

Частный случай

Определить минимальную массу груза, который следует положить на плоскую однородную льдину площадью S, чтобы она полностью погрузилась в воду. Толщина льдины h, а плотность льда ρл, плотность воды ρв.

Второй закон Ньютона в векторной форме для льдины, полностью погруженной в воду (она не тонет и не всплывает):

FA+Fтяж=0

Так как эти силы направлены в противоположные стороны:

FA = Fтяж

Архимедова сила, действующая только на льдину, равна:

FA = ρвVлg

Сила тяжести равна сумме масс льдины и груза:

Fтяж = (mл + mгр)g

Массу льдины можно выразить через произведение ее плотности на объем, равные произведению ее площади на толщину:

mл = ρлSh

Пример №3. Какую силу надо приложить, чтобы поднять под водой камень, масса которого 30 кг, а объем 12 000 см3?

12 000 куб. см = 0,012 куб. м

Чтобы поднять под водой камень, потребуется сила, равная разности силе тяжести и архимедовой силы, действующей на этот камень:

F = Fтяж – FA = mg – ρвVтg = 30∙10 – 1000∙0,012∙10 = 180 (Н)

Условия плавания тел

На любое тело, погруженное в жидкость или газ, действуют две противоположно направленные силы: сила тяжести и архимедова сила. Направление движения тела зависит от того, какая из этих сил больше по модулю:

  • Тело тонет, если: mg > FA; ρт > ρж.
  • Тело плавает в толще среды, если: mg = FA; ρт = ρж.
  • Тело всплывает, если: mg < FA; ρт < ρж.

Внимание! Тело, имеющее плотность меньшую, чем плотность жидкости, в которой оно плавает, будет находиться на поверхности, погрузившись в жидкость частично.

Если тело плавает на поверхности:

  • Архимедова сила и сила тяжести, действующие на него, равны: FA= Fтяж.
  • Сила тяжести равна: Fтяж = mg = ρтVтg.
  • Архимедова сила равна: FA = ρжVп.ч.g.
  • Взаимосвязь между объемом и высотой тела правильной формы: V = Sh.

Варианты условий задач на условия плавания тел

Сплошное тело объемом Vт плавает в воде. Причем под водой находится 3/4 его объема. Определите силу тяжести, действующую на тело. Плотность воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Fтяж = 3ρвVтg/4

Какая часть (в процентах) айсберга находится под водой? Плотность льда ρл, а воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Отсюда:

ρлVлg = ρвVп.ч.g

Ускорение свободного падения взаимоуничтожается. Чтобы найти погруженную часть айсберга в процентах, нужно:

Vп.ч.Vл=ρлρв

Найденное отношение остается умножить на 100%.

Полое тело плотностью ρт плавает в воде, погрузившись на 1/5 своего объема. Найдите объем полости Vп, если объем тела Vт, а плотность воды ρв.

Второй закон Ньютона в векторной форме:

FA+Fтяж=0

Отсюда (проекция на вертикальную ось):

FA = Fтяж

Отсюда:

ρвVп.ч.g = ρт(Vт – Vп)g

Преобразовав выражение, получим:

Vп=Vт(5ρтρв)5ρт

Пример №4. Кубик массой 40 г и объемом 250 см3 плавает на поверхности воды. Найдите значение выталкивающей силы, действующей на кубик.

40 г = 0,04 кг

250 см3 = 250∙10–6 м3

Так как тело плавает, Архимедова сила будет равна по модулю силе тяжести, которая определяется формулой:

FA = Fтяж = 0,04∙10 = 0,4 (Н)

Задание EF18524

Деревянный шарик плавает в стакане с водой. Как изменятся сила тяжести и архимедова сила, действующие на шарик, если он будет плавать в подсолнечном масле?

Для каждой величины определите соответствующий характер изменения:

  1. Увеличится.
  2. Уменьшиться.
  3. Не изменится.

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать условие плавания тел.
  2. На основании условия плавания тел сделать вывод о том, как изменятся указанные физические величины.

