Как найти модуль вектора напряженности электрического поля

По теории близкодействия взаимодействия между заряженными телами, удаленными друг от друга, происходит с помощью электромагнитных полей, создаваемых этими телами в окружающем их пространстве. Если поле было создано неподвижными частицами, то его относят к электростатическому. Когда происходят изменения во времени, получает название стационарного. Электростатическое поле является стационарным. Оно считается частным случаем электромагнитного поля.

Характеристика электрического поля

Силовая характеристика электрического поля – вектор напряженности, который можно найти по формуле:

E→=F→q, где F→ – сила, действующая со стороны поля на неподвижный (пробный) заряд q. Его значение должно быть настолько мало, чтобы отсутствовала возможность искажать поле, напряженность которого с его помощью и измеряют. По уравнению видно, что напряженность совпадает по направлению с силой, с которой поле действует на единичный положительный пробный заряд.

У напряженности электростатического поля нет зависимости от времени. Когда она во всех точках поля одинакова, тогда поле называют однородным. В другом случае – неоднородным.

Силовые линии

Чтобы изобразить электростатические поля графически, необходимо задействовать понятие силовых линий.

Определение 1

Силовые линии – это линии, касательные к которым в каждой точке поля совпадают с направлениями векторов напряженности в этих точках.

Такие линии в электростатическом поле разомкнутые. Они начинаются на положительных зарядах и заканчивают на отрицательных. Реже уходят в бесконечность или возвращаются из нее. Силовые линии поля не могу пересекаться.

Вектор напряженности электрического поля подчиняется принципу суперпозиции, а именно:

E→=∑i=1nE→i.

Результирующий вектор напряженности сводится к нахождению векторной суммы напряженностей, составляющих его «отдельные» поля. При распределении непрерывного заряда, поиск суммарной напряженности поля производится по формуле:

E→=∫dE→.

Интегрирование E→=∫dE→ проводится по области распределения зарядов. Если их распределение идет по линии (τ=dqdl – линейная плотность распределения заряда), то интегрирование E→=∫dE→ тоже. Когда распределение зарядов идет по поверхности и поверхностная плоскость обозначается как σ=dqdS, тогда интегрируют по поверхности.

Интегрирование по объему выполняется, если имеется объемное распределение заряда:

ρ=dqdV, где ρ – объемная плотность распределения заряда.

Что называется напряженностью электрического поля

Определение 2

Напряженность поля в диэлектрике равняется векторной сумме напряженностей полей, которые создают свободные E0→ и связанные Ep→ заряды:

E→=E0→+Ep→.

Зачастую бывают случаи, когда диэлектрик изотропный. Тогда запись напряженности поля имеет вид:

E→=E0→ε, где ε обозначает относительную диэлектрическую проницаемость среды в рассматриваемой точке поля.

Отсюда следует, что по выражению E→=E0→ε имеется однородный изотропный диэлектрик с напряженностью электрического поля в ε меньше, чем в вакууме.

Напряженность электростатического поля системы точечных зарядов равняется:

E→=14πε0∑i=1nqiεri3ri→.

В системе СГС напряженность поля точечного заряда в вакууме:

E→=qr→r3.

Пример 1

Дан равномерно распределенный заряд по четверти окружности радиуса R с линейной плотностью τ. Необходимо найти напряженность поля в точке А, являющейся центром окружности.

Решение

Что называется напряженностью электрического поля

Рисунок 1

Произведем выделение на заряженной части окружности элементарного участка dl, который будет создавать элемент поля в точке А. Следует записать выражение для напряженности, то есть для dE→. Тогда формула примет вид:

dE→=dqR3R→R.

Проекция вектора dE→ на ось Ох составит:

dEx=dEcosφ=dqcosφR2.

Произведем выражение dq через линейную плотность заряда τ:

dq=τdl=τ·2πRdR.

Необходимо использовать dq=τdl=τ·2πRdR для преобразования dEx=dEcosφ=dqcosφR2:

dEx=2πRτdRcos φR2=2πτdRcos φR=τcos φdφR,

где 2πdR=dφ.

Далее перейдем к нахождению полной проекции Ex при помощи интегрирования dEx=2πRτdRcos φR2=2πτdRcos φR=τcos φdφR,

по dφ с изменением угла 0≤φ≤2π.

Ex=∫02πτcos φdφR=τR∫02πcosφ dφ=τRsin φ02π=τR.

Перейдем к проекции вектора напряженности на Оу:

dEy=dEsin φ=τRsin φdφ.

Следует проинтегрировать с изменяющимся углом π2≤φ≤0:

Ey∫π20τRsin φdφ=τR∫π20sin φdφ=-τRcos φπ20=-τR.

Произведем нахождение модуля вектора напряженности в точке А, применив теорему Пифагора:

E=Ex2+Ey2=τR2+-τR2=τR2.

Ответ: E=τR2.

Пример 2

Найти напряженность электростатического поля равномерно заряженной полусферы с радиусом R. Поверхностная плотность заряда равняется σ.

Решение

Что называется напряженностью электрического поля

Рисунок 2

Следует выделить на поверхности заряженной сферы элементарный заряд dq, располагаемый на элементе площади dS. Запись, используя сферические координаты dS, равняется:

dS=R2sinθdθdφ,

при 0≤φ≤2π, 0≤θ≤π2.

Элементарная напряженность поля точечного заряда в системе СИ:

dE→=dq4πε0R3R→R.

Необходимо спроецировать вектор напряженности на Ох:

dEx=dqcosθ4πε0R2.

Произведем выражение заряда через поверхностную плотность заряда:

dq=σdS.

Подставим dq=σdS в dEx=dqcosθ4πε0R2, используя dS=R2sinθdθdφ, проинтегрируем и запишем:

Ex=σR24πε0R2∫02πdφ∫0π2cosθsinθdθ=σ4πε02π·12=σ4ε0.

Тогда EY=0.

Отсюда следует, что E=Ex.

Ответ: напряженность полусферы в центре равняется E=σ4ε0.

