Как найти модуль скорости тела брошенного вверх


1. Формулы максимальной высоты и времени за которое тело поднялось на максимальную высоту

Формулы высоты, скорости, времени тела брошенного вверх

h max
– максимальная высота достигнутая телом за время t

Vк – конечная скорость тела на пике, равная нулю

Vн – начальная скорость тела

t – время подъема тела на максимальную высоту h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула максимальной высоты (h max):

Формула времени за которое тело достигло максимальную высоту (t):

2. Формулы скорости, высоты и времени тела брошенного вертикально вверх под воздействием силы тяжести

Формулы  при свободном падении

h – расстояние пройденное телом за время t

Vн – начальная скорость тела

V – скорость тела в момент времени t

t – время подъема за которое тело пролетело расстояние h

g ≈ 9,8 м/с2 – ускорение свободного падения

Формула скорости тела в момент времени t (V):

Формула начальной скорости тела (Vн):

Формулы высоты тела в момент времени t (h):

Формулы времени, за которое тело достигло высоту h (t):

Подробности

Опубликовано: 04 августа 2015

Обновлено: 13 августа 2021

Движение тела, брошенного вертикально

Свободно падающее тело может двигаться прямолинейно или по криволинейной траектории. Это зависит от начальных условий. Рассмотрим это подробнее.

Свободное падение без начальной скорости (υ0 = 0) (рис. 1).

Рис. 1

При выбранной системе координат движение тела описывается уравнениями:

(~upsilon_y = gt, y = frac{gt^2}{2} .)

Из последней формулы можно найти время падения тела с высоты h[~t = sqrt{frac{2h}{g}}]. Подставляя найденное время в формулу для скорости, получим модуль скорости тела в момент падения[~upsilon = sqrt{2gh}].

Движение тела, брошенного вертикально вверх с начальной скоростью (~vec upsilon_0) (рис. 2).

Рис. 2

Движение тела описывается уравнениями:

(~upsilon_y = upsilon_0 – gt, y = upsilon_0 t – frac{gt^2}{2} .)

Из уравнения скорости видно, что тело движется равнозамедленно вверх, достигает максимальной высоты, а затем движется равноускоренно вниз. Учитывая, что при y = hmax скорость υy = 0 и в момент достижения телом первоначального положения y = 0, можно найти[~t_1 = frac{upsilon_0}{g}] — время подъема тела на максимальную высоту;

(~h_{max} = frac{upsilon^2_0}{2g}) — максимальная высота подъема тела;

(~t_2 = 2t_1 = frac{2 upsilon_0}{g}) — время полета тела;

(~upsilon_{2y} = -upsilon_0) — проекция скорости в момент достижения телом первоначального положения.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — С. 14-15.

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,651
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,896
  • разное
    16,900

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Если тело бросить вертикально вверх при наличии начальной скорости υ0, оно будет двигаться равнозамедленно с ускорением, равным a=-g=-9,81υc2.

Движение тела, брошенного вертикально вверх

Рисунок 1

Формулы вычисления показателей движения брошенного тела

Высота подбрасывания h за время t и скорость υ через промежуток t можно определить формулами:

tmax – это время, за которое тело достигает максимальной высоты hmax=h, при υ=0, а сама высота hmax может быть определена при помощи формул:

Когда тело достигает высоты, равной hmax, то оно обладает скоростью υ=0 и ускорением g. Отсюда следует, что тело не сможет оставаться на этой высоте, поэтому перейдет в состояние свободного падения. То есть, брошенное вверх тело – это равнозамедленное движение, при котором после достижения hmax изменяются знаки перемещения на противоположные. Важно знать, какая была начальная высота движения h0. Общее время тела примет обозначение t, время свободного падения – tп, конечная скорость υк, отсюда получаем:

Если тело брошено вертикально вверх от уровня земли, то h0=0.

Время, необходимое для падения тела с высоты, куда предварительно было брошено тело, равняется времени его подъема на максимальную высоту.

Так как в высшей точке скорость равняется нулю видно:

Конечная скорость υк тела, брошенного от уровня земли вертикально вверх, равна начальной скорости υ0 по величине и противоположна по направлению, как показано на ниже приведенном графике.

Формулы вычисления показателей движения брошенного тела

Рисунок 2

Примеры решения задач

Пример 1

Тело было брошено вертикально вверх с высоты 25 метров со скоростью 15 м/с. Через какой промежуток времени оно достигнет земли?

Дано: υ0=15 м/с, h0=25 м, g=9,8 м/с2.

Найти: t.

Решение

t=υ0+υ02+gh0g=15+152+9,8·259,8=3,74 с

Ответ: t=3,74 с.

Пример 2

Был брошен камень с высоты h=4 вертикально вверх. Его начальная скорость равняется υ0=10 м/с. Найти высоту, на которую сможет максимально подняться камень, его время полета и скорость, с которой достигнет поверхности земли, пройденный телом путь.

Дано: υ0=10 м/с, h=4 м, g=9,8 м/с2.

Найти: H, t, v2, s.

Решение

Примеры решения задач

Рисунок 3

H=h0υ022g=4+1029,8=14,2 м.

t=υ0+υ02+gh0g=10+102+9,8·49,8=1,61 с.

υ2=υk=2gH=2·9,8·14,2=16,68 м/с.

s=H-h0+H=2H-h0=2·14,2=24,4 м.

Ответ: H=14,2 м; t=1,61 с; v2=16,68 м/с; s=24,4 м.

Движение тела, брошенного вертикально вверх

Тело, брошенное вертикально вверх, движется равномерно замедленно с начальной скоростью u0 и ускорением
a = -g.

Перемещение тела за время t представляет собой высоту подъема h.
Для этого движения справедливы формулы:

Если:
u0 — начальная скорость движения тела ,
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота на которую поднимется тело за время t,
t — время,
То, движение тела, брошенного вертикально вверх описывается следующими формулами:

Высота подъема тела за некоторое время, зная конечную скорость

[ h = frac{u_0 + u}{2} t ]

Высота подъема тела за некоторое время, зная ускорение свободного падения

[ h = u_0 t – frac{g t^2}{2} ]

Скорость тела через некоторое время, зная ускорение свободного падения

[ u = u_0 – gt ]

Скорость тела на некоторой высоте, зная ускорение свободного падения

[ u = sqrt{ u_0^2 – 2gh} ]

Максимальная высота подъема тела, зная первоначальную скорость и ускорение свободного падения

Тело, брошенное вертикально вверх, достигает максимальной высоты в тот момент, когда его скорость обращается в ноль. Поднявшись на максимальную высоту тело начинает свободное падение вниз.

[ h_{max} = frac{u_0^2}{2g} ]

Время подъема на максимальную высоту подъема тела, зная первоначальную скорость и ускорение свободного падения

[ t_{hmax} = frac{u_0}{g} ]

Примечание к статье: Движение тела, брошенного вертикально вверх

  • Сопротивление воздуха в данных формулах не учитывается.
  • Ускорение свободного падения имеет приведенное значение (9.81 (м/с²)) вблизи земной поверхности. Значение g на других расстояниях от поверхности Земли изменяется!

Движение тела, брошенного вертикально вверх

стр. 409

Добавить комментарий