Решение

По условию задачи деревянный шарик плавает на поверхности воды. Но это возможно, лишь когда архимедова сила равна силе тяжести:

FAв = Fтяж

Если шарик будет плавать в подсолнечном масле, также можно применить условие плавания тел:

FAм = Fтяж

Сила тяжести зависит только от массы тела, которая остается неизменной. Поэтому сила тяжести тоже не меняется. Но из этого следует:

FAв = FAм

Это возможно благодаря тому, что объем погруженной части шарика в масло будет больше объема погруженной части шарика в воду. Этим компенсируется разница в плотностях жидкостей, но архимедова сила при этом остается неизменной.

Верный ответ: 33.

Ответ: 33

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18477

Ученик изучает силу Архимеда, действующую на тела, полностью погружённые в жидкость. В его распоряжении имеется установка, состоящая из ёмкости с водой и сплошного деревянного шарика объёмом 30 см3. Какая из следующих установок необходима ещё ученику для того, чтобы на опыте обнаружить зависимость силы Архимеда от объёма тела?

 установки Жидкость, налитая в ёмкость Объём шарика Материал, из которого сделан шарик
1 вода 30 см3 сталь
2 вода 20 см3 дерево
3 керосин 20 см3 дерево
4 подсолнечное масло 30 см3 сталь

Ответ:

а) установка  1

б) установка  2

в) установка  3

г) установка  4


Алгоритм решения

  1. Сделать анализ задачи. Определить, какие величины в опыте остаются постоянными.
  2. Определить, какие величины должны быть в опыте переменными.

Решение

Ученик изучает силу Архимеда, действующую на тела, полностью погружённые в жидкость. В формулировке слово «жидкость» используется в единственном числе. Следовательно, жидкость во всех опытах будет одной и той же (плотность жидкости будет постоянной). У ученика уже есть установка, в которую входит емкость с водой. Поэтому во второй установке в качестве жидкости тоже должна использоваться вода. Варианты 3 и 4 исключаются.

В формулировки задачи также говорится о «телах». Они могут быть выполнены из разных материалов, и они могут иметь разный объем. Но известно, что архимедова сила зависит только от объема тела. Поэтому во второй установке нужно использовать тело другого объема. В вариантах 1 и 2 этому условию соответствует деревянный шарик объемом 20 куб. см (так как в первой установке используется шарик объемом 30 куб. см).

Отсюда верный ответ: б.

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22696

Необходимо экспериментально изучить зависимость силы Архимеда, действующей на тело, погружённое в жидкость, от плотности жидкости.

Какие две установки следует использовать для проведения такого исследования?


Алгоритм решения

  1. Установить цели опыта.
  2. Сделать вывод о том, какие величины в опыте должны быть постоянными, а какие — переменными.
  3. Выбрать установки, соответствующие выводу.

Решение

В опыте нужно изучить зависимость силы Архимеда, действующей на тело, погружённое в жидкость, от плотности жидкости. Это значит, что плотность жидкости — величина переменная. Все остальные величины при этом должны оставаться постоянным. Поэтому нам нужны установки с разными жидкостями, но одинаковыми телами. Этому условию соответствуют две установки: «а» и «д».

Ответ: ад

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18057

На границе раздела двух несмешивающихся жидкостей, имеющих плотности ρ1 = 400 кг/м3 и ρ2 = 2ρ1, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ, чтобы выше границы раздела жидкостей была одна четверть его объёма?


Алгоритм решения

1.Записать исходные данные.

3.Записать второй закон Ньютона в векторной форме.

4.Записать второй закон Ньютона в проекции на ось ординат.

5.Выполнить общее решение.

6.Вычислить искомую величину, подставив известные данные.

Решение

Запишем исходные данные:

 Плотность первой жидкости: ρ1 = 400 кг/м3.

 Плотность второй жидкости: ρ2 = 2ρ1.

 Объем шарика выше границы раздела двух жидкостей: V1 = V/4.

 Объем шарика выше границы раздела двух жидкостей: V2 = 3V/4.

