- О законе сухого трения см. Закон Амонтона — Кулона.
Классическая электродинамика |
---|
Электричество · Магнетизм |
Электростатика Закон Кулона |
Магнитостатика Закон Био — Савара — Лапласа |
Электродинамика Векторный потенциал |
Электрическая цепь Закон Ома |
Ковариантная формулировка Тензор электромагнитного поля |
См. также: Портал:Физика |
Зако́н Куло́на — физический закон, описывающий взаимодействие между двумя неподвижными точечными электрическими зарядами в вакууме. Сила, с которой заряд действует на заряд , согласно этому закону находится (в СИ) как
- ,
где — расстояние между зарядами, , — их радиус-векторы, а — электрическая постоянная. По величине, .
Также под законом Кулона понимается формула для вычисления электрического поля точечного заряда, вместе с её обобщением на произвольное распределение зарядов в пространстве:
- .
Здесь — радиус-вектор точки, в которой определяется поле, а — радиус-вектор элемента объёма , заряд ( — плотность заряда) которого даёт вклад в поле.
Закон Кулона в классической электродинамике[править | править код]
Установление и формулировки закона[править | править код]
Закон открыт Шарлем Кулоном в 1785 году. Проведя большое количество опытов с металлическими шариками, Кулон дал такую формулировку закона:
Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.
Современная формулировка[1]:
Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы.
В векторном виде в формулировке Ш. Кулона закон записывается как
- ,
где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов (со знаком); — вектор, направленный от заряда 1 к заряду 2 и по модулю равный расстоянию между зарядами (); — коэффициент пропорциональности.
Условия применимости[править | править код]
Для того, чтобы закон был верен, необходимы:
- точечность зарядов, то есть расстояние между заряженными телами должно быть много больше их размеров. Здесь две оговорки: а) существует обобщение закона Кулона на случай тел конечных размеров; б) можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;
- их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;
- расположение зарядов в вакууме.
В отдельных ситуациях, с корректировками, закон может быть применен также для взаимодействий зарядов в среде и для движущихся зарядов[2]. Но в общем случае при наличии неоднородных диэлектриков он неприменим, поскольку помимо заряда на зарад действуют связанные заряды, возникшие при поляризации.
Выражения в разных системах единиц[править | править код]
В СГСЭ единица измерения заряда выбрана таким образом, что коэффициент равен единице.
В Международной системе единиц (СИ) одной из основных единиц является единица силы электрического тока — ампер, а единица заряда — кулон — производная от него. Величина ампера определена таким образом, что k = c2·10−7 Гн/м = 8,9875517873681764⋅109 Н·м2/Кл2 (или Ф−1·м). В СИ коэффициент k записывается в виде:
- ,
где ≈ 8,85418781762⋅10−12 Ф/м — электрическая постоянная.
В случае среды, заполненной бесконечным однородным изотропным диэлектрическим веществом, в знаменатель формулы закона Кулона добавляется диэлектрическая проницаемость среды ε. Тогда
- (в СГСЭ) (в СИ).
Закон Кулона и уравнения Максвелла[править | править код]
Закон Кулона и принцип суперпозиции для электрических полей в вакууме полностью равносильны уравнениям Максвелла для электростатики ( — плотность заряда, — вектор электрического смещения) и ( — напряжённость электрического поля). То есть закон Кулона и принцип суперпозиции для электрических полей выполняются тогда и только тогда, когда выполняются уравнения Максвелла для электростатики, и наоборот, уравнения Максвелла для электростатики выполняются, тогда когда выполняются закон Кулона и принцип суперпозиции для электрических полей[3].
Исторически закон Кулона был одним из эмпирических законов, служивших предпосылками для формулирования уравнения Максвелла. Однако при современном изложении учения об электромагнетизме этот закон (равно как и, скажем, закон Ампера) нередко позиционируется как следствие уравнений Максвелла, которым придаётся статус фундаментальных аксиом.
Вывод закона Кулона из уравнений Максвелла[править | править код]
Уравнение Максвелла с помощью теоремы Гаусса может быть приведено к интегральной форме
- ,
где — суммарный заряд внутри замкнутой поверхности , по которой проводится интегрирование. Если «суммарный» заряд состоит из одного точечного заряда , пространство заполнено однородным диэлектриком, то есть , а поверхность представляет собой сферу с центром в месте нахождения заряда, то из-за симметрии поле заряда в любой точке на поверхности сферы будет одним и тем же по величине и направленным от центра или к центру. Тогда интеграл оказывается равным , где через обозначен радиус сферы, отсюда . Если на поверхность сферы поместить другой точечный заряд , на него будет действовать сила. Поскольку поле есть отношение действующей на произвольный заряд силы к величине данного заряда (), приходим к выражению закона Кулона .
Обобщение на случай распределения заряда[править | править код]
Если на заряд действует не точечный заряд , а заряд, распределённый в пространстве с плотностью (Кл/м3), то область, где , можно мысленно разбить на малые (в пределе — бесконечно малые) элементы объёма и каждый такой элемент рассматривать как точечный заряд . По принципу суперпозиции, суммарная сила, действующая на заряд со стороны таких элементов, может быть определена как интеграл по ним:
- ,
где радиус-вектором задаётся положение заряда , а радиус-вектором — положение элемента . Если в случае точечного вектор был фиксированным, то теперь он пробегает все положения элементов.