Содержание:

  • Определение и формула напряженности электрического поля
  • Принцип суперпозиции напряженностей электрических полей
  • Напряженность поля в диэлектрике
  • Напряженность поля точечного заряда
  • Связь напряженности и потенциала
  • Единицы измерения напряженности электрического поля
  • Примеры решения задач

Определение и формула напряженности электрического поля

Определение

Вектор напряженности $bar{E}$ – это силовая характеристика электрического поля. В некоторой точке поля, напряженность равна
силе, с которой поле действует на единичный положительный заряд, размещенный в указанной точке, при этом направление силы и напряженности
совпадают. Математическое определение напряженности записывается так:

$$bar{E}=frac{bar{F}}{q}$$

где $bar{F}$ – сила, с которой электрическое поле действует на
неподвижный, «пробный», точечный заряд q, который размещают в рассматриваемой точке поля. При этом считают, что «пробный» заряд
мал на столько, что не искажает исследуемого поля.

Если поле является электростатическим, то его напряженность от времени не зависит.

Если электрическое поле является однородным, то его напряженность во всех точках поля одинакова.

Графически электрические поля можно изображать при помощи силовых линий. Силовыми линиями (линиями напряженности) называют
линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности в этой точке поля.

Принцип суперпозиции напряженностей электрических полей

Если поле создано несколькими электрическими полями, то напряженность результирующего поля равна векторной сумме напряженностей отдельных полей:

$$bar{E}=sum_{i=1}^{n} bar{E}_{i}(2)$$

Допустим, что поле создается системой точечных зарядов и их распределение непрерывно, тогда результирующая напряженность находится как:

$$bar{E}=int d bar{E}(3)$$

интегрирование в выражении (3) проводят по всей области распределения заряда.

Напряженность поля в диэлектрике

Напряженность поля $bar{E}$ в диэлектрике равна векторной сумме
напряженностей полей, создаваемых свободными зарядами $bar{E}_0$ и
связанными (поляризационными зарядами) $bar{E}_p$:

$$bar{E}=bar{E}_{0}+bar{E}_{p}(4)$$

В том случае, если вещество, которое окружает свободные заряды однородный и изотропный диэлектрик, то напряженность
$bar{E}$ равна:

$$bar{E}=frac{bar{E}_{0}}{varepsilon}(5)$$

где $varepsilon$ – относительная диэлектрическая проницаемость вещества в исследуемой точке
поля. Выражение (5) обозначает то, что при заданном распределении зарядов напряженность электростатического поля в однородном изотропном
диэлектрике меньше, чем в вакууме в $varepsilon$ раз.

Напряженность поля точечного заряда

Напряженность поля точечного заряда q равна:

$$bar{E}=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{3}} bar{r}(6)$$

где $varepsilon_{0}=8,85 cdot 10^{-12}$ Ф/м (система СИ) – электрическая постоянная.

Связь напряженности и потенциала

В общем случае напряженность электрического поля связана с потенциалом как:

$$bar{E}=-operatorname{grad} varphi-frac{partial bar{A}}{partial t}(7)$$

где $varphi$ – скалярный потенциал,
$bar{a}$ – векторный потенциал.

Для стационарных полей выражение (7) трансформируется в формулу:

$$bar{E}=-operatorname{grad} varphi(8)$$

Единицы измерения напряженности электрического поля

Основной единицей измерения напряженности электрического поля в системе СИ является: [E]=В/м(Н/Кл)

Примеры решения задач

Пример

Задание. Каков модуль вектора напряженности электрического поля
$bar{E}$ в точке, которая определена радиус- вектором
$bar{r}_{2}=7 bar{i}+3 bar{j}$ (в метрах), если электрическое поле создает положительный точечный
заряд (q=1Кл), который лежит в плоскости XOY и его положение задает радиус вектор
$bar{r}_{1}=bar{i}-5 bar{j}$, (в метрах)?

Решение. Модуль напряжения электростатического поля, которое создает точечный заряд, определяется формулой:

$$E=frac{1}{4 pi varepsilon varepsilon_{0}} frac{q}{r^{2}}(1.1)$$

r- расстояние от заряда, создающего поле до точки в которой ищем поле.

$$bar{r}=bar{r}_{2}-bar{r}_{1}=6 bar{i}-8 bar{j}(1.2)$$

Из формулы (1.2) следует, что модуль $bar{r}$ равен:

$$r=|bar{r}|=sqrt{36+64}=10(mathrm{~m})$$

Подставим в (1.1) исходные данные и полученное расстояние r, имеем:

$$E=9 cdot 10^{9} frac{1}{100}=9 cdot 10^{7}left(frac{B}{m}right)$$

Ответ. $E=9 cdot 10^{7}left(frac{B}{m}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Запишите выражение для напряженности поля в точке, которая определена радиус – вектором
$bar{r}$, если поле создается зарядом, который распределен по объему V с плотностью
$rho=rho(r)$ .

Решение. Сделаем рисунок.

Проведем разбиение объема V на малые области с объемами
$Delta V_{i}$ заряды этих объемов
$Delta q_{i}$, тогда напряженность поля точечного заряда в точке А (рис.1) будет равна:

$$bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.1)$$

Для того чтобы найти поле, которое создает все тело в точке А, используем принцип суперпозиции:

$$bar{E}_{A}=sum_{i=1}^{N} bar{E}_{i A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{Delta q_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.2)$$

где N – число элементарных объемов, на которые разбивается объем V.

Плотность распределения заряда можно выразить как:

$rholeft(bar{r}_{i}right)=frac{Delta q_{i}}{Delta V_{i}}(2.3)$

Из выражения (2.3) получим:

$Delta q_{i}=rholeft(bar{r}_{i}right) Delta V_{i}(2.4)$

Подставим выражение для элементарного заряда в формулу (2.2), имеем:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} sum_{i=1}^{N} frac{rholeft(bar{r}_{i}right) Delta V_{i}}{left|bar{r}^{prime}-bar{r}_{i}right|^{3}}left(bar{r}^{prime}-bar{r}_{i}right)(2.5)$$

Так ка распределение зарядов задано непрерывное, то если устремить
$Delta V_i$ к нулю, то можно перейти от суммирования к интегрированию, тогда:

$$bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$$

Ответ. $bar{E}_{A}=frac{1}{4 pi varepsilon_{0}} int_{V} frac{rho(bar{r})}{left|bar{r}^{prime}-bar{r}right|^{3}}left(bar{r}^{prime}-bar{r}right) d V$

Читать дальше: Формула пути.