Построим рисунок и укажем все силы, действующие на шарик:

Запишем второй закон Ньютона в векторном виде:

mg+FA1+FA2=0

Запишем второй закон Ньютона в виде проекции на ось ординат:

mg=FA1+FA2

Выразим массу тела через его объем и плотность, выразим выталкивающие силы через закон Архимеда и получим:

ρVg=ρ1gV1+ρ2gV2

Преобразуем выражение, сократив ускорение свободного падения и подставив выражения для объемов погруженных в жидкости частей тела, а также выражение для плотности второй жидкости:

ρV=ρ1V4+2ρ13V4

Объемы сокращаются. Остается:

ρ=ρ14+2ρ134=7ρ14=7·4004=700 (кгм3)

Ответ: 700

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 9k

Сила Архимеда, теория и онлайн калькуляторы

Сила Архимеда

Из опыта нам известно, что тело, находящееся в жидкости, весит меньше, чем, если оно находится в воздухе. Следовательно, на тело, погруженное в жидкость, действует выталкивающая сила. Величину этой силы определил ученый из древней Греции – Архимед.

Определение

Сила, с которой жидкость или газ действует на тело, погруженное в вещество, называют силой Архимеда (выталкивающей силой).

Данная сила появляется вследствие того, что давление жидкости (газа) увеличивается с ростом глубины. Получается, что сила давления, которая действует на тело со стороны жидкости (газа) снизу вверх больше, чем сила давления, направленная сверху вниз.

Закон Архимеда

Пусть тело в виде прямоугольного параллелепипеда полностью погрузили в жидкость рис.1. Будем считать, что верхнее и нижнее основания расположены горизонтально.

Сила Архимеда, рисунок 1

Силы, которые действуют на боковые грани параллелепипеда, уравновешиваются. Они лишь сжимают параллелепипед. Силы, действующие на верхнюю и нижнюю грани тела не равны между собой. Сила ($F_1$), с которой столб жидкости действует на верхнюю грань, равна:

[F_1=p_1S=rho gh_1S left(1right),]

где $rho $ – плотность жидкости; $S$ – площадь основания; $h_1$ – высота столба жидкости над верхним основанием параллелепипеда. Отметим, что давление атмосферы на жидкость мы не учитываем.

Величина силы, с которой жидкость действует на нижнее основание параллелепипеда, равна:

[F_2=p_2S=rho gh_2S left(2right),]

где $h_2$ – высота столба жидкости над нижним основанием. Так как $h_2>h_1$, значит $F_2>F_1$. Модуль равнодействующей силы, действующей на тело со стороны жидкости:

[F_A=F_2-F_1=rho g{S(h}_2-h_1) (3). ]

Если обозначить высоту параллелепипеда как $h=h_2-h_1$, тогда имеем:

[F_A=rho gSh=rho gV left(4right),]

где $V$ – объем параллелепипеда. Если тело находится в жидкости (газе) не целиком, то под V понимают объем находящийся в веществе (жидкости, газе). Правую часть выражения еще называют весом жидкости, которую вытесняет тело, погруженное в нее.

Сила Архимеда в жидкости и газе

На тело, находящееся в жидкости или газе, действует сила Архимеда, величина которой равна весу вещества (жидкости или газа) в объеме погруженной части тела. Сила Архимеда направлена вертикально вверх.

Данный закон выполняется для тел любой формы.

Сила Архимеда позволяет плавать лодкам и разного рода кораблям, несмотря на то, что плотность материала, из которого сделан корпус транспортного средства в несколько раз больше, чем плотность воды. Необходимо только чтобы вес воды, которую вытесняет подводная часть судна, был равен силе тяжести, которая действует на судно. Средняя же плотность корабля меньше плотности воды.

Сила Архимеда действует на тела находящиеся в воздухе. Но так как плотность воздуха мала, действием этой силы часто пренебрегают. В состоянии невесомости сила Архимеда равна нулю. В состоянии невесомости нет гидростатического давления.

Следует учесть, рассуждая о действии силы Архимеда, мы имеем в виду, что тело окружено жидкостью (газом), может быть за исключением своей верхней части. Если тело примыкаем ко дну сосуда или его стенке, то равнодействующая сил гидростатического давления станет прижимать тело ко дну или стенке. В этой связи, например, присасываются ко дну якоря кораблей, и если якорь лежит на большой глубине, то его крайне сложно оторвать от дна.

Примеры задач с силой Архимеда

Пример 1

Задание. Чему равно отношение силы трения ($F_{tr}$), которая действует на шарик, движущийся с постоянной скоростью вверх в жидкости, к силе тяжести ($mg$), если плотность жидкости (${rho }_g$) в $n$ раз больше плотности материала шарика (${rho }_{sh}$)?

Решение. Сделаем рисунок.