Если же не только заряд , но и заряд являются распределёнными, то производится интегрирование и по элементам первого, и по элементам второго заряда, а именно
- .
Закон Кулона и расчёт электрического поля[править | править код]
Взаимодействие двух зарядов может быть истрактовано как взаимодействие одного из зарядов с электрическим полем, создаваемым другим зарядом. Это становится виднее, если соответствующим образом перегруппировать сомножители в выражении для силы:
- .
Тем самым закон Кулона фактически становится основой для вычисления поля. Так же, как и при рассмотрении силы, возможно обобщение последнего равенства на случай распределения зарядов.
Для нахождения поля () и электрического потенциала в точке , создаваемых распределённым зарядом, производится интегрирование:
- ,
где заряд обычно записывается как (и интегрирование тогда выполняется по объёму), но в ряде задач может задаваться как (если заряд поверхностный, [] = Кл/м2, интерирование по площади) или как (заряд линейный [] = Кл/м, интеграл по линии).
Если всё пространство заполнено однородным диэлектриком с проницаемостью , то формулы сохраняют свою актуальность, если в них заменить на . В других случаях, за редкими исключениями, формулы неприменимы, так как необходимо учитывать вклад в том числе связанных зарядов (, где — плотность стороннего, а — связанного заряда), возникающих при поляризации, — а эти заряды заранее неизвестны.
Аналогии в других областях классической физики[править | править код]
Закон Кулона совершенно аналогичен по форме закону всемирного тяготения. При этом функцию гравитационных масс выполняют электрические заряды[4] разных знаков.
Магнитостатическими аналогами закона Кулона являются закон Ампера (в части нахождения сил взаимодействия) и закон Био — Савара — Лапласа (в части расчёта по́ля).
Об открытии и исторической значимости закона[править | править код]
Впервые исследовать экспериментально закон взаимодействия электрически заряженных тел предложил[5] Г. В. Рихман в 1752—1753 гг. Он намеревался использовать для этого сконструированный им электрометр-«указатель». Осуществлению этого плана помешала его трагическая гибель.
В 1759 г. профессор физики Санкт-Петербургской академии наук Ф. Эпинус, занявший кафедру Рихмана после его гибели, впервые предположил[6], что заряды должны взаимодействовать обратно пропорционально квадрату расстояния. В 1760 г. появилось краткое сообщение[7] о том, что Д. Бернулли в Базеле установил квадратичный закон с помощью сконструированного им электрометра. В 1767 г. Пристли в своей «Истории электричества»[8] отметил, что опыт Франклина, обнаружившего отсутствие электрического поля внутри заряженного металлического шара, может означать, что «сила электрического притяжения подчиняется тем же законам, что и сила тяжести, а следовательно, зависит от квадрата расстояния между зарядами»[9]. Шотландский физик Джон Робисон утверждал (1822), что в 1769 г. обнаружил, что шары с одинаковым электрическим зарядом отталкиваются с силой, обратно пропорциональной квадрату расстояния между ними, и таким образом предвосхитил открытие закона Кулона (1785)[10].
Примерно за 11 лет до Кулона, в 1771 г., закон взаимодействия зарядов был экспериментально открыт Г. Кавендишем, однако результат не был опубликован и долгое время (свыше 100 лет) оставался неизвестным. Рукописи Кавендиша были вручены Дж. Максвеллу лишь в 1874 г одним из потомков Кавендиша на торжественном открытии Кавендишской лаборатории и опубликованы в 1879 г.[11].
Сам Кулон занимался исследованием кручения нитей и изобрел крутильные весы. Он открыл свой закон, измеряя с помощью них силы взаимодействия заряженных шариков.
Закон Кулона является первым открытым количественным и сформулированным на математическом языке фундаментальным законом для электромагнитных явлений. С открытия закона Кулона началась современная наука об электромагнетизме[12].
Закон Кулона в квантовой механике[править | править код]
В квантовой механике закон Кулона формулируется не при помощи понятия силы, как в классической механике, а при помощи понятия потенциальной энергии кулоновского взаимодействия. В случае, когда рассматриваемая в квантовой механике система содержит электрически заряженные частицы, к оператору Гамильтона системы добавляются слагаемые, выражающие потенциальную энергию кулоновского взаимодействия, так, как она вычисляется в классической механике[13]. Это утверждение не следует из остальных аксиом квантовой механики, а получено путём обобщения опытных данных.
Так, оператор Гамильтона атома с зарядом ядра Z имеет вид:
Здесь m — масса электрона, е — его заряд, — абсолютная величина радиус-вектора j-го электрона , а . Первое слагаемое выражает кинетическую энергию электронов, второе слагаемое — потенциальную энергию кулоновского взаимодействия электронов с ядром и третье слагаемое — потенциальную кулоновскую энергию взаимного отталкивания электронов. Суммирование в первом и втором слагаемом ведется по всем Z электронам. В третьем слагаемом суммирование идёт по всем парам электронов, причём каждая пара встречается однократно[14].