Напряжённость электрического поля
vec E
Размерность LMT−3I−1
Единицы измерения
СИ В/м
Примечания
векторная величина

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и равная отношению силы {vec {F}}, действующей на неподвижный малый по величине точечный заряд, помещённый в данную точку, к величине этого заряда {displaystyle q^{*}}[1]:

{displaystyle {vec {E}}={frac {vec {F}}{q^{*}}}.}

Напряжённость электрического поля иногда называют силовой характеристикой электрического поля, так как всё отличие от вектора силы, действующей на заряженную частицу, состоит в постоянном[2] множителе.

В каждой точке в данный момент времени существует своё значение вектора vec E (вообще говоря — разное[3]
в разных точках пространства), таким образом, vec E — это векторное поле. Формально это отражается в записи

{vec  E}={vec  E}(x,y,z,t),

представляющей напряжённость электрического поля как функцию пространственных координат (и времени, так как vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, суть предмет электродинамики.

Напряжённость электрического поля в Международной системе единиц (СИ) измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

Напряжённость электрического поля в классической электродинамике[править | править код]

Напряжённость электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики сопоставимыми с ней по значимости являются только вектор магнитной индукции (совместно с вектором напряжённости электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя безусловно важны и содержательны, по сути оказываются вторичными или производными.

Ниже выделены основные контексты классической электродинамики в отношении напряжённости электрического поля.

Сила воздействия электромагнитного поля на заряженные частицы[править | править код]

Полная сила, с которой электромагнитное поле (включающее электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

{displaystyle {vec {F}}=q^{*}{vec {E}}+q^{*}[{vec {v}}times {vec {B}}]},

где {displaystyle q^{*}} — электрический заряд частицы, {vec {v}} — её скорость,
{vec {B}} — вектор магнитной индукции; косым крестом times обозначено векторное произведение. Формула приведена в единицах СИ.

Эта формула является более общей по сравнению с формулой, данной в определении напряжённости электрического поля, так как включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

Частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — если воспользоваться обычным для физики приёмом разбиения сложного тела на маленькие (математически — бесконечно малые) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы Лоренца. Разумеется, для того, чтобы эта формула была применена (даже в простых случаях, таких, как расчёт силы взаимодействия двух точечных зарядов), необходимо уметь рассчитывать vec E и {vec {B}}.

Остальные формулы, применяемые для расчёта электромагнитных сил (например, формулу для силы Ампера) можно считать следствиями[5] фундаментальной формулы силы Лоренца или частными случаями её применения.

Уравнения Максвелла[править | править код]

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряжённости электрического поля:

{displaystyle {begin{aligned}operatorname {div} {vec {E}}&={frac {rho }{varepsilon _{0}}},&operatorname {rot} {vec {E}}&=-{frac {partial {vec {B}}}{partial t}},\operatorname {div} {vec {B}}&=0,&operatorname {rot} {vec {B}}&=mu _{0}{vec {j}}+{frac {1}{c^{2}}}{frac {partial {vec {E}}}{partial t}}.end{aligned}}}

Здесь rho  — плотность заряда, vec j — плотность тока, varepsilon _{0} — электрическая постоянная, mu _{0} — магнитная постоянная, c — скорость света (уравнения записаны в системе СИ). В приведённом виде уравнения Максвелла являются «уравнениями для вакуума» (их более общий вариант, применимый и для описания поведения электромагнитного поля в среде, а также иные формы записи уравнений — см. в статье Уравнения Максвелла).

Этих четырёх уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (не квантовую) электродинамику, то есть они представляют её полные законы. Для решения реальных задач с их помощью необходимы ещё уравнения движения «материальных частиц» (в классической механике это законы Ньютона), а также дополнительная информация о конкретных свойствах рассматриваемых физических тел и сред (их упругости, электропроводности, поляризуемости и др.) и о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

«Материальные уравнения»[править | править код]

Дополнительными формулами (обычно не точными, а приближёнными или иногда даже эмпирическими), которые используются в классической электродинамике при решении практических задач и носят название «материальных уравнений», являются

  • закон Ома;
  • закон поляризации;
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами[править | править код]

Связь напряжённости электрического поля с потенциалами в общем случае такова:

{displaystyle {vec {E}}=-nabla varphi -{frac {partial {vec {A}}}{partial t}},}

где varphi ,{vec  A} — скалярный и векторный потенциалы,

{displaystyle {vec {B}}=operatorname {rot} {vec {A}}.}

В частном случае стационарных (не меняющихся со временем) полей первое уравнение упрощается до

{vec  E}=-nabla varphi .

Это выражение связывает электростатическое поле с электростатическим потенциалом.

Электростатика[править | править код]

Теоретически и практически важным случаем является ситуация, когда заряженные тела неподвижны (например, исследуется состояние равновесия) или скорость их движения достаточно мала, чтобы можно было приближённо воспользоваться способами расчета, справедливыми для неподвижных тел. Этим случаем занимается раздел электродинамики, называемый электростатикой.

Как указано выше, напряжённость электрического поля в этом случае выражается через скалярный потенциал как

{vec  E}=-nabla varphi

или, покомпонентно,

{displaystyle E_{x}=-{frac {partial varphi }{partial x}},quad E_{y}=-{frac {partial varphi }{partial y}},quad E_{z}=-{frac {partial varphi }{partial z}},}

то есть электростатическое поле оказывается потенциальным полем.
(varphi в этом случае — случае электростатики — принято называть электростатическим потенциалом).

Правомерно и обратное соотношение:

{displaystyle varphi =-int {vec {E}}cdot {vec {dl}}.}

Уравнения Максвелла при этом также сильно упрощаются (уравнения с магнитным полем можно вообще исключить, а в уравнение с дивергенцией можно подставить {displaystyle -nabla varphi }) и сводятся к уравнению Пуассона:

Delta varphi =-{frac  {rho }{varepsilon _{0}}},

а в областях, свободных от заряженных частиц, — к уравнению Лапласа:

Delta varphi =0.

