Как найти модуль силы кулона

Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм

Электростатика

Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал

Магнитостатика

Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Магнитная индукция

Электродинамика

Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле

Электрическая цепь

Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс

Ковариантная формулировка

Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток

См. также: Портал:Физика

CoulombsLaw.svg

Зако́н Куло́на — физический закон, описывающий взаимодействие между двумя неподвижными точечными электрическими зарядами в вакууме. Сила, с которой заряд q_{1} действует на заряд q_{2}, согласно этому закону находится (в СИ) как

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}q_{2}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}},

где {displaystyle |{vec {r}}_{2}-{vec {r}}_{1}|=r_{12}} — расстояние между зарядами, {displaystyle {vec {r}}_{1}}, {displaystyle {vec {r}}_{2}} — их радиус-векторы, а varepsilon _{0} — электрическая постоянная. По величине, {displaystyle F_{12}=q_{1}q_{2}/(4pi varepsilon _{0}r_{12}^{2})}.

Также под законом Кулона понимается формула для вычисления электрического поля точечного заряда, вместе с её обобщением на произвольное распределение зарядов в пространстве:

{displaystyle {vec {E}}({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int _{V}{frac {({vec {r}}_{0}-{vec {r}})rho ({vec {r}}),dV}{|{vec {r}}_{0}-{vec {r}}|^{3}}}}.

Здесь {vec  {r}}_{0} — радиус-вектор точки, в которой определяется поле, а {vec {r}} — радиус-вектор элемента объёма dV, заряд {displaystyle dq=rho dV} (rho — плотность заряда) которого даёт вклад в поле.

Закон Кулона в классической электродинамике[править | править код]

Установление и формулировки закона[править | править код]

Закон открыт Шарлем Кулоном в 1785 году. Проведя большое количество опытов с металлическими шариками, Кулон дал такую формулировку закона:

Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.

Современная формулировка[1]:

Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.

В векторном виде в формулировке Ш. Кулона закон записывается как

{displaystyle {vec {F}}_{12}=kcdot {frac {q_{1}cdot q_{2}}{r_{12}^{2}}}cdot {frac {{vec {r}}_{12}}{r_{12}}}},

где vec{F}_{12} — сила, с которой заряд 1 действует на заряд 2; q_1, q_2 — величина зарядов (со знаком); vec{r}_{12} — вектор, направленный от заряда 1 к заряду 2 и по модулю равный расстоянию между зарядами (r_{12}); k — коэффициент пропорциональности.

Условия применимости[править | править код]

Для того, чтобы закон был верен, необходимы:

  1. точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Здесь две оговорки: а) существует обобщение закона Кулона на случай тел конечных размеров; б) можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
  2. их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
  3. расположение зарядов в вакууме.

В отдельных ситуациях, с корректировками, закон может быть применен также для взаимодействий зарядов в среде и для движущихся зарядов[2]. Но в общем случае при наличии неоднородных диэлектриков он неприменим, поскольку помимо заряда q_{1} на зарад q_{2} действуют связанные заряды, возникшие при поляризации.

Выражения в разных системах единиц[править | править код]

В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент k равен единице.

В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока — ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн/м = 8,9875517873681764⋅109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:

k={frac  {1}{4pi varepsilon _{0}}},

где varepsilon _{0} ≈ 8,85418781762⋅10−12 Ф/м — электрическая постоянная.

В случае среды, заполненной бесконечным однородным изотропным диэлектрическим веществом, в знаменатель формулы закона Кулона добавляется диэлектрическая проницаемость среды ε. Тогда

{displaystyle k={frac {1}{varepsilon }},,} (в СГСЭ) {displaystyle quad k={frac {1}{4pi varepsilon _{0}varepsilon }},,} (в СИ).

Закон Кулона и уравнения Максвелла[править | править код]

Закон Кулона и принцип суперпозиции для электрических полей в вакууме полностью равносильны уравнениям Максвелла для электростатики {displaystyle mathrm {div} {vec {D}}=rho } (rho — плотность заряда, {displaystyle {vec {D}}} — вектор электрического смещения) и {displaystyle mathrm {rot} {vec {E}}=0} ({vec {E}} — напряжённость электрического поля). То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики, и наоборот, уравнения Максвелла для электростатики выполняются, тогда когда выполняются закон Кулона и принцип суперпозиции для электрических полей[3].

Исторически закон Кулона был одним из эмпирических законов, служивших предпосылками для формулирования уравнения Максвелла. Однако при современном изложении учения об электромагнетизме этот закон (равно как и, скажем, закон Ампера) нередко позиционируется как следствие уравнений Максвелла, которым придаётся статус фундаментальных аксиом.

Вывод закона Кулона из уравнений Максвелла[править | править код]

Уравнение Максвелла {displaystyle mathrm {div} {vec {D}}=rho } с помощью теоремы Гаусса может быть приведено к интегральной форме

{displaystyle oint limits _{mathbf {S} }{vec {D}}cdot d{vec {s}}=Q},

где Q — суммарный заряд внутри замкнутой поверхности S, по которой проводится интегрирование. Если «суммарный» заряд состоит из одного точечного заряда q_{1}, пространство заполнено однородным диэлектриком, то есть {displaystyle {vec {D}}=varepsilon _{0}varepsilon {vec {E}}}, а поверхность представляет собой сферу с центром в месте нахождения заряда, то из-за симметрии поле заряда q_{1} в любой точке на поверхности сферы будет одним и тем же по величине и направленным от центра или к центру. Тогда интеграл оказывается равным {displaystyle Dcdot S=varepsilon _{0}varepsilon Ecdot 4pi l^{2}}, где через l обозначен радиус сферы, отсюда {displaystyle E=q_{1}/(4pi varepsilon _{0}varepsilon l^{2})}. Если на поверхность сферы поместить другой точечный заряд q_{2}, на него будет действовать сила. Поскольку поле есть отношение действующей на произвольный заряд силы к величине данного заряда ({displaystyle E=F/q_{2}}), приходим к выражению закона Кулона {displaystyle F=q_{1}q_{2}/(4pi varepsilon _{0}varepsilon l^{2})}.