Закон Кулона с точки зрения квантовой электродинамики[править | править код]
Согласно квантовой электродинамике, электромагнитное взаимодействие заряженных частиц осуществляется путём обмена виртуальными фотонами между частицами. Принцип неопределённости для времени и энергии допускает существование виртуальных фотонов на время между моментами их испускания и поглощения. Чем меньше расстояние между заряженными частицами, тем меньшее время нужно виртуальным фотонам для преодоления этого расстояния и следовательно, тем большая энергия виртуальных фотонов допускается принципом неопределенности. При малых расстояниях между зарядами принцип неопределённости допускает обмен как длинноволновыми, так и коротковолновыми фотонами, а при больших расстояниях в обмене участвуют только длинноволновые фотоны. Таким образом, с помощью квантовой электродинамики можно вывести закон Кулона[15][16].
Степень точности закона Кулона[править | править код]
Закон Кулона — экспериментально установленный факт. Его справедливость неоднократно подтверждалась всё более точными экспериментами. Одним из направлений таких экспериментов является проверка того, отличается ли показатель степени r в законе от 2. Для поиска этого отличия используется тот факт, что если степень точно равна двум, то поле внутри полости в проводнике отсутствует[пояснить], какова бы ни была форма полости или проводника[17].
Такие опыты впервые провел Кавендиш и повторил Максвелл в усовершенствованном виде, получив для максимального отличия показателя в степени от двух величину [18].
Эксперименты, проведённые в 1971 г. в США Э. Р. Уильямсом, Д. Е. Фоллером и Г. А. Хиллом, показали, что показатель степени в законе Кулона равен 2 с точностью до [19].
Для проверки точности закона Кулона на внутриатомных расстояниях У. Ю. Лэмбом и Р. Резерфордом в 1947 г. были использованы измерения относительного расположения уровней энергии водорода. Было установлено, что и на расстояниях порядка атомных 10−8 см, показатель степени в законе Кулона отличается от 2 не более чем на 10−9[20][21].
Коэффициент в законе Кулона остаётся постоянным с точностью до 15⋅10−6[21].
Поправки к закону в квантовой электродинамике[править | править код]
На небольших расстояниях (порядка комптоновской длины волны электрона):
- м[22],
где — масса электрона, — постоянная Планка, — скорость света) становятся существенными нелинейные эффекты квантовой электродинамики: на обмен виртуальными фотонами накладывается генерация виртуальных электрон-позитронных (а также мюон-антимюонных и таон-антитаонных) пар, а также уменьшается влияние экранирования (см. перенормировка). Оба эффекта ведут к появлению экспоненциально убывающих членов порядка в выражении для потенциальной энергии взаимодействия зарядов и, как результат, к увеличению силы взаимодействия по сравнению с вычисляемой по закону Кулона.
Например, выражение для потенциала точечного заряда в системе СГС, с учётом радиационных поправок первого порядка, принимает вид
[23]:
где — комптоновская длина волны электрона,
— постоянная тонкой структуры и .
На расстояниях порядка 10−18 м, где — масса W-бозона, в игру вступают уже электрослабые эффекты.
В сильных внешних электромагнитных полях, составляющих заметную долю от поля пробоя вакуума (порядка 1018 В/м или 109 Тл, такие поля наблюдаются, например, вблизи некоторых типов нейтронных звёзд, а именно магнитаров) закон Кулона также нарушается в силу дельбрюковского рассеяния обменных фотонов на фотонах внешнего поля и других, более сложных нелинейных эффектов. Это явление уменьшает кулоновскую силу не только в микро-, но и в макромасштабах, в частности, в сильном магнитном поле кулоновский потенциал падает не обратно пропорционально расстоянию, а экспоненциально[24].
Закон Кулона и поляризация вакуума[править | править код]
Явление поляризации вакуума в квантовой электродинамике заключается в образовании виртуальных электронно-позитронных пар. Облако электронно-позитронных пар экранирует электрический заряд электрона. Экранировка растет с ростом расстояния от электрона, в результате эффективный электрический заряд электрона является убывающей функцией расстояния [25]. Эффективный потенциал, создаваемый электроном с электрическим зарядом , можно описать зависимостью вида . Эффективный заряд зависит от расстояния по логарифмическому закону:
где
- — постоянная тонкой структуры;
- см — классический радиус электрона[26][27].
Эффект Юлинга[править | править код]
Явление отклонения электростатического потенциала точечных зарядов в вакууме от значения закона Кулона известно как эффект Юлинга, который впервые вычислил отклонения от закона Кулона для атома водорода. Эффект Юлинга даёт поправку к лэмбовскому сдвигу 27 МГц[28][29].
Закон Кулона и сверхтяжёлые ядра[править | править код]
В сильном электромагнитном поле вблизи сверхтяжёлых ядер с зарядом осуществляется перестройка вакуума, аналогичная обычному фазовому переходу. Это приводит к поправкам к закону Кулона[30].
См. также[править | править код]
- Электростатика
- Электрическое поле
- Дальнодействие
- Закон Био — Савара — Лапласа
- Закон притяжения
- Шарль Огюстен де Кулон
- Кулон (единица измерения)
- Принцип суперпозиции
- Уравнения Максвелла
Примечания[править | править код]
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — С. 17. — 656 с. — ISBN 5-9221-0227-3.