Учитывая линейность этих уравнений, а следовательно, применимость к ним принципа суперпозиции, достаточно найти поле одного точечного заряда, чтобы потом получать потенциал или напряжённость поля, создаваемого любым распределением зарядов (суммируя решения для точечных зарядов).

Теорема Гаусса[править | править код]

В электростатике широко используется теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

oint limits _{S}{vec  E}cdot {vec  {dS}}={frac  {Q}{varepsilon _{0}}},

где интегрирование проводится по любой замкнутой поверхности S (вычисляется поток
vec E через эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема даёт удобный способ расчета напряжённости электрического поля в случае, когда источники поля имеют высокую симметрию: сферическую, цилиндрическую или зеркальную + трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда[править | править код]

Для точечного заряда в электростатике верен закон Кулона, который в системе СИ записывается:

varphi ={frac  {1}{4pi varepsilon _{0}}}cdot {frac  {q}{r}},

или

{displaystyle {vec {E}}={frac {1}{4pi varepsilon _{0}}}cdot {frac {q}{r^{2}}}cdot {frac {vec {r}}{r}}quad left(E={frac {1}{4pi varepsilon _{0}}}cdot {frac {q}{r^{2}}}right)}.

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего, исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление vec E будет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: 4pi r^{2}, имеем {displaystyle 4pi r^{2}E=q/varepsilon _{0}}, откуда сразу получаем ответ для E.

Ответ для varphi получается интегрированием E:

{displaystyle varphi =-int {vec {E}}cdot {vec {dl}}=-int E,dr.}

Для системы СГС формулы и их вывод аналогичны, отличие от СИ лишь в константах:

varphi ={frac  {q}{r}},
{displaystyle {vec {E}}={frac {q}{r^{2}}}{frac {vec {r}}{r}}quad left(E={frac {q}{r^{2}}}right)}.

Электрическое поле произвольного распределения зарядов[править | править код]

По принципу суперпозиции для напряжённости поля совокупности дискретных источников имеем:

{displaystyle {vec {E}}={vec {E}}_{1}+{vec {E}}_{2}+{vec {E}}_{3}+dots ,}

где каждое

{displaystyle {vec {E}}_{i}={frac {1}{4pi varepsilon _{0}}}{frac {q_{i}}{(Delta {vec {r}}_{i})^{2}}}{frac {Delta {vec {r}}_{i}}{|Delta {vec {r}}_{i}|}}quad left(Delta {vec {r}}_{i}={vec {r}}-{vec {r}}_{i}right)}.

Подставив, получаем:

{vec  E}({vec  r})=sum limits _{i}{frac  {1}{4pi varepsilon _{0}}}{frac  {q_{i}}{(Delta {vec  r}_{i})^{2}}}{frac  {Delta {vec  r}_{i}}{|Delta {vec  r}_{i}|}},.

Для непрерывного распределения аналогично:

{displaystyle {vec {E}}({vec {r}})=int limits _{V}{frac {1}{4pi varepsilon _{0}}}{frac {rho ({vec {hat {r}}}),dV}{({vec {r}}-{vec {hat {r}}})^{2}}}{frac {{vec {r}}-{vec {hat {r}}}}{|{vec {r}}-{vec {hat {r}}}|}},}

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство,
{vec {r}} — радиус-вектор точки, для которой считаем vec E,
{displaystyle {vec {hat {r}}}} — радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объёма. Можно подставить {displaystyle x{vec {i}}+y{vec {j}}+z{vec {k}}} вместо {vec {r}};
{displaystyle {hat {x}}{vec {i}}+{hat {y}}{vec {j}}+{hat {z}}{vec {k}}} вместо {vec  {hat  r}};
{displaystyle d{hat {x}},d{hat {y}},d{hat {z}}} вместо dV.

Системы единиц[править | править код]

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское обозначение: В/м; международное: V/m).

Измерение напряженности электрического поля[править | править код]

Измерения напряженности электрического поля в электроустановках сверхвысокого напряжения произ­водят приборами типа ПЗ-1, ПЗ-1 м и др.

Измеритель напряженности электрического поля работает следующим образом: в антенне прибора электри­ческое поле создает ЭДС которая усиливается с помо­щью транзисторного усилителя, выпрямляется полупро­водниковыми диодами и измеряется стрелочным микро-амперметром. Антенна представляет собой симметрич­ный диполь, выполненный в виде двух металлических пластин, размещенных одна над другой. Поскольку на­веденная в симметричном диполе ЭДС. пропорцио­нальна напряженности электрического поля, шкала мили-амперметра отградуирована в киловольтах на метр (кВ/м).

Измерение напряженности должно производиться во всей зоне, где может находиться человек в процессе вы­полнения работы. Наибольшее измеренное значение напряженности является определяющим. При размеще­нии рабочего места на земле наибольшая напряженность обычно бывает на высоте роста человека.

Точки измерения выбираются по ГОСТ 12.1.002 зависимости от расположения рабочего места и от оснащения его средствами защиты согласно таблице:

Точки измерений напряженности электрического поля

Расположение рабочего места Средства защиты Точки измерений
Без поднятия на оборудование и конструкции Без средств защиты На высоте 1,8 м от поверхности земли
То же Средства коллективной защиты На высоте 0,5; 1,0 и 1,8 м от поверхности земли
С поднятием на оборудование и конструкции Независимо от наличия средств защиты На высоте 0,5; 1,0 и 1,8 м от площадки рабочего места и на расстоянии 0,5 м от заземленных токоведущих частей оборудования

Литература[править | править код]

  • Сивухин Д. В. Общий курс физики. — Изд. 4-е, стереотипное. — М.: Физматлит; Изд-во МФТИ, 2004. — Т. III. Электричество. — 656 с. — ISBN 5-9221-0227-3; ISBN 5-89155-086-5..