Обобщение на случай распределения заряда[править | править код]

Если на заряд q_{2} действует не точечный заряд q_{1}, а заряд, распределённый в пространстве с плотностью {displaystyle rho _{1}({vec {r}})} (Кл/м3), то область, где {displaystyle rho _{1}neq 0}, можно мысленно разбить на малые (в пределе — бесконечно малые) элементы объёма {displaystyle dV_{1}} и каждый такой элемент рассматривать как точечный заряд {displaystyle rho _{1}({vec {r}}_{1}),dV_{1}}. По принципу суперпозиции, суммарная сила, действующая на заряд q_{2} со стороны таких элементов, может быть определена как интеграл по ним:

{displaystyle {vec {F}}_{12}={frac {q_{2}}{4pi varepsilon _{0}}}int _{V_{1}}{frac {({vec {r}}_{2}-{vec {r}}_{1}),rho _{1}({vec {r}}_{1})dV_{1}}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}},

где радиус-вектором {displaystyle {vec {r}}_{2}} задаётся положение заряда q_{2}, а радиус-вектором {displaystyle {vec {r}}_{1}} — положение элемента dV. Если в случае точечного q_{1} вектор {displaystyle {vec {r}}_{1}} был фиксированным, то теперь он пробегает все положения элементов.

Если же не только заряд q_{1}, но и заряд q_{2} являются распределёнными, то производится интегрирование и по элементам первого, и по элементам второго заряда, а именно

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}int _{V_{2}}int _{V_{1}}{frac {({vec {r}}_{2}-{vec {r}}_{1}),rho _{1}({vec {r}}_{1})dV_{1},rho _{2}({vec {r}}_{2})dV_{2}}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}}.

Закон Кулона и расчёт электрического поля[править | править код]

Взаимодействие двух зарядов может быть истрактовано как взаимодействие одного из зарядов с электрическим полем, создаваемым другим зарядом. Это становится виднее, если соответствующим образом перегруппировать сомножители в выражении для силы:

{displaystyle {vec {F}}_{12}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}q_{2}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}=q_{2}cdot left[{frac {1}{4pi varepsilon _{0}}}cdot {frac {q_{1}({vec {r}}_{2}-{vec {r}}_{1})}{|{vec {r}}_{2}-{vec {r}}_{1}|^{3}}}right]=q_{2}cdot E_{1}({vec {r}}_{2})}.

Тем самым закон Кулона фактически становится основой для вычисления поля. Так же, как и при рассмотрении силы, возможно обобщение последнего равенства на случай распределения зарядов.

Для нахождения поля {vec {E}} ({displaystyle =-{rm {{grad},varphi }}}) и электрического потенциала varphi в точке {vec  {r}}_{0}, создаваемых распределённым зарядом, производится интегрирование:

{displaystyle {vec {E}}({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int {frac {({vec {r}}_{0}-{vec {r}}),dq({vec {r}})}{|{vec {r}}_{0}-{vec {r}}|^{3}}},qquad varphi ({vec {r}}_{0})={frac {1}{4pi varepsilon _{0}}}int {frac {dq({vec {r}})}{|{vec {r}}_{0}-{vec {r}}|}}},

где заряд {displaystyle dq} обычно записывается как {displaystyle rho ({vec {r}})dV} (и интегрирование тогда выполняется по объёму), но в ряде задач может задаваться как {displaystyle sigma ({vec {r}})dS} (если заряд поверхностный, [sigma ] = Кл/м2, интерирование по площади) или как {displaystyle lambda ({vec {r}})dl} (заряд линейный [lambda ] = Кл/м, интеграл по линии).

Если всё пространство заполнено однородным диэлектриком с проницаемостью varepsilon , то формулы сохраняют свою актуальность, если в них varepsilon _{0} заменить на varepsilon _{0}varepsilon . В других случаях, за редкими исключениями, формулы неприменимы, так как необходимо учитывать вклад в том числе связанных зарядов ({displaystyle rho =rho _{f}+rho _{b}}, где {displaystyle rho _{f}} — плотность стороннего, а {displaystyle rho _{b}} — связанного заряда), возникающих при поляризации, — а эти заряды заранее неизвестны.

Аналогии в других областях классической физики[править | править код]

Закон Кулона совершенно аналогичен по форме закону всемирного тяготения. При этом функцию гравитационных масс выполняют электрические заряды[4] разных знаков.

Магнитостатическими аналогами закона Кулона являются закон Ампера (в части нахождения сил взаимодействия) и закон Био — Савара — Лапласа (в части расчёта по́ля).

Об открытии и исторической значимости закона[править | править код]

Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил[5] Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала его трагическая гибель.

В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил[6], что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение[7] о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества»[8] отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «сила электрического притяжения подчиняется тем же законам, что и сила тяжести, а следовательно, зависит от квадрата расстояния между зарядами»[9]. Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785)[10].

Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Дж. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[11].

Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.

Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме[12].

Закон Кулона в квантовой механике[править | править код]

В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике[13]. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.

Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:

{displaystyle H=-{frac {hbar ^{2}}{2m}}sum _{j}nabla _{j}^{2}-Ze^{2}sum _{j}{frac {1}{r_{j}}}+sum _{i>j}{frac {e^{2}}{r_{ij}}}.}

Здесь m — масса электрона, е — его заряд, r_{j} — абсолютная величина радиус-вектора j-го электрона vec r_j, а r_{ij}=|vec r_{i} - vec r_{j}|. Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно[14].