- ↑ Ландау Л. Д., Лифшиц Е. М. Теория поля. — Издание 8-е, стереотипное. — М.: Физматлит, 2001. — С. 132. — («Теоретическая физика», том II). — ISBN 5-9221-0056-4.
- ↑ Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 4 «Электростатика», п. 1 «Статика», с. 70-71;
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том II. Электричество и магнетизм. — М.: Наука, 1964. — Тираж 100 000 экз. — С. 33.
- ↑ Novi Comm. Acad. Sc. Imp. Petropolitanae, v. IV, 1758, p. 301.
- ↑ Эпинус Ф. Т. У. Теория электричества и магнетизма. — Л.: АН СССР, 1951. — 564 с. — (Классики науки). — 3000 экз. Архивировано 17 ноября 2012 года.
- ↑ Abel Socin (1760) Acta Helvetica, vol. 4, pages 224-225.
- ↑ J. Priestley. The History and present state of Electricity with original experiments. London, 1767, p. 732.
- ↑ Уиттекер Э. История теории эфира и электричества. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 76. — 512 с. — ISBN 5-93972-070-6.
- ↑ John Robison, A System of Mechanical Philosophy (London, England: John Murray, 1822), vol. 4. На стр. 68 Робисон заявляет, что в 1769 он обнародовал свои измерения силы, действующей между сферами с одинаковым зарядом, и описывает также историю исследований в этой области, отмечая имена Эпинуса, Кавендиша и Кулона. На стр. 73 Архивная копия от 1 декабря 2016 на Wayback Machine автор пишет, что сила изменяется как x−2,06.
- ↑ ‘Филонович С. Р. Кавендиш, Кулон и электростатика. — М.: Знание, 1988. — С. 48.
- ↑ Спиридонов О. П. Универсальные физические постоянные.— М.: Просвещение.— 1984.— с. 52-53;
- ↑ Ландау Л. Д., Лифшиц Е. М. Квантовая механика (нерелятивистская теория). — М., 2002. — С. 74. — («Теоретическая физика», том III).
- ↑ Бете Х. Квантовая механика. — Пер. с англ., под ред. В. Л. Бонч-Бруевича. — М.: Мир, 1965. — С. 11.
- ↑ Пайерлс Р. Е. Законы природы. пер. с англ. под ред. проф. Халатникова И. М. , Государственное издательство физико-математической литературы, М., 1959, тир. 20000 экз., 339 с., Гл. 9 «Электроны при высоких скоростях», п. «Силы при больших скоростях. Другие трудности», c. 263
- ↑ Окунь Л. Б. … z Элементарное введение в физику элементарных частиц Архивная копия от 25 ноября 2010 на Wayback Machine, М., Наука, 1985, Библиотечка «Квант», вып. 45, п. «Виртуальные частицы», с. 57.
- ↑ Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 10 «Поле внутри полости проводника», с. 106—108;
- ↑ Калашников С. Г.,
Электричество, М., ГИТТЛ, 1956, гл. III «Разность потенциалов», п. 34 «Точная проверка закона Кулона», с. 68—69; «Добавления», 1. «Теория опытов Кавендиша и Максвелла», с. 642—645; - ↑ E. R. Williams, J. E. Faller, H. A. Hill «New Experimental Test of Coulomb’s Law: A Laboratory Upper Limit on the Photon Rest Mass», Phys. Rev. Lett. 26, 721—724 (1971);
- ↑ W. E. Lamb, R. C. Retherford. Fine Structure of the Hydrogen Atom by a Microwave Method (англ.) // Physical Review. — 1947. — Vol. 72, no. 3. — P. 241—243.
- ↑ 1 2 Р. Фейнман, Р. Лейтон, М. Сэндс, Фейнмановские лекции по физике, вып. 5, «Электричество и магнетизм», пер. с англ., под ред. Я. А. Смородинского, изд. 3, М., Едиториал УРСС, 2004, ISBN 5-354-00703-8 (Электричество и магнетизм), ISBN 5-354-00698-8 (Полное произведение), гл. 5 «Применения закона Гаусса», п. 8 «Точен ли закон Кулона?», с. 103;
- ↑ CODATA Архивная копия от 11 февраля 2012 на Wayback Machine (the Committee on Data for Science and Technology)
- ↑ Берестецкий В. Б., Лифшиц Е. М., Питаевский Л. П. Квантовая электродинамика. — Издание 3-е, исправленное. — М.: Наука, 1989. — С. 565—567. — 720 с. — («Теоретическая физика», том IV). — ISBN 5-02-014422-3.
- ↑ Neda Sadooghi. Modified Coulomb potential of QED in a strong magnetic field (англ.). Архивировано 18 января 2015 года.