Примечания[править | править код]

  1. Напряжённость электрического поля // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 246. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Для любой частицы её электрический заряд постоянен. Измениться он может только если от частицы что-то заряженное отделится или если к ней что-то заряженное присоединится.
  3. Иногда его значения могут оказываться и одинаковыми в разных точках пространства; если vec E одинаков всюду в пространстве (или в какой-то области), говорят об однородном электрическом поле — это частный, наиболее простой, случай электрического поля; в реальности электрическое поле может быть однородным лишь приближённо, то есть различия vec E в разных точках пространства есть, но иногда они небольшие и ими можно пренебречь в рамках некоторого приближения.
  4. Электромагнитное поле может быть выражено и по-другому, например через электромагнитный потенциал или в несколько иной математической записи (в которой вектор напряжённости электрического поля вместе с вектором магнитной индукции входит в тензор электромагнитного поля), однако все эти способы записи тесно связаны между собой, таким образом, утверждение о том, что поле vec E — одна из основных составляющих электромагнитного поля, не утрачивает смысла.
  5. Хотя исторически многие из них были открыты раньше.

См. также[править | править код]

  • Электрическая индукция
  • Уравнения Максвелла
  • Закон Кулона
Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Для школьников.

Приведём решение трёх задач на применение принципа суперпозиции (наложения) электростатических полей.

Задача 1. Два точечных одинаковых положительных заряда по 20 нКл каждый расположены в двух вершинах равностороннего треугольника со стороной 2 м в вакууме. Найти напряжённость поля в третьей вершине треугольника.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке А вектора напряженности электрических полей каждого заряда направлены вдоль их силовых линий (от зарядов).

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Применим принцип суперпозиции для проекций указанных векторов на оси х и у:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Таким образом, вектор напряжённости результирующего электрического поля в точке А направлен вертикально вверх, а модуль напряжённости равен 77 В/м.

Задача 2. Электрическое поле образовано двумя одинаковыми разноимёнными точечными зарядами по 5 нКл. Расстояние между зарядами 10 см. Определить напряжённость поля: 1) в точке, лежащей посередине между зарядами; 2) в точке, лежащей на продолжении линии, соединяющей центры зарядов, на расстоянии 10 см от отрицательного заряда; 3) в точке, лежащей на расстоянии 10 см от положительного и отрицательного зарядов.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке А оба вектора напряжённости, создаваемых положительным и отрицательным зарядами, направлены вправо (на рисунке не показаны). Тогда результирующее поле находится через сумму полей, создаваемых первым и вторым зарядами:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке В результирующее поле направлено влево и равно:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

В точке С вектор напряжённости результирующего электрического поля направлен вправо. Его модуль найдём из треугольника:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Ответ: 36000 В/м; 3400 В/м; 4500 В/м.

Задача 3. Электрическое поле создано двумя точечными зарядами 30 нКл и -10 нКл. Расстояние между зарядами 20 см. Определить напряжённость электрического поля в точке, находящейся на расстоянии 15 см от первого и на расстоянии второго (отрицательного) зарядов.

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Покажем направления векторов напряжённости, создаваемых в искомой точке первым и вторым зарядами. Их модули найдём из формул:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Складывая вектора находим вектор результирующего поля. Модуль напряжённости результирующего поля находим по теореме косинусов:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Косинус угла найдём отдельно из треугольника образованного расстояниями:

Как найти напряжённость электрического поля, созданного точечными зарядами (задачи к занятию 47)

Косинус угла оказался равным 0,25. Подставив все численные значения в формулу, получим результирующую напряжённость равную 16, 7 кВ/м.

Итак, приведено решение трёх задач на применение принципа суперпозиции (наложения) полей. Сначала в интересующей точке поля рисуем вектора напряжённости электрического поля, создаваемого каждым зарядом в отдельности. Затем, складывая их, находим напряжённость суммарного поля. В первой задаче проще просуммировать проекции векторов напряжённости на оси. Там, где угол между векторами напряжённости, создаваемыми отдельными зарядами, отличен от нуля, пользуются теоремой косинусов (задачи 2 и 3).

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Пишите комментарии. Спасибо.

Предыдущая запись: Нахождение напряжённости электростатического поля.

Следующая запись:Как рассчитать напряжённость поля заряженной пластины. Поле конденсатора.

Ссылки на другие занятия (до электростатики) даны в Занятии 1.

Ссылки на занятия (начиная с электростатики) даны в Занятии 45.

Если снять шерстяной свитер в сухую погоду, мы услышим треск. А если снимать свитер в темноте, иногда можно даже заметить искорки электрических разрядов.

Если расчесывать в сухую погоду сухие волосы пластмассовой расческой, то происходит ее электризация трением. Наэлектризованная расческа получит заряд и сможет притягивать небольшие кусочки бумаги.

Проделывая опыт с расческой и сухими волосами, можно убедиться, что наэлектризованные волосы и расческа буду притягиваться. Мы наблюдаем притяжение, значит, волосы и расческа обладают противоположными зарядами. Приближая расческу к волосам, обнаружим, что притяжение между ними возрастает.

Натертая о волосы расческа притягивает кусочки бумаги

Рис. 1. Наэлектризованные предметы обладают способностью притягивать небольшие тела, находящиеся на некотором расстоянии

Этот опыт позволил убедиться, что заряды действуют друг на друга на расстоянии. Чем ближе заряды находятся, тем сильнее их взаимное действие друг на друга.

Из механики известно, что существует ударное взаимодействие тел, когда, например, один бильярдный шар ударяется о другой такой же шар. В школьной физике рассматривают два вида ударного взаимодействия – абсолютно упругий и абсолютно неупругий удар.

Существует, так же, безударное взаимное действие тел – их притяжение, или отталкивание. К примеру, в механике, силу притяжения между телами, имеющими массу, вычисляют с помощью закона всемирного тяготения.

А силу взаимодействия электрических зарядов описывает закон Кулона.

Взаимодействие зарядов передается без участия вещества

Заряды будут притягиваться и отталкиваться не только в воздухе, но, даже в безвоздушном пространстве. В этом легко убедиться, если поместить заряженный электроскоп под колокол и откачать из-под колокола воздух. Полоски бумаги, имеющие одинаковые заряды, все так же, продолжат отталкиваться, независимо от того, в воздухе ли они находятся, либо в безвоздушном пространстве.