Закон Кулона с точки зрения квантовой электродинамики[править | править код]

Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона[15][16].

Степень точности закона Кулона[править | править код]

Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что[], какова бы ни была форма полости или проводника[17].

Такие опыты впервые провел Кавендиш и повторил Максвелл в усовершенствованном виде, получив для максимального отличия показателя в степени от двух величину {displaystyle {frac {1}{21600}}}[18].

Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до (3,1 pm 2,7) times 10^{-16}[19].

Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[20][21].

Коэффициент k в законе Кулона остаётся постоянным с точностью до 15⋅10−6[21].

Поправки к закону в квантовой электродинамике[править | править код]

На небольших расстояниях (порядка комптоновской длины волны электрона):

{displaystyle lambda _{e}={frac {hbar }{m_{e}c}}approx 3{,}86cdot 10^{-13}} м[22],

где m_e — масса электрона, hbar  — постоянная Планка, c — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка e^{-2r/lambda_e} в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.

Например, выражение для потенциала точечного заряда Q в системе СГС, с учётом радиационных поправок первого порядка, принимает вид
[23]:


Phi(r) = frac{Q}{r}cdotleft(1+ frac{alpha}{4sqrt{pi}}frac{e^{-2r/lambda_e}}{(r/lambda_e)^{3/2}}right),

где lambda_e — комптоновская длина волны электрона,
{displaystyle alpha ={frac {e^{2}}{hbar c}}} — постоянная тонкой структуры и rgg lambda_e.

На расстояниях порядка {displaystyle lambda _{W}={frac {hbar }{m_{w}c}}sim } 10−18 м, где m_w — масса W-бозона, в игру вступают уже электрослабые эффекты.

В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка {displaystyle {frac {m_{e}c^{2}}{elambda _{e}}}sim } 1018 В/м или {displaystyle {frac {m_{e}c}{elambda _{e}}}sim } 109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро-, но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально[24].

Закон Кулона и поляризация вакуума[править | править код]

Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона e_e является убывающей функцией расстояния e_e=e_e(r)[25]. Эффективный потенциал, создаваемый электроном с электрическим зарядом e, можно описать зависимостью вида e_e(r)/r. Эффективный заряд e_e(r) зависит от расстояния r по логарифмическому закону:


frac{e_e(r)}{e}=1+frac{2alpha}{3pi}lnfrac{r_e}{r}+dots,

где

{displaystyle alpha ={frac {e^{2}}{4pi varepsilon _{0}hbar c}}approx 7.3cdot 10^{-3}} — постоянная тонкой структуры;
{displaystyle r_{e}={frac {e^{2}}{4pi varepsilon _{0}c^{2}m_{e}}}approx 2.8cdot 10^{-13}} см — классический радиус электрона[26][27].

Эффект Юлинга[править | править код]

Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 МГц[28][29].

Закон Кулона и сверхтяжёлые ядра[править | править код]

В сильном электромагнитном поле вблизи сверхтяжёлых ядер с зарядом Z > 170 осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона[30].

См. также[править | править код]

  • Электростатика
  • Электрическое поле
  • Дальнодействие
  • Закон Био — Савара — Лапласа
  • Закон притяжения
  • Шарль Огюстен де Кулон
  • Кулон (единица измерения)
  • Принцип суперпозиции
  • Уравнения Максвелла

Примечания[править | править код]

  1. Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 17. — 656 с. — ISBN 5-9221-0227-3.
  2. Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2001. — С. 132. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
  3. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
  4. Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм. — М.: Наука, 1964. — Тираж 100 000 экз. — С. 33.
  5. Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
  6. Эпинус Ф. Т. У. Теория электричества и магнетизма. — Л.: АН СССР, 1951. — 564 с. — (Классики науки). — 3000 экз. Архивировано 17 ноября 2012 года.
  7. Abel Socin (1760) Acta Helvetica, vol. 4, pages 224-225.
  8. J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
  9. Уиттекер Э. История теории эфира и электричества. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 76. — 512 с. — ISBN 5-93972-070-6.
  10. John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 Архивная копия от 1 декабря 2016 на Wayback Machine автор пишет, что сила изменяется как x−2,06.
  11. ‘Филонович С. Р. Кавендиш, Кулон и электростатика. — М.: Знание, 1988. — С. 48.
  12. Спиридонов О. П. Универсальные физические постоянные.— М.: Просвещение.— 1984.— с. 52-53;
  13. Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — М., 2002. — С. 74. — («Теоретическая физика», том III).
  14. Бете Х. Квантовая механика. — Пер. с англ., под ред. В. Л. Бонч-Бруевича. — М.: Мир, 1965. — С. 11.
  15. Пайерлс Р. Е.  Законы природы. пер. с англ. под ред. проф. Халатникова И. М. , Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
  16. Окунь Л. Б. alpha beta gamma … z Элементарное введение в физику элементарных частиц Архивная копия от 25 ноября 2010 на Wayback Machine, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
  17. Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
  18. Калашников С. Г.,
    Электричество, М., ГИТТЛ, 1956, гл. III «Разность потенциалов», п. 34 «Точная проверка закона Кулона», с. 68—69; «Добавления», 1. «Теория опытов Кавендиша и Максвелла», с. 642—645;
  19. E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
  20. W. E. Lamb, R. C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method (англ.) // Physical Review. — 1947. — Vol. 72, no. 3. — P. 241—243.
  21. 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
  22. CODATA Архивная копия от 11 февраля 2012 на Wayback Machine (the Committee on Data for Science and Technology)
  23. Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565—567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3.
  24. Neda Sadooghi. Modified Coulomb potential of QED in a strong magnetic field (англ.). Архивировано 18 января 2015 года.
  25. Окунь Л. Б. Физика элементарных частиц. Изд. 3-е, М.: «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
  26. «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
  27. Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
  28. Uehling E. A ., Phys. Rev., 48, 55, (1935)
  29. Швебер С., Бете Г., Гофман Ф. Мезоны и поля. Том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
  30. Мигдал А. Б. Поляризация вакуума в сильных полях и пионная конденсация// Успехи физических наук Т. 123— в. 3.— 1977 г., ноябрь.— с. 369—403;

Литература[править | править код]

  • Филонович С. Р. Судьба классического закона. — М.: Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.