- ↑ Окунь Л. Б. Физика элементарных частиц. Изд. 3-е, М.: «Едиториал УРСС», 2005, ISBN 5-354-01085-3, ББК 22.382 22.315 22.3о, гл. 2 «Гравитация. Электродинамика», «Поляризация вакуума», с. 26-27;
- ↑ «Физика микромира», гл. ред. Д. В. Ширков, М., «Советская энциклопедия», 1980, 528 с., илл., 530.1(03), Ф50, ст. «Эффективный заряд», авт. ст. Д. В. Ширков, стр. 496;
- ↑ Яворский Б. М. «Справочник по физике для инженеров и студентов вузов» / Б. М. Яворский, А. А. Детлаф, А. К. Лебедев, 8-e изд., перераб. и испр., М.: ООО «Издательство Оникс», ООО «Издательство Мир и образование», 2006, 1056 стр.: илл., ISBN 5-488-00330-4 (ООО «Издательство Оникс»), ISBN 5-94666-260-0 (ООО «Издательство Мир и образование»), ISBN 985-13-5975-0 (ООО «Харвест»), УДК 530(035) ББК 22.3, Я22, «Приложения», «Фундаментальные физические постоянные», с. 1008;
- ↑ Uehling E. A ., Phys. Rev., 48, 55, (1935)
- ↑ Швебер С., Бете Г., Гофман Ф. Мезоны и поля. Том 1 Поля гл. 5 Свойства уравнения Дирака п. 2. Состояния с отрицательной энергией c. 56, гл. 21 Перенормировка, п. 5 Поляризация вакуума с 336
- ↑ Мигдал А. Б. Поляризация вакуума в сильных полях и пионная конденсация// Успехи физических наук Т. 123— в. 3.— 1977 г., ноябрь.— с. 369—403;
Литература[править | править код]
- Филонович С. Р. Судьба классического закона. — М.: Наука, 1990. — 240 с., ISBN 5-02-014087-2 (Библиотечка «Квант», вып. 79), тир. 70500 экз.
Ссылки[править | править код]
- Закон Кулона (видеурок, программа 10 класса)
Среди законов физики, которые нужно знать, закон Кулона занимает особое место. Он необходим для понимания электрофизики, а заодно является и весьма значимым в изучении строения материи.
Обычно закон Кулона проходят в школе, но на практике он уходит гораздо дальше уроков физики. Давайте продолжим рубрику про школьную физику и разберем закон Кулона в понятной и доступной форме.
Закон гласит:
Модуль силы взаимодействия двух точечных зарядов в вакууме прямо пропорционален произведению модулей этих зарядов и обратно пропорционален квадрату расстояния между ними.
Такую или похожую формулировку приводит любой учебник. В общем-то, всё здесь довольно просто. Но на некоторые понятия стоит обратить особое внимание.
Разжевываем закон Кулона
Частенько самым главным вопросом является “что это вообще за силы такие”? Что описываем-то? Или в чём физический смысл закона Кулона? Под силой взаимодействия зарядов понимается их взаимное притяжение или отталкивание.
Модуль силы – это величина самой силы. Сила всегда имеет направление и является векторной величиной. Нас интересует именно величина. Говоря школьным языком – циферка без минуса. С физической точки зрения это означает, что направление в широком понимании не имеет никакой значимости для работы закона Кулона.
Есть тут ещё упоминание про точечные заряды. Важно обратить на это особое внимание.
Точечный заряд – это электрический заряд, когда размер тела, на котором заряд сосредоточен, намного меньше расстояния между заряженными телами. Например, если рассмотреть заряд маленького шарика, то его можно считать точечным. В школьных задачках почти всегда речь именно про точечные заряды.
Если заряд не-точечный, то закон Кулона всё равно применим, но сильно усложняются вычисления – следует тело сложной формы разбивать на фрагменты, а потом общий результат интегрировать.
Неплохо бы тут вспомнить и что вообще такое электрический заряд?
Этот термин и появился благодаря Кулону. Если копать тут глубоко придём к тому, что физика до конца не может понять, чем является электрический заряд, как и разобраться в природе электрического тока. Но приближенно можно сказать, что это “количество электричества”.
Или что это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.
Так написано в учебнике, но думаю вопросов возникнуть не должно.
Дальше в законе Кулона есть формулировки типа “прямо пропорционально – обратно пропорционально“. Часто ученики не понимают о чём тут речь. Нужно просто внимательно посмотреть на запись закона и станет ясно, что речь идёт про разделить-умножить.
Ещё в формуле есть коэффициент k. Где-то его добавляют, а где-то и нет. Это приводит к панике и непониманию как всё же правильно писать. Смысл коэффициента – учесть свойства среды и выбранную систему измерения. В вакууме электропроницаемость одна, а в воздухе другая. Коэффициент k будет меняться для каждого из случаев.
Глубже вникать не будем, поскольку для понимания закона Кулона остальное имеет не столь важное значение, а объем изложения сильно увеличит. Обратить внимание следует на то, что не во всех средах будет работать закон Кулона и иногда даже применение коэффициента k не позволит выйти дальше вакуума.
Среда должна быть однородной и обладать рядом свойств.
Критерием применимости закона обозначают и неподвижность рассматриваемых зарядов, поскольку если заряды перемещаются, то мы имеем дело с суммарным взаимодействием.
Сила взаимодействия системы движущихся зарядов складывается из кулоновских сил и лоренцевых сил, возникающих вследствие движения зарядов, когда движущийся заряд вызывает появление магнитного поля, взаимодействующего со вторым зарядом.
Зачем нам это знать?