Листочки заряженного электроскопа отталкиваются и в воздухе и в вакууме

Рис. 2. Для передачи взаимного действия зарядов вещество не нужно, так как это взаимодействие передается не через вещество

Это значит, что передача взаимодействия зарядов происходит не через вещество.

Ученые из Англии – Майкл Фарадей и Джеймс Максвелл, долгое время изучали электрические заряды. Они выяснили, что заряды окружены особым видом материи, которую они назвали электрическим полем.

Любой заряд окружен электрическим полем — особым видом материи.

Теории дальнодействия и близкодействия

Физики выдвигали различные теории, пытаясь объяснить взаимодействие зарядов. Наибольшее распространение получили две – их называют теориями близкодействия и дальнодействия.

Дальнодействие

Теория дальнодействия сообщает, что один заряд действует на другой заряд непосредственно. То есть, чтобы передать действие одного заряда на другой, посредники не нужны.

Кроме того, взаимодействие происходит мгновенно на любых расстояниях. Это значит, что если убрать один из взаимодействующих зарядов, то его действие на оставшийся заряд прекратится мгновенно.

Близкодействие

В противоположность этой теории Майкл Фарадей предложил свою теорию близкодействия.

Эта теория заявляет о том, что непосредственно действовать друг на друга заряды не могут. То есть, для передачи своего воздействия заряду нужна некоторый помощник. И каждый заряд создает в пространстве вокруг себя этого помощника. Фарадей назвал его электрическим полем.

На другие заряды будет действовать не сам заряд, а поле, созданное этим зарядом. Такое поле распространяется в пространстве не мгновенно, а с конечной скоростью.

Примечание: Как выяснилось позже, это очень большая скорость – триста тысяч километров в секунду. Ее называют скоростью света.

Поэтому, если один из взаимодействующих зарядов быстро убрать, то второй заряд узнает о его исчезновении не мгновенно, а через некоторое, пусть небольшое, время.

Получается, что взаимодействие зарядов протекает не непосредственно, а в виде цепочки. Каждый заряд создает вокруг себя поле, именно поле действует на другой заряд, помещенный в него.

А сила, действующая на заряд, расположенный в какой-либо точке пространства, зависит от характеристик поля в этой точке.

Сравнение теории дальнодействия с теорией близкодействия

Рис. 3. Основные отличия теории дальнодействия от теории близкодействия

В настоящее время общепринятой теорией, объясняющей взаимодействие зарядов, является теория близкодействия Фарадея. Так как эта теория полностью подтвердилась экспериментально.

Примечание: Кроме электрических существуют, так же, магнитные поля. В отличие от электростатического, магнитное поле не имеет своих магнитных источников. Оно возникает в пространстве вокруг движущихся зарядов. То есть, магнитное поле – это поле электрических зарядов, находящихся в движении.

Джеймс Клерк Максвелл в середине 19-го века показал, что электрическое и магнитное поля связаны и это электромагнитное поле распространяется в пространстве с очень большой, но конечной скоростью.

Поле и вещество – это два вида материи

Мир, окружающий нас, материален. Значит, материя – это то, что существует реально, независимо от того, наблюдаем ли мы за ней, или нет.

Она может проявлять себя в виде двух частей — вещества и поля. Нас окружает вещество, а атомы и молекулы — это мельчайшие единицы вещества.

Поле – это еще один вид материи. Поле веществом не является, однако, оно существует реально.

Поле и вещество составляют материю

Рис. 4. Материя состоит из двух частей — поля и вещества

Как обнаружить электрическое поле

Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.

Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.

В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.

Что такое пробный точечный заряд

Рис. 5. Описание понятия пробного точечного заряда

Примечания:

  1. Некоторые живые существа могут чувствовать электрические поля, например, некоторые виды рыб.
  2. Электрическое поле можно обнаружить по его действию на заряды, а, так же, с помощью различных приборов.
  3. Поле заряда действует с некоторой силой на расположенный рядом другой заряд. То есть, заряды действуют друг на друга благодаря своим электрическим полям.

Мы можем обнаружить электрическое поле благодаря его действию на другие заряды. Электрическая сила — это сила, с которой поле действует на внесенный в него пробный заряд.

Примечание: Не следует путать пробный и элементарный заряд.

Две характеристики электростатического поля

Поле, окружающее неподвижные заряды, называют электростатическим полем.

Электрическое поле можно описать двумя величинами – векторной величиной — напряженностью (large vec{E}) и скалярной величиной – потенциалом (large varphi ).

Две характеристики для описания электрического поля

Рис. 6. Электрический потенциал и напряженность описывают поле зарядов

Примечание: Применяют, так же, еще одну характеристику электрического поля — вектор электрической индукции (large vec{D}).

Описываем электрическое поле с помощью вектора

Рассмотрим два неподвижных точечных электрических заряда. Один заряд обозначим большой буквой Q:

(large Q left( text{Кл}right) ) – этот заряд создает вокруг себя электрическое поле.

Чтобы обнаружить это поле, на некотором расстоянии от заряда Q поместим еще один заряд.

(large r left( text{м}right) ) — расстояние между зарядами.

(large q left( text{Кл}right) ) — второй заряд, будем называть его пробным.

Примечания:

  1. Заряд точечный, если его размерами можно пренебречь;
  2. Обычно знак такого пробного заряда выбирают положительным. Пробный заряд имеет небольшую величину, такую, что поле, создаваемое им, на другие заряды почти не влияет.

Свойство 1: Поле, создаваемое зарядом, влияет только на другие заряды. Это поле не влияет на заряд, породивший его.

Благодаря своим электрическим полям заряды q и Q действуют друг на друга. Силу их взаимодействия можно рассчитать по закону Кулона:

[large |vec{F}| = k cdot frac {|q| cdot |Q|}{r^{2}} ]

(large F left( H right) ) – сила, с которой два точечных заряда притягиваются, или отталкиваются;

Для нас важным сейчас является само наличие взаимодействия. Чтобы не выяснять, будет ли сила воздействия силой притяжения, или отталкивания, каждый заряд поместим внутрь модуля.

Свойство 2: Электрическое поле, принадлежащее заряду Q в какой-либо точке пространства, не зависит от того, есть ли в этой точке какой-то другой заряд.