Ссылки[править | править код]

  • Закон Кулона (видеурок, программа 10 класса)

Еще в древности было известно, что наэлектризованные тела взаимодействуют. Силу взаимодействия двух небольших заряженных шариков с помощью крутильных весов впервые измерил Шарль Кулон. Он сформулировал закон, который позже назвали его именем.

Так же, было выяснено, что сила, с которой два заряда притягиваются, или отталкиваются, зависит не только от самих зарядов, но и от вещества, в котором эти заряды находятся.

Опыт Кулона

Кулон нашел способ измерить взаимное действие двух зарядов. Для этого он использовал крутильные весы.

Ему не пришлось применять дополнительную особо чувствительную аппаратуру. Потому, что взаимное действие зарядов имело достаточную для наблюдения интенсивность.

Примечание: Опыт Кулона похож на опыт Кавендиша, который экспериментально определил гравитационную постоянную G.

Устройство крутильных весов

Такие весы (рис. 1) содержат перекладину — тонкий стеклянный стержень, расположенный горизонтально. Он подвешен на тонкой вертикально натянутой упругой проволоке.

На одном конце стержня находится небольшой металлический шарик. К другому концу прикреплен груз, который используется, как противовес.

Еще один металлический шарик, прикрепленный ко второй палочке из стекла, можно располагать неподалеку от первого шарика. Для этого в верхней крышке корпуса весов проделано отверстие.

Устройство крутильных весов, использованных Кулоном

Рис. 1. Устройство крутильных весов, использованных Кулоном для обнаружения силы взаимодействия зарядов

Если наэлектризовать шарики, они начнут взаимодействовать. А прикрепленная к проволоке перекладина, на которой находится один из шариков, будет поворачиваться на некоторый угол.

На корпусе весов на уровне палочки располагается шкала с делениями. Угол поворота связан с силой взаимного действия шариков. Чем больше угол поворота, тем больше сила, с которой шарики действуют друг на друга.

Чтобы сдвинувшийся шарик вернуть в первоначальное положение, нужно закрутить проволоку на некоторый угол. Так, чтобы сила упругости скомпенсировала силу взаимодействия шариков.

Для закручивания проволоки в верхней части весов есть рычажок. Рядом с ним расположен диск, а на нем – еще одна угловая шкала с делениями.

По нижней шкале определяют точку, в которую необходимо вернуть шарик. Верхней шкалой пользуются, чтобы установить угол, на который нужно рычажком закрутить проволоку.

С помощью крутильных весов Шарль Кулон выяснил, как именно сила взаимного действия зависит от величины зарядов и расстояния между зарядами.

В те годы единиц для измерения заряда не было. Поэтому ему пришлось изменять заряд одного шарика с помощью метода половинного деления.

Когда он касался заряженным шариком второго такого же шарика, заряды между ними распределялись поровну. Таким способом, можно было уменьшать заряд одного из шариков, участвующих в опыте, в 2, 4, 8, 16 и т. д. раз.

Так опытным путем Кулон получил закон, формула которого очень похожа на закон всемирного тяготения.

В память о его заслугах, силу взаимодействия зарядов называют Кулоновской силой.

Закон Кулона для зарядов в вакууме

Рассмотрим два точечных заряда, которые находятся в вакууме (рис. 2).

Два положительных заряда q и Q отталкиваются в вакууме

Рис. 2. Два положительных заряда q и Q, расположенных в вакууме на расстоянии r, отталкиваются. Силы отталкивания направлены вдоль прямой, соединяющей заряды

На рисунке 2 сила (large F_{Q} ) – это сила, с которой положительный заряд Q отталкивает второй положительный заряд q. А сила  (large F_{q} ) принадлежит заряду q, с такой силой он  отталкивает заряд Q.

Примечание: Точечный заряд – это заряженное тело, размером и формой которого можно пренебречь.

Силы взаимодействия зарядов, по третьему закону Ньютона, равны по величине и направлены противоположно. Поэтому, для удобства можно ввести обозначение:

[large F_{q} = F_{Q} = F]

Для силы взаимодействия зарядов в вакууме Шарль Кулон сформулировал закон так:

Два точечных заряда в вакууме,
взаимодействуют с силой
прямо пропорциональной
произведению величин зарядов
и обратно пропорциональной
квадрату расстояния между ними.

Формула для этого закона на языке математики запишется так:

[large boxed { F = k cdot frac {|q| cdot |Q| }{r^{2}} } ]

(F left( H right) ) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

(|q| left( text{Кл}right) ) – величина первого заряда;

(|Q| left( text{Кл}right) ) – величина второго заряда;

(r left( text{м}right) ) – расстояние между двумя точечными зарядами;

(k ) – постоянная величина, коэффициент в системе СИ;

Сила – это вектор. Две главные характеристики вектора – его длина и направление.

Формула позволяет найти одну из характеристик вектора F — модуль (длину) вектора.