Самое интересное – это где можно применить закон Кулона и для чего он вообще нужен. Мы не случайно в самом начале статьи обратили внимание на тот факт, что это базовый закон для всей физики.
Сфера применения его невероятно широка, а для квантовой физики есть своя формулировка закона Кулона, которую мы обязательно обсудим на канале.
В итоге закон Кулона является не просто описанием силы притяжения и отталкивания между зарядами, а фундаментом для изучения множества явлений.
Благодаря работе этого закона можно, например, обнаружить экспериментально новые частицы. Анализ трека их движения в вакуумной камере позволяет применить знания о Кулоновских взаимодействиях и понять что и с чем взаимодействует.
Если говорить о более “Земных” примерах – то вот вам громоотвод. Именно благодаря Кулоновским взаимодействием он позволяет “притягивать молнии”.
Ещё один интересный момент, на который вы, скорее всего обратили внимание – это идентичность закона Кулона закону гравитационного взаимодействия.
Порой можно даже предположить, что это один закон с разными буковками. Почему законы так похожи можно размышлять долго и мы, пожалуй, сделаем это в отдельной статье на канале и это уже выходит за рамки школьной физики. Вероятно, корни единообразия уходят к единой причине появления и той, и другой силы взаимодействия. Но поскольку по части гравитации всё вообще очень сложно, остаётся ссылаться на родство полей и на общую теорию квантового поля.
Между тем, стандартный вопрос учителя физики, которым можно завалить ученика – чем закон Кулона отличается от закона гравитационного взаимодействия? Тут мы должны вспомнить, что закон Кулона описывает как силу отталкивания зарядов так и их притяжения, а закон гравитационного притяжения описывает лишь притяжение тел. Противоположности притягиваются – это про закон Кулона 🙂
⚠ Обязательно подписывайтесь на мой канал в ДЗЕН, тыкайте лайк 👍 и возвращайтесь за новым контентом! Материалы выходят регулярно!
👉 Тут я размещаю ссылки на новые материалы в ДЗЕНе
🔹 Не забывайте читать новые статьи на сайте!
✅ Подписывайтесь на телегу проекта
Основной
закон взаимодействия электрических
зарядов был найден Шарлем Кулоном в
1785 г. экспериментально. Кулон установил,
что сила
взаимодействия
между двумя небольшими заряженными
металлическими шариками обратно
пропорциональна квадрату расстояниямежду ними и зависит от величины зарядови:
,
где
–коэффициент
пропорциональности
.
Силы,
действующие на заряды,
являются центральными,
то есть они направлены вдоль прямой,
соединяющей заряды.
-
Для
одноименных зарядов произведение
и силасоответствует взаимному отталкиванию
зарядов, -
для
разноимнных зарядов
,
и силасоответствует взаимному притяжению
зарядов.
Закон
Кулона
можно записать в
векторной форме:,
где
–вектор
силы, действующей на заряд
со стороны заряда,
– радиус-вектор,
соединяющий заряд
с зарядом;
– модуль радиус-вектора.
Сила,
действующая на заряд
со стороныравна,.
Закон Кулона в
такой форме
-
справедлив
только
для взаимодействия точечных электрических
зарядов,
то есть таких заряженных тел, линейными
размерами которых можно пренебречь по
сравнению с расстоянием между ними. -
выражает
силу взаимодействия
между неподвижными электрическими
зарядами, то есть это электростатический
закон.
Формулировка
закона Кулона:
Сила
электростатического взаимодействия
между двумя точечными электрическими
зарядами прямо пропорциональна
произведению величин зарядов и обратно
пропорциональна квадрату расстояния
между ними.
Коэффициент
пропорциональности
в законе Кулоназависит
-
от свойств среды
-
выбора единиц
измерения величин, входящих в формулу.
Поэтому
можно
представить отношением,
где
–коэффициент,
зависящий только от выбора системы
единиц измерения;
– безразмерная
величина, характеризующая электрические
свойства среды, называется относительной
диэлектрической проницаемостью среды.
Она не зависит от выбора системы единиц
измерения и равна единице в вакууме.
Тогда
закон Кулона примет вид:,
для
вакуума
,
тогда
–относительная
диэлектрическая проницаемость среды
показывает, во сколько раз в данной
среде сила взаимодействия между двумя
точечными электрическими зарядами
и,
находящимися друг от друга на расстоянии,
меньше, чем в вакууме.
В
системе СИ коэффициент
,
и
закон
Кулона имеет вид:.
Это
рационализированная
запись закона Кулона.
– электрическая
постоянная,
.
В
системе СГСЭ
,.
В
векторной форме закон Кулона
принимает вид
где
–вектор
силы, действующей на заряд
со стороны заряда
,
–
радиус-вектор, соединяющий заряд
с зарядом
(рис. 1.2),
r
–модуль радиус-вектора
.
Всякое
заряженное тело состоит из множества
точечных электрических зарядов, поэтому
электростатическая
сила, с которой одно заряженное тело
действует на другое, равна векторной
сумме сил, приложенных ко всем точечным
зарядам второго тела со стороны каждого
точечного заряда первого тела.
1.3.Электрическое поле. Напряженность.
Пространство,
в котором находится электрический
заряд, обладает определенными физическими
свойствами.