Что такое напряженность поля

Введем физическую величину, которая описывает поле заряда Q и не зависит от пробного q заряда. Для этого разделим обе части уравнения на пробный q заряд:

[large frac {|vec{F}|}{|q|} = k cdot frac {|Q|}{r^{2}} ]

Обратите внимание, что правая часть полученного уравнения не зависит от пробного заряда. Потому, что пробный заряд, обозначенный малой буквой q, не входит в правую часть. Правая часть зависит только от заряда, создавшего поле и обозначенного большой буквой Q.

Введем обозначение для дроби, расположенной в левой части полученного уравнения:

[large boxed { vec{E} = frac {vec{F}}{q} } ]

( large vec{E} left( frac {B}{text{м}} right) ) – напряженность электрического поля, измеряется в Вольтах, деленных на метр, или в Ньютонах, деленных на Кулон;

Напряженность электростатического поля в выбранной точке пространства – это векторная величина. Она равна отношению силы, действующей на пробный заряд, находящийся в выбранной точке поля к величине этого заряда. В различных точках поля силы могут быть разными, значит, будут различаться и напряженности в этих точках.

Чтобы найти (длину) модуль вектора E напряженности поля, создаваемого точечным зарядом, приравняем к величине E правую часть полученного выше выражения:

[large boxed {|vec{E}| = k cdot frac {|Q|}{r^{2}} } ]

(large k = 9cdot 10^{9}  left( H cdot frac{text{м}^{2}}{text{Кл}^{2}}right)) – постоянная величина;

(large |Q| left( text{Кл}right) ) — заряд, создающий в пространстве вокруг себя электрическое поле;

(large r left( text{м}right) ) – расстояние от заряда Q до точки, в которую мы поместили пробный заряд.

Как измерить напряженность поля в точке

Рис. 7. Измерить напряженность поля в точке можно, используя пробный заряд

Примечание: Поле мы измеряем в той точке, в которую помещаем пробный заряд.

Напряженность – это вектор. Две главные характеристики вектора – его длина и направление.

Величина ( large vec{E} ) является силовой характеристикой электрического поля. Чем больше напряженность E, тем больше сила F, действующая на пробный заряд, помещенный в это поле.

[large boxed { frac {1 Н}{ 1 text{Кл}} = frac {1 B}{ 1 text{м}} } ]

Если на заряд 1 Кулон, помещенный в электростатическое поле, действует сила 1 Ньютон, то напряженность этого поля равна единице.

По третьему закону Ньютона, силы, с которыми взаимодействуют два заряда, будут равными.

Каждый неподвижный заряд создает свое собственное электростатическое поле. Если заряды имеют различные величины, то напряженности их полей различаются.

Куда направлен вектор Е

Обратим в очередной раз внимание на формулу:

[large vec{E} = frac {vec{F}}{q} ]

Заряд q – скалярная величина. А сила F – векторная.

Воспользуемся математическими свойствами векторов: разделив вектор F на скаляр q, мы получим новый вектор E:

  1. его длина отличается от вектора F.
  2. направления векторов F и E совпадают (либо векторы F и E направлены в противоположные стороны).

Направление вектора напряженности для двух видов зарядов

Рис. 8. Направление вектора E выбирается от положительных зарядов и в сторону отрицательных зарядов

Вектор E сонаправлен с вектором силы, действующей на помещенный в поле пробный заряд. Для положительного заряда его вектор E направлен от этого заряда. А для отрицательного заряда его вектор E направлен к этому заряду.

Примечание: Однонаправленные или противоположно направленные, то есть, параллельные векторы, называют коллинеарными. У них может отличаться длина.

Как изменяется длина вектора Е с расстоянием

Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:

[large E = k cdot frac {Q}{r^{2}} ]

Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.

А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.

На рисунке 9 отражено изменение длины вектора напряженности. Обратите внимание на направление этого вектора и знак заряда:

Напряженность поля, созданного зарядом, зависит от расстояния

Рис. 9. Как напряженность зависит от расстояния до заряда, создавшего поле

Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:

[large E sim frac {1}{r^{2}} ]

Подобную зависимость на графике можно отразить такой кривой:

График изменения длины вектора напряженности с расстоянием

Рис. 10. Модуль вектора напряженности электрического поля быстро уменьшается с увеличением расстояния до заряда

Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.

Как по известной напряженности вычислить силу, с которой поле действует на заряд

Если известна напряженность поля, то силу, которая действует на заряд, помещенный в это поле, можно вычислить по формуле:

[large boxed{ vec{E} cdot q = vec{F} } ]

(large q left( text{Кл}right) ) – заряд, положительный, или отрицательный, помещенный в выбранную точку пространства, в которой существует электрическое поле;

Формула записана в векторном виде. Это значит, что она позволяет найти обе характеристики силы, действующей на заряд — направление вектора силы и его модуль.

Умножив заряд на напряженность в выбранной точке поля, можно вычислить силу, действующую на заряд со стороны поля.

Вектор напряженности помогает посчитать силу, действующую на заряд

Рис. 11. Направления векторов силы и напряженности совпадают для положительного заряда и направлены противоположно для отрицательного заряда

Так как напряженность входит в формулу для вычисления силы, ее называют силовой характеристикой электрического поля.

Зная силу, мы можем по второму закону Ньютона вычислить ускорение заряда. А с помощью формул кинематики для равнопеременного движения, зная ускорение, можно определить перемещение заряда или траекторию его движения.

Как изобразить электрическое поле единичного заряда

Пусть неподвижный положительный точечный заряд создает в пространстве, окружающем его, электрическое поле. Нарисуем несколько векторов напряженности этого поля.

Красной точкой на рисунке обозначен заряд. А черным цветом обозначены точки, в которые помещали пробный заряд и измеряли поле.

Электрическое поле можно изобразить с помощью нескольких векторов напряженности

Рис. 12. Можно изображать поле неподвижного заряда, располагая в пространстве векторы напряженности

По длине векторов можно сделать вывод, чем ближе к заряженному телу расположен пробный заряд, тем сильнее на него действует поле. Увеличив же расстояние между заряженным телом и пробным зарядом, заметим, что действие поля уменьшится.