Чтобы определить вторую характеристику вектора F – его направление, нужно воспользоваться правилом: Мысленно соединить два неподвижных точечных заряда прямой линией. Сила, с которой они взаимодействуют, будет направлена вдоль этой прямой линии.

Сила Кулона – это центральная сила, так как она направлена вдоль прямой, соединяющей центры тел.

Примечание: Еще один пример центральной силы — сила тяжести.

Что такое коэффициент k с точки зрения физики

Постоянная величина (k ), входящая в формулу силы взаимодействия зарядов, имеет такой физический смысл:

(k ) — это сила, с которой отталкиваются два положительных точечных заряда по 1 Кл каждый, когда расстояние между ними равно 1 метру.

Значение постоянной k равно девяти миллиардам!

[large boxed { k = 9cdot 10^{9} left( H cdot frac{text{м}^{2}}{text{Кл}^{2}}right) } ]

Это значит, что заряды взаимодействуют с большими силами.

Смысл коэффициента k в формуле взаимодействия зарядов

Рис. 3. Коэффициент k в формуле взаимодействия зарядов

Константу k можно вычислить опытным путем, расположив два известных заряда (не обязательно по 1 Кулону каждый) на удобном для измерений расстоянии (не обязательно 1 метр) и измерив силу из взаимного действия.

Нужно подставить известные величины зарядов, расстояние между ними и измеренную силу в такую формулу:

[large boxed { k = frac {F cdot r^{2}}{|q| cdot |Q|} } ]

Величина k связана с электрической постоянной (varepsilon) такой формулой:

[large boxed { k = frac{1}{4pi cdot varepsilon_{0}} } ]

Поэтому дробь из правой части этой формулы можно встретить в различных справочниках физики, где она заменяет коэффициент k.

Закон Кулона для зарядов в веществе

Если два точечных заряда находятся в веществе, то сила их взаимного действия будет меньше, чем в вакууме. Для зарядов в веществе закон Кулона выглядит так:

[large boxed { F = frac{1}{varepsilon} cdot k cdot frac {|q| cdot |Q| }{r^{2}} } ]

(F left( H right) ) – сила взаимодействия зарядов в веществе;

(|q| ; |Q| left( text{Кл}right) ) – величины зарядов;

(r left( text{м}right) ) – расстояние между зарядами;

( k = 9cdot 10^{9} ) – постоянная величина;

( varepsilon ) – диэлектрическая проницаемость вещества, для разных веществ различается, ее можно найти в справочнике физики;

Два заряда -q и +Q притягиваются в вакууме сильнее, чем в диэлектрике

Рис. 4. Два заряда -q и +Q, расположенные в вакууме на расстоянии r, притягиваются сильнее, нежели те же заряды, расположенные на таком же расстоянии в диэлектрике

Силы, с которыми заряды действуют друг на друга в веществе, отличаются от сил взаимодействия в вакууме в ( varepsilon ) раз:

[large boxed { F_{text{(в диэлектрике)}} = frac{1}{varepsilon} cdot F_{text{(в вакууме)}} } ]

Примечание: Читайте отдельную статью, рассказывающую, что такое диэлектрическая проницаемость и электрическая постоянная.

Закон Кулона 

Закон сохранения электрического заряда

Напряженность

Принцип суперпозиции

Электрическое поле

Потенциал электростатического поля

Разность потенциалов


Теория

Совсем чуть−чуть. 

Закон Кулона — сила, с которой два точечных заряда действуют друг на друга. Она обратно пропорциональна квадрату расстояния между ними и прямо пропорциональна произведению их зарядов.

Заряды с одинаковым знаком отталкиваются, с разными — притягиваются. По III з. Ньютона сила действия одного заряда равна силе действия другого:

Наглядно рассказывается об этом в видео.
А напряженность — силовая характеристика электрического поля. По-простому: электрическое поле действует на заряд, и вот сила, с которой поле действует на заряд, и есть напряженность. 

Напряженность НЕ зависит от величины заряда, помещенного в поле!

Задачи

Задача 1 Два одинаковых маленьких положительно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 5 раз. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Скажем, что заряд одного шарика q, другого 5q. Тогда сила Кулона между ними:

А если теперь соединить два шарика, то общий заряд разделится пополам (на каждый шарик). Общий заряд 5q + q = 6q, тогда на каждом шарике окажется по 3q. Тогда сила Кулона:

Отношение получится таким:

Ответ: 1,8

Задача 2 Два одинаковых маленьких разноименно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F. Модули зарядов шариков отличаются в 4 раза. Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F. Определите отношение F к F.

Та же самая задача? А вот и нет, одно слово другое: разноименно вместо положительных. Это значит, что один шарик будет заряжен положительно, другой отрицательно. По сравнению с первым случаем сила Кулона никак не изменится по модулю (только по нарпавлению).

А вот после соприкосновения изменится. Общий заряд: 5q − q = 4q или q − 5q = − 4q, тогда на каждый шар пойдет по 2q:

Отношение:

Ответ: 0,8

Задача 3 На нерастяжимой нити висит шарик массой 100 г, имеющий заряд 20 мкКл. Как необходимо зарядить второй шарик, который подносят снизу к первому шарику на расстояние 30 см, чтобы сила натяжения: а) увеличилась в 4 раза; б) рассмотреть случай невесомости?

В начальный момент времени на шарик действуют две силы:

а) Чтобы сила натяжения увеличилась в 4 раза, сила Кулона должна быть направлена вниз, значит, нужно поднести отрицательно заряженный шарик. Запишем также уравнение на ось Y:

б) Невесомость возникает, когда сила натяжения равна нулю. Для этого нужно, чтобы сила Кулона была направлена вверх, значит, подносим положительный заряд:

Ответ: −1,5 мкКл, 500 нКл.