-
На
всякий
другой заряд,
внесенный в это пространство, действуют
электростатические силы Кулона. -
Если в каждой
точке пространства действует сила, то
говорят, что в этом пространстве
существует силовое поле. -
Поле наряду с
веществом является формой материи. -
Если
поле стационарно, то есть не меняется
во времени, и создается неподвижными
электрическими зарядами, то такое поле
называется электростатическим.
Электростатика
изучает только электростатические поля
и взаимодействия неподвижных зарядов.
Для
характеристики электрического поля
вводят понятие напряженности.
Напряженностью
в каждой точке электрического поля
называется вектор
,
численно равный отношению силы, с которой
это поле действует на пробный положительный
заряд, помещенный в данную точку, и
величины этого заряда, и направленный
в сторону действия силы.
Пробный
заряд,
который вносится в поле, предполагается
точечным и часто называется пробным
зарядом.
– Он
не участвует в создании поля,
которое с его помощью измеряется.
–
предполагается, что этот заряд не
искажает исследуемого поля,
то есть он достаточно мал и не вызывает
перераспределения зарядов, создающих
поле.
Если
на пробный точечный заряд
поле действует силой,
то напряженность.
Единицы напряженности:
СИ:
СГСЭ:
В
системе СИ выражение
для
поля точечного заряда:
.
В векторной форме:
Здесь
– радиус-вектор, проведенный из зарядаq
, создающего поле, в данную точку.
Таким
образом,векторы
напряженности электрического поля
точечного заряда q
во всех точках поля направлены радиально
(рис.1.3)
– от
заряда, если он положительный, «исток»
– и
к заряду, если он отрицательный
«сток»
Для
графической интерпретации
электрического поля вводят понятие
силовой линии или линии
напряженности.
Это
-
кривая,
касательная в каждой точке к которой
совпадает с вектором напряженности. -
Линия напряженности
начинается на положительном заряде и
заканчивается на отрицательном. -
Линии напряженности
не пересекаются, так как в каждой точке
поля вектор напряженности имеет лишь
одно направление.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Еще в древности было известно, что наэлектризованные тела взаимодействуют. Силу взаимодействия двух небольших заряженных шариков с помощью крутильных весов впервые измерил Шарль Кулон. Он сформулировал закон, который позже назвали его именем.
Так же, было выяснено, что сила, с которой два заряда притягиваются, или отталкиваются, зависит не только от самих зарядов, но и от вещества, в котором эти заряды находятся.
Опыт Кулона
Кулон нашел способ измерить взаимное действие двух зарядов. Для этого он использовал крутильные весы.
Ему не пришлось применять дополнительную особо чувствительную аппаратуру. Потому, что взаимное действие зарядов имело достаточную для наблюдения интенсивность.
Примечание: Опыт Кулона похож на опыт Кавендиша, который экспериментально определил гравитационную постоянную G.
Устройство крутильных весов
Такие весы (рис. 1) содержат перекладину — тонкий стеклянный стержень, расположенный горизонтально. Он подвешен на тонкой вертикально натянутой упругой проволоке.
На одном конце стержня находится небольшой металлический шарик. К другому концу прикреплен груз, который используется, как противовес.
Еще один металлический шарик, прикрепленный ко второй палочке из стекла, можно располагать неподалеку от первого шарика. Для этого в верхней крышке корпуса весов проделано отверстие.
Рис. 1. Устройство крутильных весов, использованных Кулоном для обнаружения силы взаимодействия зарядов
Если наэлектризовать шарики, они начнут взаимодействовать. А прикрепленная к проволоке перекладина, на которой находится один из шариков, будет поворачиваться на некоторый угол.
На корпусе весов на уровне палочки располагается шкала с делениями. Угол поворота связан с силой взаимного действия шариков. Чем больше угол поворота, тем больше сила, с которой шарики действуют друг на друга.
Чтобы сдвинувшийся шарик вернуть в первоначальное положение, нужно закрутить проволоку на некоторый угол. Так, чтобы сила упругости скомпенсировала силу взаимодействия шариков.
Для закручивания проволоки в верхней части весов есть рычажок. Рядом с ним расположен диск, а на нем – еще одна угловая шкала с делениями.
По нижней шкале определяют точку, в которую необходимо вернуть шарик. Верхней шкалой пользуются, чтобы установить угол, на который нужно рычажком закрутить проволоку.
С помощью крутильных весов Шарль Кулон выяснил, как именно сила взаимного действия зависит от величины зарядов и расстояния между зарядами.
В те годы единиц для измерения заряда не было. Поэтому ему пришлось изменять заряд одного шарика с помощью метода половинного деления.
Когда он касался заряженным шариком второго такого же шарика, заряды между ними распределялись поровну. Таким способом, можно было уменьшать заряд одного из шариков, участвующих в опыте, в 2, 4, 8, 16 и т. д. раз.
Так опытным путем Кулон получил закон, формула которого очень похожа на закон всемирного тяготения.
В память о его заслугах, силу взаимодействия зарядов называют Кулоновской силой.
Закон Кулона для зарядов в вакууме
Рассмотрим два точечных заряда, которые находятся в вакууме (рис. 2).