Поля, действие которых будет различаться в разных точка пространства, называют неоднородными. Значит, электрическое поле вокруг точечных зарядов, неоднородное.

Изображаем неоднородное электрическое поле силовыми линиями

Как видно, мы можем изобразить поле с помощью нарисованных в различных точках векторов напряженности. Однако, есть более удобный способ.

Присмотревшись к рисунку, можно заметить, что векторы напряженности, окружающие заряд, располагаются на некоторых прямых. Эти прямые обозначены пунктирными линиями на рисунке. Из называют линиями электрического поля, или линиями напряженности.

Примечание: Изображать электростатическое поле удобнее не с помощью векторов, а с помощью линий напряженности.

Если заряд единственный, а поблизости от него других зарядов нет, то его поле изображают радиально расходящимися во все стороны линиями.

Силовые линии одиночного заряда

Рис. 13. Набор силовых линий одиночного точечного заряда, это неоднородное поле

Линии положительных зарядов направлены от них, а линии отрицательных зарядов – к этим зарядам, так же, как векторы напряженности.

Мы помним, что вектор напряженности описывает силу, с которой поле, созданное зарядом может действовать на другие заряды. Поэтому, линии напряженности, так же, часто называют силовыми линиями поля.

Как выглядит поле двух взаимодействующих зарядов

Рассмотрим теперь поле взаимодействующих зарядов — положительного и отрицательного.

Силовые линии взаимодействующих зарядов кривые

Рис. 14. Неоднородное поле двух точечных взаимодействующих зарядов

Как видно, линии взаимодействующих зарядов искривляются и, их конфигурация искажается.

Мы знаем, что поле одного точечного заряда неоднородное. Поле двух взаимодействующих зарядов, так же, неоднородное.

Теперь проведем обобщение, на рисунке неоднородное поле изображают:

  • либо прямыми линиями, радиально расходящимися во все стороны от одиночного заряда, либо
  • кривыми линиями, для взаимодействующих зарядов.

По мере удаления от зарядов расстояние между линиями будет увеличиваться. Чем дальше линии располагаются одна от другой в некоторой области пространства, тем слабее поле в этой области.

Будет ли поле действовать на заряд, расположенный между силовыми линиями

У начинающих изучать электростатику часто возникает вопрос, а будет ли на заряд, находящийся на рисунке между силовыми линиями, действовать сила с стороны электрического поля? Конечно, будет.

Не имеет значения, находится ли заряд на силовой линии на рисунке, или в пространстве между силовыми линиями. Поле существует во всех точках рассматриваемой области, поэтому на заряд будет действовать сила в любой точке поля, независимо, находится ли эта точка на силовой линии, или нет.

Примечание: Силовые линии – это всего лишь способ графического обозначения поля в некоторой области пространства. Поле существует во всех точках пространства, а не только на силовых линиях.

Свойства силовых линий электростатического поля

Можно выделить два свойства силовых линий поля, создаваемого неподвижными зарядами:

  1. Силовые линии имеют начало и конец – они начинаются на положительных и заканчиваются на отрицательных зарядах.
  2. Напряженность поля больше в той области, в которой линии располагаются гуще.

Свойства силовых линий электростатического поля

Рис. 15. Два свойства силовых линий электрического поля, созданного неподвижными зарядами

Примечание: Существует, так же, вихревое электрическое поле. Это поле не связано с неподвижными зарядами. Его линии замкнуты сами на себя. Картина такого поля представляет собой нечто похожее на вихрь, отсюда и появилось его название. Подробнее о вихревом электрическом поле написано в статье, посвященной электромагнитным волнам.

Поле сильней там, где его линии располагаются ближе одна к другой, а так же там, где длиннее вектор Е.

Где заканчиваются линии единственного заряда

Линии электростатического поля, начавшись на положительном заряде, должны закончиться на каком-либо отрицательном заряде.

Если поблизости от какого-либо заряда не располагается второй заряд, имеющий противоположный знак, то линии поля такого одинокого заряда уходят в бесконечность.

Там, далеко, на бесконечности, всегда найдется заряд, имеющий противоположный знак, на котором будут заканчиваться линии рассматриваемого одиночного заряда.

Лини одиночного заряда уходят в бесконечность

Рис. 16. Если заряд единичный и поблизости других зарядов противоположного знака нет, то силовые линии его уходят в бесконечность и там заканчиваются на противоположном заряде

Почему заряды называют источниками электрического поля

Электростатическое поле имеет свои электрические источники.

Нам известно, что линии электростатического поля имеют начало и конец. Они начинаются на положительных зарядах, а на отрицательных зарядах заканчиваются.

Поэтому, положительные заряды называют источниками поля, а отрицательные – стоками.

Электрическое поле имеет свои электрические источники - заряды

Рис. 17. Электрические заряды называют источниками электростатического поля

Как изобразить однородное электрическое поле

Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.

Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.

Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.

Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.

Параллельные силовые прямые изображают однородное поле

Рис. 18. Поле, расположенное в пространстве между двух заряженных плоскостей, будет однородным

Если во всех точках пространства, в которых существует электрическое поле, вектор напряженности имеет одинаковое направление и длину, то это поле называют однородным.

Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.

Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.

Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).

Связь между векторами E неоднородного поля и линиями напряженности

Рассмотрим еще раз рисунок, на котором изображено поле двух взаимодействующих зарядов. Выберем на нем одну силовую линию. Вычислим длины нескольких векторов E и нарисуем их в выбранных точках, расположенных на этой линии.

Векторы напряженности направлены по касательным к силовым линиям

Рис. 19. Силовая линия двух притягивающихся точечных зарядов и векторы напряженности в нескольких точках этой линии

Если через каждый вектор напряженности провести прямую линию, можно заметить, что эти линии образуют семейство касательных. Такие касательные прямые линии ограничивают собой кривую. Эта кривая и будет являться силовой линией.

Теперь можно дать определение силовых линий:

Силовая линия электростатического поля – это линия, касательная к которой в любой выбранной точке будет сонаправлена с вектором напряженности электрического поля в этой же точке.

В отдельной статье будет рассказано о работе электрического поля и еще одной его характеристике — потенциале.

Добавить комментарий