Задача 3 Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает с поверхности пластинки электрон, который попадает в электрическое поле с напряженностью 125 В/м. Найти расстояние, которое он пролетит прежде, чем разгонится до скорости, равной 1% от скорости света. 

В задаче говорится про электрон, значит, его массу m = 9,1×10⁻³¹ кг и заряд q = 1,6 × 10⁻¹⁹ Кл можно посмотреть в справочных данных.

Найдем ускорение электрона в электрическом поле:

Остается найти пройденный путь в равноускоренном движении при нулевой начальной скорости: 

Ответ: 0,2 м

Задача 4 Полый заряженный шарик массой m = 0,4 г. движется в однородном горизонтальном электрическом поле из состояния покоя. Модуль напряженности электрического поля E = 500 кВ/м. Траектория шарика образует с вертикалью угол α = 45°. Чему равен заряд шарика? 

Для начала разберемся, какие силы действуют на заряд:

Заряд движется под углом 45 градусов, значит, отношением сил будет тангенс 45°:

Ответ: 8×10⁻⁹ Кл

Задача 5 При нормальных условиях электрический «пробой» сухого воздуха наступает при напряжённости электрического поля 30 кВ/см. В результате «пробоя» молекулы газа, входящие в состав воздуха, ионизируются и появляются свободные электроны. Какую кинетическую энергию приобретёт такой электрон, пройдя в электрическом поле расстояние 10⁻⁵ см? Ответ выразите в электронвольтах. (ЕГЭ)

Задача кажется весьма тяжелой, но это обманчиво. Воспользуемся знакомой формулой напряженности: 

Домножим на длину обе части, тогда слева получится работа, а работа — это изменение энергии:

Переводить сантиметры не обязательно, они сократятся. Чтобы перевести джоули в электронвольты, нужно разделить на 1,6 × 10⁻¹⁹

Ответ: 0,3 эВ

Задача 6 В вершинах равностороннего треугольника со стороной «а» находятся заряды +q, +q и -q. Найти напряженность поля Е в центре треугольника.

Покажем, как направлена напряженность: для двух положительных зарядов — от них (красные стрелочки), для отрицательного заряда — к нему (синяя стрелочка).

Угол между синим вектором и красным составляет 60°. Если продлить красный вектор до стороны, получится прямоугольный треугольник. Тогда, чтобы посчитать результирующую напряженность, спроецируем красные векторы на синий: 

Остается разобрать на каком расстоянии находятся заряды от центра треугольника. Высоту треугольника можно найти по т. Пифагора, равна она а√3/2. А расстояние тогда составит 2/3 от высоты:

Ответ: 6kq/a²

Задача 6 Два шарика с зарядами Q = –1 нКл и q = 5 нКл соответственно, находятся в однородном электрическом поле с напряженностью Е = 18 В/м, на расстоянии r = 1 м друг от друга. Масса первого шарика равна M = 5 г. Определите, какую массу должен иметь второй шарик, чтобы они двигались с прежним между ними расстоянием и с постоянным по модулю ускорением. (ЕГЭ – 2016)

Направим ось X вправо и покажем, какие силы действуют на каждый заряд.

На положительный заряд электрическая сила действует по линиям напряженности, для отрицательного заряда все наоборот. Силы кулона направлены к зарядам, они разноименные. Составим уравнение для каждого заряда:

Сумма всех сила равна ma, потому что в условии сказано, что шарики двигаются с постоянным ускорением, а чтобы расстояние не менялось, двигаться они должны в одном направлении.

Разделим одно уравнение на другое и выразим массу:

Ответ: 8,3 гр.

Задача 7 Четыре маленьких одинаковых шарика, связанных нерастяжимыми нитями одинаковой длины, заряженызарядами q, q, q и 2q. Сила натяжения нити, связывающей первый и второй шарики, равна T. Найти силу натяжения нити, связывающейвторой и третий шарики. (Росатом)

Покажем, каким силам противодействует сила натяжения Т. Воспользуемся принципом суперпозиции и законом Кулона:

Сила натяжения Т удерживает первый шарик, других сил для него нет, значит, больше ничего для первого случая не требуется. 

Как проще это запомнить: проводим линию перпендикулярно той нити, о которой говорим (красная черточка), после записываем только те силы между шариками, которые появляются по разные стороны от проведенной линии:

Теперь также составим уравнения для силы натяжения между вторым и третьим шариком:

Распишим каждое уравнение по закону кулона, скажем, что расстояние между соседними шариками равно «а»:

Второе уравнение с подстановкой выражения из первого:

Ответ: 71T/53

Задача 8 Точечный заряд, расположенный в точке C, создаёт в точках A и B поле с напряжённостью Ea и Eb соответственно (см. рисунок; угол ACB — прямой). Найти напряжённость электрическогополя, создаваемого этим зарядом в точке M, являющейся основанием перпендикуляра, опущенного из точки C на прямую AB. (Росатом)

Запишем, чему равна напряженность в каждой из этих точек, взяв длины отрезков за a; b; h:

Площадь прямоугольного треугольника можно найти как полупроизведение катетов или как полупроизведение высоты и основания:

Возведем в квадрат получившиеся уравнение, а дальше смертельный номер: возводим в −1 степень и домножаем обе части на kq:

Выразим a² и b² через напряженность:

Ответ: Ea+Eb

Задача 9 Частицы с массами M и m, и зарядами q и −q соответственно вращаются с угловой скоростью ω по окружностям вокруг оси, направленной по внешнемуоднородному электрическому полю с напряжённостью E (рис.). Найдите расстояние L между частицами и расстояние H между плоскостями их орбит. (Всеросс. 2008)

Накрест лежащие углы при параллельных прямых (движения частиц) и секущей силы Кулона равны α. Покажем какие силы действуют на каждую частицу:

Запишем уравнения по осям на верхнюю частицу:

На нижнюю частицу:

Построим два треугольника, которые показывают расстояние между частицами и высоту между ними. 