Рис. 2. Два положительных заряда q и Q, расположенных в вакууме на расстоянии r, отталкиваются. Силы отталкивания направлены вдоль прямой, соединяющей заряды
На рисунке 2 сила (large F_{Q} ) – это сила, с которой положительный заряд Q отталкивает второй положительный заряд q. А сила (large F_{q} ) принадлежит заряду q, с такой силой он отталкивает заряд Q.
Примечание: Точечный заряд – это заряженное тело, размером и формой которого можно пренебречь.
Силы взаимодействия зарядов, по третьему закону Ньютона, равны по величине и направлены противоположно. Поэтому, для удобства можно ввести обозначение:
[large F_{q} = F_{Q} = F]
Для силы взаимодействия зарядов в вакууме Шарль Кулон сформулировал закон так:
Два точечных заряда в вакууме,
взаимодействуют с силой
прямо пропорциональной
произведению величин зарядов
и обратно пропорциональной
квадрату расстояния между ними.
Формула для этого закона на языке математики запишется так:
[large boxed { F = k cdot frac {|q| cdot |Q| }{r^{2}} } ]
(F left( H right) ) – сила, с которой два точечных заряда притягиваются, или отталкиваются;
(|q| left( text{Кл}right) ) – величина первого заряда;
(|Q| left( text{Кл}right) ) – величина второго заряда;
(r left( text{м}right) ) – расстояние между двумя точечными зарядами;
(k ) – постоянная величина, коэффициент в системе СИ;
Сила – это вектор. Две главные характеристики вектора – его длина и направление.
Формула позволяет найти одну из характеристик вектора F — модуль (длину) вектора.
Чтобы определить вторую характеристику вектора F – его направление, нужно воспользоваться правилом: Мысленно соединить два неподвижных точечных заряда прямой линией. Сила, с которой они взаимодействуют, будет направлена вдоль этой прямой линии.
Сила Кулона – это центральная сила, так как она направлена вдоль прямой, соединяющей центры тел.
Примечание: Еще один пример центральной силы — сила тяжести.
Что такое коэффициент k с точки зрения физики
Постоянная величина (k ), входящая в формулу силы взаимодействия зарядов, имеет такой физический смысл:
(k ) — это сила, с которой отталкиваются два положительных точечных заряда по 1 Кл каждый, когда расстояние между ними равно 1 метру.
Значение постоянной k равно девяти миллиардам!
[large boxed { k = 9cdot 10^{9} left( H cdot frac{text{м}^{2}}{text{Кл}^{2}}right) } ]
Это значит, что заряды взаимодействуют с большими силами.
Рис. 3. Коэффициент k в формуле взаимодействия зарядов
Константу k можно вычислить опытным путем, расположив два известных заряда (не обязательно по 1 Кулону каждый) на удобном для измерений расстоянии (не обязательно 1 метр) и измерив силу из взаимного действия.
Нужно подставить известные величины зарядов, расстояние между ними и измеренную силу в такую формулу:
[large boxed { k = frac {F cdot r^{2}}{|q| cdot |Q|} } ]
Величина k связана с электрической постоянной (varepsilon) такой формулой:
[large boxed { k = frac{1}{4pi cdot varepsilon_{0}} } ]
Поэтому дробь из правой части этой формулы можно встретить в различных справочниках физики, где она заменяет коэффициент k.
Закон Кулона для зарядов в веществе
Если два точечных заряда находятся в веществе, то сила их взаимного действия будет меньше, чем в вакууме. Для зарядов в веществе закон Кулона выглядит так:
[large boxed { F = frac{1}{varepsilon} cdot k cdot frac {|q| cdot |Q| }{r^{2}} } ]
(F left( H right) ) – сила взаимодействия зарядов в веществе;
(|q| ; |Q| left( text{Кл}right) ) – величины зарядов;
(r left( text{м}right) ) – расстояние между зарядами;
( k = 9cdot 10^{9} ) – постоянная величина;
( varepsilon ) – диэлектрическая проницаемость вещества, для разных веществ различается, ее можно найти в справочнике физики;
Рис. 4. Два заряда -q и +Q, расположенные в вакууме на расстоянии r, притягиваются сильнее, нежели те же заряды, расположенные на таком же расстоянии в диэлектрике
Силы, с которыми заряды действуют друг на друга в веществе, отличаются от сил взаимодействия в вакууме в ( varepsilon ) раз:
[large boxed { F_{text{(в диэлектрике)}} = frac{1}{varepsilon} cdot F_{text{(в вакууме)}} } ]
Примечание: Читайте отдельную статью, рассказывающую, что такое диэлектрическая проницаемость и электрическая постоянная.
Определите модуль сил взаимодействия двух одинаковых неподвижных
Задача. Определите модуль сил взаимодействия двух одинаковых неподвижных точечных зарядов нКл, находящихся на расстоянии м друг от друга в вакууме.
Решение
Думаем: в задаче присутствуют два заряда, взаимодействие между которыми описывается законом кулона.
(1)
Считаем: решать тут нечего, ибо достаточно вспомнить необходимые константы и подставить их в (1). Постоянная ( Н*м/Кл) — табличная величина (система находится в вакууме).
Н
Ответ: Н.
Ещё задачи на тему «Заряд. Закон Кулона»