Сила Архимеда, пример 1

Запишем второй закон Ньютона для сил, действующих на шарик, учтем, что шарик всплывает равномерно, следовательно, его ускорение равно нулю:

[moverline{g}+{overline{F}}_A+{overline{F}}_{tr}=0 left(1.1right).]

В проекции на ось Y выражение (1.1) предстанет в виде:

[-mg-F_{tr}+F_A=0 left(1.2right).]

Модуль силы Архимеда найдем как:

[F_A={rho }_gVg left(1.3right).]

Сила тяжести, действующая на шарик:

[mg={rho }_{sh}Vg left(1.4right).]

Выразим из (1.2) силу трения, учтем выражения (1.3) и (1.4):

[F_{tr}=F_A-mg={rho }_gVg-{rho }_{sh}V left(1.5right).]

Найдем отношение $frac{F_{tr}}{mg}$:

[frac{F_{tr}}{mg}=frac{с_gVg-с_{sh}V}{с_{sh}Vg}=frac{с_g}{с_{sh}}-1=n-1.]

Ответ. $frac{F_{tr}}{mg}=n-1$

Пример 2

Задание. Сформулируйте условия плавания тел в жидкости. Что происходит с телом, если оно полностью погружено в жидкость, а плотность вещества тела равна плотности жидкости? Чему равна сила Архимеда, если тело плавает на границе раздела двух жидкостей с разными плотностями?

Решение. Из закона Архимеда можно легко получить условия плавания тел. Так, если сила Архимеда больше веса тела, то тело всплывает на поверхность жидкости до тех пор, пока не наступит равенства этих сил. Если сила Архимеда равна весу тела, то тело находится в состоянии покоя (плавает) в той точке жидкости, куда его поместили. Если сила Архимеда меньше веса тела, то тело тонет.

Если тело находится целиком в жидкости и плотности тела и жидкости равны, то тело плавает.

В случае если мы имеем несколько видов жидкостей с разными плотностями (например, поверх воды налили масло) и тело плавает на границе сред, то сила Архимеда будет равна:

[F_A=gleft[{rho }_1V_1+{rho }_2V_2right] left(2.1right),]

где ${rho }_1$ – плотность первой жидкости; ${rho }_2$ – плотность второй жидкости; $V_1$ – объем тела, находящийся в первой жидкости; $V_2$ – объем тела во второй жидкости.

Читать дальше: сила упругости.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Зако́н Архиме́да — один из главных законов гидростатики и статики газов.

Содержание

  • 1 Формулировка и пояснения
  • 2 Обобщения
  • 3 Вывод закона Архимеда для тела произвольной формы
  • 4 Условие плавания тел
  • 5 См. также
  • 6 Примечания
  • 7 Ссылки

Формулировка и пояснения[править | править вики-текст]

Закон Архимеда формулируется следующим образом[1]: на тело, погружённое в жидкость (или газ), действует выталкивающая сила, равная весу жидкости (или газа) в объёме погруженной части тела. Сила называется силой Архимеда:

{F}_{A}=rho {g}V,

где rho  — плотность жидкости (газа), {g} — ускорение свободного падения, а V — объём погружённой части тела (или часть объёма тела, находящаяся ниже поверхности). Если тело плавает на поверхности (равномерно движется вверх или вниз), то выталкивающая сила (называемая также архимедовой силой) равна по модулю (и противоположна по направлению) силе тяжести, действовавшей на вытесненный телом объём жидкости (газа), и приложена к центру тяжести этого объёма.

Тело плавает, если сила Архимеда уравновешивает силу тяжести тела.

Следует заметить, что тело должно быть полностью окружено жидкостью (либо пересекаться с поверхностью жидкости). Так, например, закон Архимеда нельзя применить к кубику, который лежит на дне резервуара, герметично касаясь дна.

Что касается тела, которое находится в газе, например в воздухе, то для нахождения подъёмной силы нужно заменить плотность жидкости на плотность газа. Например, шарик с гелием летит вверх из-за того, что плотность гелия меньше, чем плотность воздуха.

Закон Архимеда можно объяснить при помощи разности гидростатических давлений на примере прямоугольного тела.

P_{B}-P_{A}=rho gh
F_{B}-F_{A}=rho ghS=rho gV,

где PA, PB — давления в точках A и B, ρ — плотность жидкости, h — разница уровней между точками A и B, S — площадь горизонтального поперечного сечения тела, V — объём погружённой части тела.

В теоретической физике также применяют закон Архимеда в интегральной форме:

{F}_{A}=iint limits _{S}{p{dS}},

где S — площадь поверхности, p — давление в произвольной точке, интегрирование производится по всей поверхности тела.

В отсутствие гравитационного поля, то есть в состоянии невесомости, закон Архимеда не работает. Космонавты с этим явлением знакомы достаточно хорошо. В частности, в невесомости отсутствует явление (естественной) конвекции, поэтому, например, воздушное охлаждение и вентиляция жилых отсеков космических аппаратов производятся принудительно, вентиляторами.

Обобщения[править | править вики-текст]

Некий аналог закона Архимеда справедлив также в любом поле сил, которое по-разному действуют на тело и на жидкость (газ), либо в неоднородном поле. Например, это относится к полю сил инерции (например, центробежной силы) — на этом основано центрифугирование. Пример для поля немеханической природы: диамагнетик в вакууме вытесняется из области магнитного поля большей интенсивности в область с меньшей.

Вывод закона Архимеда для тела произвольной формы[править | править вики-текст]

Гидростатическое давление жидкости на глубине h есть p=rho gh. При этом считаем rho жидкости и напряжённость гравитационного поля постоянными величинами, а h — параметром. Возьмём тело произвольной формы, имеющее ненулевой объём. Введём правую ортонормированную систему координат Oxyz, причём выберем направление оси z совпадающим с направлением вектора {vec  {g}}. Ноль по оси z установим на поверхности жидкости. Выделим на поверхности тела элементарную площадку dS. На неё будет действовать сила давления жидкости направленная внутрь тела, d{vec  {F}}_{A}=-pd{vec  {S}}. Чтобы получить силу, которая будет действовать на тело, возьмём интеграл по поверхности:

{vec  {F}}_{A}=-int limits _{S}{p,d{vec  {S}}}=-int limits _{S}{rho gh,d{vec  {S}}}=-rho gint limits _{S}{h,d{vec  {S}}}=^{*}-rho gint limits _{V}{grad(h),dV}=^{{**}}-rho gint limits _{V}{{vec  {e}}_{z}dV}=-rho g{vec  {e}}_{z}int limits _{V}{dV}=(rho gV)(-{vec  {e}}_{{z}})

При переходе от интеграла по поверхности к интегралу по объёму пользуемся обобщённой теоремой Остроградского-Гаусса.

{}^{*}h(x,y,z)=z;quad ^{{**}}grad(h)=nabla h={vec  {e}}_{{z}}

Получаем, что модуль силы Архимеда равен rho gV, а направлена она в сторону, противоположную направлению вектора напряжённости гравитационного поля.

Условие плавания тел[править | править вики-текст]

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести {displaystyle {F_{T}}} и силы Архимеда {displaystyle {F_{A}}}, которые действуют на это тело. Возможны следующие три случая:

  • {displaystyle {F_{T}}>{F_{A}}} — тело тонет;
  • {displaystyle {F_{T}}={F_{A}}} — тело плавает в жидкости или газе;
  • {displaystyle {F_{T}}<{F_{A}}} — тело всплывает до тех пор, пока не начнёт плавать.

Другая формулировка (где {displaystyle rho _{t}} — плотность тела, {displaystyle rho _{s}} — плотность среды, в которую оно погружено):

  • {displaystyle rho _{t}>rho _{s}} — тело тонет;
  • {displaystyle rho _{t}=rho _{s}} — тело плавает в жидкости или газе;
  • {displaystyle rho _{t}<rho _{s}} — тело всплывает до тех пор, пока не начнёт плавать.

См. также[править | править вики-текст]

Видеоурок: закон Архимеда

  • Гидростатика
  • Плавучесть
  • Парадокс Архимеда

Примечания[править | править вики-текст]

  1. Всё написанное ниже, если не оговорено иное, относится к однородному полю силы тяжести (например, вблизи поверхности планеты).

Ссылки[править | править вики-текст]

  • Архимедов закон // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • Закон Архимеда // Энциклопедия «Кругосвет».

Добавить комментарий