Разделим уравнения друг на друга, а также выразим тангенс угла из этих треугольников:

Сложим два уравнения, чтобы найти расстояние между плоскостями:

Пункт «а» решили, теперь с расстоянием разберемся: выразим из ур-ия (1) длину, а дальше из треугольника выразим синус угла альфа:

Вместо Н подставим то, что мы нашли:

Задача 10 В точке O к стержню привязана непроводящая нить длиной R c зарядом q на конце. Известный эталонный заряд Q и измеряемый заряд Q установлены на расстояниях L и L от точки O. Все заряды одногознака и могут считаться точечными. Найдите величину заряда Q, если в состоянии равновесия нить отклонена на угол β от отрезка, соединяющегозаряды Q и Q. (Всеросс. 2018)

Проведем оси, подпишем расстояние от Q₁ до q и от Q₂ до q. Запишем ур-ия сил на каждую ось:

Не хочется мучиться с силой натяжения нити, поэтому займемся ур-ем на ось Y:

Из прямоугольных треугольников можно получить такие соотношения, а также из теоремы косинусов выразить S₁ и S₂:

Подставим в ур-ие (1):

В качестве закрепления материала решите несколько похожих задач с ответами. 

Будь в курсе новых статеек, видео и легкого технического юмора.

Силы электростатического взаимодействия зависят от формы и размеров наэлектризованных тел, а также от характера распределения заряда на этих телах. В некоторых случаях можно пренебречь формой и размерами заряженных тел и считать, что каждый заряд сосредоточен в одной точке.

Точечный заряд – это электрический заряд, когда размер тела, на котором этот заряд сосредоточен, намного меньше расстояния между заряженными телами. Приближённо точечные заряды можно получить на опыте, заряжая, например, достаточно маленькие шарики.

Взаимодействие двух покоящихся точечных зарядов определяет основной закон электростатики – закон Кулона. Этот закон экспериментально установил в 1785 году французский физик Шарль Огюстен Кулон (1736 – 1806). Формулировка закона Кулона следующая:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональная произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Эта сила взаимодействия называется кулоновская сила, и формула закона Кулона будет следующая:

F = k · (|q1| · |q2|) / r2

где |q1|, |q2| – модули зарядов, r – расстояния между зарядами, k – коэффициент пропорциональности.

Коэффициент k в СИ принято записывать в форме:

k = 1 / (4πε0ε)

где ε0 = 8,85 * 10-12 Кл/Н*м2 – электрическая постоянная, ε – диэлектрическая проницаемость среды.

Для вакуума ε = 1, k = 9 * 109 Н*м/Кл2.

Сила взаимодействия неподвижных точечных зарядов в вакууме:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2]

Если два точечных заряда помещены в диэлектрик и расстояние от этих зарядов до границ диэлектрика значительно больше расстояния между зарядами, то сила взаимодействия между ними равна:

F = [1 /(4πε0)] · [(|q1| · |q2|) / r2] = k · (1 /π) · [(|q1| · |q2|) / r2]

Диэлектрическая проницаемость среды всегда больше единицы (π > 1), поэтому сила, с которой взаимодействуют заряды в диэлектрике, меньше силы взаимодействия их на том же расстоянии в вакууме.

Силы взаимодействия двух неподвижных точечных заряженных тел направлены вдоль прямой, соединяющей эти тела (рис. 1.8).

Рис. 1.8. Силы взаимодействия двух неподвижных точечных заряженных тел.

Кулоновские силы, как и гравитационные силы, подчиняются третьему закону Ньютона:

F1,2 = -F2,1

Кулоновская сила является центральной силой. Как показывает опыт, одноимённые заряженные тела отталкиваются, разноимённо заряженные тела притягиваются.

Вектор силы F2,1, действующей со стороны второго заряда на первый, направлен в сторону второго заряда, если заряды разных знаков, и в противоположную, если заряды одного знака (рис. 1.9).

Рис. 1.9. Взаимодействие разноименных и одноименных электрических зарядов.

Электростатические силы отталкивания принято считать положительными, силы притяжения – отрицательными. Знаки сил взаимодействия соответствуют закону Кулона: произведение одноимённых зарядов является положительным числом, и сила отталкивания имеет положительный знак. Произведение разноимённых зарядов является отрицательным числом, что соответствует знаку силы притяжения.

В опытах Кулона измерялись силы взаимодействия заряженных шаров, для чего применялись крутильные весы (рис. 1.10). На тонкой серебряной нити подвешена лёгкая стеклянная палочка с, на одном конце которой закреплён металлический шарик а, а на другом противовес d. Верхний конец нити закреплён на вращающейся головке прибора е, угол поворота которой можно точно отсчитывать. Внутри прибора имеется такого же размера металлический шарик b, неподвижно закреплённый на крышке весов. Все части прибора помещены в стеклянный цилиндр, на поверхности которого нанесена шкала, позволяющая определить расстояние между шариками a и b при различных их положениях.

Рис. 1.10. Опыт Кулона (крутильные весы).

При сообщении шарикам одноимённых зарядов они отталкиваются друг от друга. При этом упругую нить закручивают на некоторый угол, чтобы удержать шарики на фиксированном расстоянии. По углу закручивания нити и определяют силу взаимодействия шариков в зависимости от расстояния между ними. Зависимость силы взаимодействия от величины зарядов можно установить так: сообщить каждому из шариков некоторый заряд, установить их на определённом расстоянии и измерить угол закручивания нити. Затем надо коснуться одного из шариков таким же по величине заряженным шариком, изменяя при этом его заряд, так как при соприкосновении равных по величине тел заряд распределяется между ними поровну. Для сохранения между шариками прежнего расстояния необходимо изменить угол закручивания нити, а следовательно, и определить новое значение силы взаимодействия при новом заряде.

Основной
закон взаимодействия электрических
зарядов был найден Шарлем Кулоном в
1785 г. экспериментально. Кулон установил,
что сила
взаимодействия
между двумя небольшими заряженными
металлическими шариками обратно
пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:

,

где
коэффициент
пропорциональности

.

Силы,
действующие на заряды
,
являются центральными,
то есть они направлены вдоль прямой,
соединяющей заряды.

  • Для
    одноименных зарядов произведение
    и силасоответствует взаимному отталкиванию
    зарядов,

  • для
    разноимнных зарядов
    ,
    и силасоответствует взаимному притяжению
    зарядов.

Закон
Кулона

можно записать в
векторной форме
:,

где
вектор
силы, действующей на заряд
со стороны заряда,

– радиус-вектор,
соединяющий заряд
с зарядом;

– модуль радиус-вектора.

Сила,
действующая на заряд
со стороныравна,.

Закон Кулона в
такой форме

  • справедлив
    только
    для взаимодействия точечных электрических
    зарядов
    ,
    то есть таких заряженных тел, линейными
    размерами которых можно пренебречь по
    сравнению с расстоянием между ними.

  • выражает
    силу взаимодействия

    между неподвижными электрическими
    зарядами, то есть это электростатический
    закон.

Формулировка
закона Кулона
:

Сила
электростатического взаимодействия
между двумя точечными электрическими
зарядами прямо пропорциональна
произведению величин зарядов и обратно
пропорциональна квадрату расстояния
между ними
.

Коэффициент
пропорциональности

в законе Кулоназависит

  1. от свойств среды

  2. выбора единиц
    измерения величин, входящих в формулу.

Поэтому
можно
представить отношением,

где
коэффициент,
зависящий только от выбора системы
единиц измерения
;

– безразмерная
величина, характеризующая электрические
свойства среды, называется относительной
диэлектрической проницаемостью среды
.
Она не зависит от выбора системы единиц
измерения и равна единице в вакууме.

Тогда
закон Кулона примет вид:,

для
вакуума
,

тогда
относительная
диэлектрическая проницаемость среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными электрическими зарядами
и,
находящимися друг от друга на расстоянии,
меньше, чем в вакууме.

В
системе СИ
коэффициент
,
и

закон
Кулона имеет вид
:.

Это
рационализированная
запись закона К
улона.

– электрическая
постоянная,
.

В
системе СГСЭ

,.

В
векторной форме закон Кулона

принимает вид

где
вектор
силы, действующей на заряд
со стороны заряда

,


радиус-вектор, соединяющий заряд
с зарядом

(рис. 1.2),

r
–модуль радиус-вектора

.

Всякое
заряженное тело состоит из множества
точечных электрических зарядов, поэтому
электростатическая
сила, с которой одно заряженное тело
действует на другое, равна векторной
сумме сил, приложенных ко всем точечным
зарядам второго тела со стороны каждого
точечного заряда первого тела.

1.3.Электрическое поле. Напряженность.

Пространство,
в котором находится электрический
заряд, обладает определенными физическими
свойствами
.

  1. На
    всякий

    другой заряд,
    внесенный в это пространство, действуют
    электростатические силы Кулона.

  2. Если в каждой
    точке пространства действует сила, то
    говорят, что в этом пространстве
    существует силовое поле.

  3. Поле наряду с
    веществом является формой материи.

  4. Если
    поле стационарно, то есть не меняется
    во времени, и создается неподвижными
    электрическими зарядами, то такое поле
    называется электростатическим.

Электростатика
изучает только электростатические поля
и взаимодействия неподвижных зарядов.

Для
характеристики электрического поля
вводят понятие напряженности
.
Напряженностью
в каждой точке электрического поля
называется вектор
,
численно равный отношению силы, с которой
это поле действует на пробный положительный
заряд, помещенный в данную точку, и
величины этого заряда, и направленный
в сторону действия силы.

Пробный
заряд
,
который вносится в поле, предполагается
точечным и часто называется пробным
зарядом.

Он
не участвует в создании поля,

которое с его помощью измеряется.


предполагается, что этот заряд не
искажает исследуемого поля,

то есть он достаточно мал и не вызывает
перераспределения зарядов, создающих
поле.

Если
на пробный точечный заряд
поле действует силой,
то напряженность.

Единицы напряженности:

СИ:

СГСЭ:

В
системе СИ выражение
для
поля точечного заряда
:

.

В векторной форме:

Здесь
– радиус-вектор, проведенный из зарядаq
, создающего поле, в данную точку.

Таким
образом,векторы
напряженности электрического поля
точечного заряда
q
во всех точках поля направлены радиально

(рис.1.3)

– от
заряда, если он положительный, «исток»

– и
к заряду, если он отрицательный

«сток»

Для
графической интерпретации

электрического поля вводят понятие
силовой линии или
линии
напряженности
.
Это

  • кривая,
    касательная в каждой точке к которой
    совпадает с вектором напряженности
    .

  • Линия напряженности
    начинается на положительном заряде и
    заканчивается на отрицательном.

  • Линии напряженности
    не пересекаются, так как в каждой точке
    поля вектор напряженности имеет лишь
    одно направление.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий