Векторы. Операции с векторами.
Векторы. Операции с векторами.
Математические или физические величины могут быть представлены как скалярными величинами (численным значением), так и векторными величинами (величиной и направлением в пространстве).
Вектор представляет собой направленный отрезок прямой, для которого указано, какая из его граничных точек является началом, а какая — концом. Таким образом, в векторе присутствует две составляющих – это его длина и направление.
Рис.1. Изображение вектора на чертеже.
При работе с векторами часто вводят некоторую декартову систему координат в которой определяют координаты вектора, раскладывая его по базисным векторам:
– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат
Расстояние между началом и концом вектора называется его длиной, а для обозначения длины вектора (его абсолютной величины) пользуются символом модуля.
Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллинеарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы. Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости.
1.Длина вектора (модуль вектора)
Длина вектора определяет его скалярное значение и зависит от его координат, но не зависит от его направления. Длина вектора (или модуль вектора) вычисляется через арифметический квадратный корень из суммы квадратов координат (компонент) вектора (используется правило вычисления гипотенузы в прямоугольном треугольнике, где сам вектор становится гипотенузой).
Через координаты модуль вектора вычисляется следующим образом:
– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат, формула будет аналогична формуле диагонали прямоугольного параллелепипеда, так как вектор в пространстве принимает такое же положение относительно осей координат.
2. Угол между векторами
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения второго вектора. Угол между векторами определяется с использованием выражения для определения скалярного произведения векторов
Таким образом, косинус угла между векторами равен отношению скалярного произведения к произведению длин или модулей векторов. Данной формулой можно пользоваться в случае, если известны длины векторов и их скалярное произведение, либо векторы заданы координатами в прямоугольной системе координат на плоскости или в пространстве в виде: и .
Если векторы A и B заданы в трехмерном пространстве и координаты каждого из них заданы в виде: и , то угол между векторами определяется по следующему выражению:
Следует отметить, что угол между векторами и можно также определить применяя теорему косинусов для треугольника: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
где AB, OA, OB – соответствующая сторона треугольника.
Рис.2. Теорема косинусов для треугольника
Применительно к векторным исчислением данная формула перепишется следующим образом:
Таким образом, угол между векторами и определяется по следующему выражению:
где и – модуль (длина) вектора, а – модуль (длина) вектора, который определяется из разности двух векторов. Неизвестные входящие в уравнение определяются по координатам векторов и .
3.Сложение векторов
Сложение двух векторов и (сумма двух векторов) – это операция вычисления вектора , все элементы которого равны попарной сумме соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат сумму векторов и можно найти по следующей формуле:
В графическом виде, сложение двух свободных векторов можно осуществлять как по правилу треугольника, так и по правилу параллелограмма.
Рис.3. Сложение двух векторов
Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало.
Правило треугольника.
Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где – угол между векторами, когда начало одного совпадает с концом другого.
Правило параллелограмма.
Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где – угол между векторами выходящими из одной точки.
Как видно, в зависимости от того какой угол выбирается, изменяется знак перед косинусом угла в формуле для определения модуля (длины) вектора суммы.
4.Разность векторов
Разность векторов и (вычитание векторов) – это операция вычисления вектора , все элементы которого равны попарной разности соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат разность векторов и можно найти по следующей формуле:
В графическом виде, разностью векторов и называется сумма вектора и вектора противоположного вектору , т.е.
Рис.4. Разность двух свободных векторов
Разность двух свободных векторов в графическом виде может быть определена как по правилу треугольника, так и по правилу параллелограмма. Модуль (длина) вектора разности определяется по теореме косинусов. В зависимости от используемого угла в формуле изменяется знак перед косинусом (рассматривалось ранее).
5.Скалярное произведение векторов
Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение векторов и обозначается одним из следующих обозначений или или и определяется по формуле:
где- длины векторов и соответственно, а – косинус угла между векторами.
Рис.5. Скалярное произведение двух векторов
Скалярное произведение также можно вычислить через координаты векторов в прямоугольной системе координат на плоскости или в пространстве.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .
Таким образом, для векторов и на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет следующий вид:
Для трехмерного пространства формула для вычисления скалярного произведения векторов и имеет следующий вид:
Свойства скалярного произведения.
1.Свойство коммутативности скалярного произведения
2.Свойство дистрибутивности скалярного произведения
3.Сочетательное свойство скалярного произведения (ассоциативность)
где – произвольное действительное число.
Следует отметить, что в случае:
– если скалярное произведение положительно, следовательно, угол между векторами – острый (менее 90 градусов);
– если скалярное произведение отрицательно, следовательно, угол между векторами – тупой (больше 90 градусов);
– если скалярное произведение равно 0, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу);
– если скалярное произведение равно произведению длин векторов, следовательно, данные векторы коллинеарные между собой (параллельные).
6.Векторное произведение векторов
Векторным произведением двух векторов и называется вектор для которого выполняются следующие условия:
1. вектор ортогонален (перпендикулярен) плоскости векторов и ;
2. направление вектора определяется по правилу правой руки (вектор направлен так, что из конца вектора кратчайший поворот от вектора к вектору виден происходящим против часовой стрелки);
Рис.6. Нахождение направления векторного произведения с помощью правила правой руки.
3. длина вектора равняется площади параллелограмма, образованного векторами, и может быть определена из выражения, равного произведению длин умножаемых векторов на синус угла между ними.
Векторное произведение векторов и обозначается следующим образом (или ), а длина (модуль) векторного произведения определяется по формуле:
где- длины векторов и соответственно, а – синус угла между векторами.
Векторное произведение векторов отличается от скалярного произведения тем, что оно представляет собой не просто число, а вектор, имеющий свое собственное направление (направление обуславливает трехмерность системы). Таким образом, векторное произведение векторов по определению возможно только в трехмерном пространстве, где у каждого вектора указаны три координаты (i,j,k). Векторное произведение не обладает свойствами коммутативности в отличие от скалярного произведения векторов.
Рис.7. Векторное произведение двух векторов
Векторное произведение также можно вычислить через координаты векторов в прямоугольной системе координат в пространстве.
Свойства векторного произведения.
1.Свойство антикоммутативности векторного произведения
2.Свойство дистрибутивности векторного произведения
3.Сочетательное свойство векторного произведения (ассоциативность)
где – произвольное действительное число.
Следует отметить, что в случае:
– если векторное произведение равно 0, следовательно, вектора являются коллинеарными (вектора параллельны друг другу);
– если векторное произведение равно произведению длин векторов, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу).
Для того, чтобы добавить Ваш комментарий к статье, пожалуйста, зарегистрируйтесь на сайте.
Модуль вектора. Длина вектора.
Определение длины вектора
Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.
Формулы длины вектора
Формула длины вектора для плоских задач
В случае плоской задачи модуль вектора a = < ax ; ay > можно найти воспользовавшись следующей формулой:
Формула длины вектора для пространственных задач
В случае пространственной задачи модуль вектора a = < ax ; ay ; az > можно найти воспользовавшись следующей формулой:
Формула длины n -мерного вектора
В случае n -мерного пространства модуль вектора a = < a 1 ; a 2; . ; an > можно найти воспользовавшись следующей формулой:
| a | = ( | n | ai 2 ) 1/2 |
Σ | ||
i =1 |
Примеры задач на вычисление длины вектора
Примеры вычисления длины вектора для плоских задачи
Решение: | a | = √ 2 2 + 4 2 = √ 4 + 16 = √ 20 = 2√ 5 .
Решение: | a | = √ 3 2 + (-4) 2 = √ 9 + 16 = √ 25 = 5.
Примеры вычисления длины вектора для пространственных задачи
Решение: | a | = √ 2 2 + 4 2 + 4 2 = √ 4 + 16 + 16 = √ 36 = 6.
Решение: | a | = √ (-1) 2 + 0 2 + (-3) 2 = √ 1 + 0 + 9 = √ 10 .
Примеры вычисления длины вектора для пространств с размерностью большей 3
Решение: | a | = √ 1 2 + (-3) 2 + 3 2 + (-1) 2 = √ 1 + 9 + 9 + 1 = √ 20 = 2√ 5
Решение: | a | = √ 2 2 + 4 2 + 4 2 + 6 2 + 2 2 = √ 4 + 16 + 16 + 36 + 4 = √ 76 = 2√ 19 .
Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!
Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.
Нахождение длины вектора, примеры и решения
Длина вектора – основные формулы
Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.
Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .
От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .
Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .
Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .
Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.
Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.
Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e
Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)
В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .
Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .
Вычислить длину вектора a → = 4 · i → – 3 · j → + 5 · k → , где i → , j → , k → – орты прямоугольной системы координат.
Дано разложение вектора a → = 4 · i → – 3 · j → + 5 · k → , его координаты равны a → = 4 , – 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( – 3 ) 2 + 5 2 = 5 2 .
Длина вектора через координаты точек его начала и конца
Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.
Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x – a x ; b y – a y ) значит, его длина может быть определена по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2
А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле
A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2
Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B – 3 , 1 .
Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x – a x ) 2 + ( b y – a y ) 2 : A B → = ( – 3 – 1 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 .
Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( – 3 – 1 ; 1 – 3 ) = ( – 4 ; 1 – 3 ) ; A B → = ( – 4 ) 2 + ( 1 – 3 ) 2 = 20 – 2 3 . –
Ответ: A B → = 20 – 2 3 .
Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .
Для начала распишем длину вектора A B → по формуле: A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 = ( 5 – 0 ) 2 + ( 2 – 1 ) 2 + ( λ 2 – 2 ) 2 = 26 + ( λ 2 – 2 ) 2
Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :
26 + ( λ 2 – 2 ) 2 = 30 26 + ( λ 2 – 2 ) 2 = 30 ( λ 2 – 2 ) 2 = 4 λ 2 – 2 = 2 и л и λ 2 – 2 = – 2 λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .
Ответ: λ 1 = – 2 , λ 2 = 2 , λ 3 = 0 .
Нахождение длины вектора по теореме косинусов
Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.
Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.
Рассмотрим такой случай на следующем примере.
Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .
Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 – 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 – 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .
Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x – a x ) 2 + ( b y – a y ) 2 или A B → = ( b x – a x ) 2 + ( b y – a y ) 2 + ( b z – a z ) 2 , в некоторых случаях следует использовать теорему косинусов.
[spoiler title=”источники:”]
http://ru.onlinemschool.com/math/library/vector/length/
http://zaochnik.com/spravochnik/matematika/vektory/dlina_vectora/
[/spoiler]
Математические или физические величины могут быть представлены как скалярными величинами (численным значением), так и векторными величинами (величиной и направлением в пространстве).
Вектор представляет собой направленный отрезок прямой, для которого указано, какая из его граничных точек является началом, а какая — концом. Таким образом, в векторе присутствует две составляющих – это его длина и направление.
Рис.1. Изображение вектора на чертеже.
При работе с векторами часто вводят некоторую декартову систему координат в которой определяют координаты вектора, раскладывая его по базисным векторам:
– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат
Расстояние между началом и концом вектора называется его длиной, а для обозначения длины вектора (его абсолютной величины) пользуются символом модуля.
Векторы расположенные либо на одной прямой, либо на параллельных прямых называются коллинеарными. Нулевой вектор считается коллинеарным любому вектору. Среди коллинеарных векторов различают одинаково направленные (сонаправленные) и противоположно направленные векторы. Векторы называются компланарными, если они лежат либо на одной плоскости, либо на прямых, параллельных одной и той же плоскости.
1. Длина вектора (модуль вектора)
Длина вектора определяет его скалярное значение и зависит от его координат, но не зависит от его направления. Длина вектора (или модуль вектора) вычисляется через арифметический квадратный корень из суммы квадратов координат (компонент) вектора (используется правило вычисления гипотенузы в прямоугольном треугольнике, где сам вектор становится гипотенузой).
Через координаты модуль вектора вычисляется следующим образом:
– для вектора, расположенного в пространстве координат (x,y) и выходящего из начала координат
– для вектора, расположенного в пространстве координат (x,y,z) и выходящего из начала координат, формула будет аналогична формуле диагонали прямоугольного параллелепипеда, так как вектор в пространстве принимает такое же положение относительно осей координат.
2. Угол между векторами
Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения второго вектора. Угол между векторами определяется с использованием выражения для определения скалярного произведения векторов
Таким образом, косинус угла между векторами равен отношению скалярного произведения к произведению длин или модулей векторов. Данной формулой можно пользоваться в случае, если известны длины векторов и их скалярное произведение, либо векторы заданы координатами в прямоугольной системе координат на плоскости или в пространстве в виде: и .
Если векторы A и B заданы в трехмерном пространстве и координаты каждого из них заданы в виде: и , то угол между векторами определяется по следующему выражению:
Следует отметить, что угол между векторами и можно также определить применяя теорему косинусов для треугольника: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
где AB, OA, OB – соответствующая сторона треугольника.
Рис.2. Теорема косинусов для треугольника
Применительно к векторным исчислением данная формула перепишется следующим образом:
Таким образом, угол между векторами и определяется по следующему выражению:
где и – модуль (длина) вектора, а – модуль (длина) вектора, который определяется из разности двух векторов. Неизвестные входящие в уравнение определяются по координатам векторов и .
3. Сложение векторов
Сложение двух векторов и (сумма двух векторов) – это операция вычисления вектора , все элементы которого равны попарной сумме соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат сумму векторов и можно найти по следующей формуле:
В графическом виде, сложение двух свободных векторов можно осуществлять как по правилу треугольника, так и по правилу параллелограмма.
Рис.3. Сложение двух векторов
Сложение двух скользящих векторов определено лишь в случае, когда прямые, на которых они расположены, пересекаются. Сложение двух фиксированных векторов определено лишь в случае, когда они имеют общее начало.
Правило треугольника.
Для сложения двух векторов и по правилу треугольника оба эти вектора переносятся параллельно самим себе так, чтобы начало одного из них совпадало с концом другого. Тогда вектор суммы задаётся третьей стороной образовавшегося треугольника, причём его начало совпадает с началом первого вектора, а конец с концом второго вектора.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где – угол между векторами, когда начало одного совпадает с концом другого.
Правило параллелограмма.
Для сложения двух векторов и по правилу параллелограмма оба эти вектора переносятся параллельно самим себе так, чтобы их начала совпадали. Тогда вектор суммы задаётся диагональю построенного на них параллелограмма, исходящей из их общего начала.
Модуль (длину) вектора суммы определяют по теореме косинусов:
где – угол между векторами выходящими из одной точки.
Примечание:
Как видно, в зависимости от того какой угол выбирается, изменяется знак перед косинусом угла в формуле для определения модуля (длины) вектора суммы.
4. Разность векторов
Разность векторов и (вычитание векторов) – это операция вычисления вектора , все элементы которого равны попарной разности соответствующих элементов векторов и . В случае если вектора заданы в прямоугольной системе координат разность векторов и можно найти по следующей формуле:
В графическом виде, разностью векторов и называется сумма вектора и вектора противоположного вектору , т.е.
Рис.4. Разность двух свободных векторов
Разность двух свободных векторов в графическом виде может быть определена как по правилу треугольника, так и по правилу параллелограмма. Модуль (длина) вектора разности определяется по теореме косинусов. В зависимости от используемого угла в формуле изменяется знак перед косинусом (рассматривалось ранее).
5. Скалярное произведение векторов
Скалярным произведением двух векторов называется действительное число, равное произведению длин умножаемых векторов на косинус угла между ними. Скалярное произведение векторов и обозначается одним из следующих обозначений или или и определяется по формуле:
где– длины векторов и соответственно, а – косинус угла между векторами.
Рис.5. Скалярное произведение двух векторов
Скалярное произведение также можно вычислить через координаты векторов в прямоугольной системе координат на плоскости или в пространстве.
Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов и .
Таким образом, для векторов и на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет следующий вид:
Для трехмерного пространства формула для вычисления скалярного произведения векторов и имеет следующий вид:
Свойства скалярного произведения.
1. Свойство коммутативности скалярного произведения
2. Свойство дистрибутивности скалярного произведения
3. Сочетательное свойство скалярного произведения (ассоциативность)
где – произвольное действительное число.
Следует отметить, что в случае:
если скалярное произведение положительно, следовательно, угол между векторами – острый (менее 90 градусов);
если скалярное произведение отрицательно, следовательно, угол между векторами – тупой (больше 90 градусов);
если скалярное произведение равно 0, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу);
если скалярное произведение равно произведению длин векторов, следовательно, данные векторы коллинеарные между собой (параллельные).
6. Векторное произведение векторов
Векторным произведением двух векторов и называется вектор для которого выполняются следующие условия:
1. вектор ортогонален (перпендикулярен) плоскости векторов и ;
2. направление вектора определяется по правилу правой руки (вектор направлен так, что из конца вектора кратчайший поворот от вектора к вектору виден происходящим против часовой стрелки);
Рис.6. Нахождение направления векторного произведения с помощью правила правой руки.
3. длина вектора равняется площади параллелограмма, образованного векторами, и может быть определена из выражения, равного произведению длин умножаемых векторов на синус угла между ними.
Векторное произведение векторов и обозначается следующим образом (или ), а длина (модуль) векторного произведения определяется по формуле:
где– длины векторов и соответственно, а – синус угла между векторами.
Векторное произведение векторов отличается от скалярного произведения тем, что оно представляет собой не просто число, а вектор, имеющий свое собственное направление (направление обуславливает трехмерность системы). Таким образом, векторное произведение векторов по определению возможно только в трехмерном пространстве, где у каждого вектора указаны три координаты (i,j,k). Векторное произведение не обладает свойствами коммутативности в отличие от скалярного произведения векторов.
Рис.7. Векторное произведение двух векторов
Векторное произведение также можно вычислить через координаты векторов в прямоугольной системе координат в пространстве.
Свойства векторного произведения.
1. Свойство антикоммутативности векторного произведения
2. Свойство дистрибутивности векторного произведения
3. Сочетательное свойство векторного произведения (ассоциативность)
где – произвольное действительное число.
Следует отметить, что в случае:
если векторное произведение равно 0, следовательно, вектора являются коллинеарными (вектора параллельны друг другу);
если векторное произведение равно произведению длин векторов, следовательно, вектора являются ортогональными (которые лежат перпендикулярно друг к другу).
Как определить модуль вектора
Объектами векторной алгебры являются отрезки прямой, имеющие направление и длину, называемую модулем. Чтобы определить модуль вектора, следует извлечь квадратный корень из величины, представляющей собой сумму квадратов его проекций на координатные оси.
Инструкция
Векторы характеризуются двумя основными свойствами: длиной и направлением. Длина вектора называется модулем или нормой и представляет собой скалярное значение, расстояние от точки начала до точки конца. Оба свойства применяются для графического изображения различных величин или действий, например, физических сил, движения элементарных частиц и пр.
Местоположение вектора в двухмерном или трехмерном пространстве не влияет на его свойства. Если перенести его в другое место, то изменятся лишь координаты его концов, однако модуль и направление останутся прежними. Эта независимость позволяет использовать средства векторной алгебры в различных вычислениях, например, определения углов между пространственными прямыми и плоскостями.
Каждый вектор можно задать координатами его концов. Рассмотрим для начала двухмерное пространство: пусть начало вектора находится в точке А (1, -3), а конец – в точке В (4, -5). Чтобы найти их проекции, опустите перпендикуляры на ось абсцисс и ординат.
Определите проекции самого вектора, которые можно вычислить по формуле:АВх = (xb – xa) = 3;ABy = (yb – ya) = -2, где:ABx и ABy – проекции вектора на оси Ох и Оу;xa и xb – абсциссы точек А и В;ya и yb – соответствующие ординаты.
В графическом изображении вы увидите прямоугольный треугольник, образованный катетами с длинами, равными проекциям вектора. Гипотенузой треугольника является величина, которую нужно вычислить, т.е. модуль вектора. Примените теорему Пифагора:|АВ|² = ABx² + ABy² → |AB| = √((xb – xa)² + (yb – ya)²) = √13.
Очевидно, что для трехмерного пространства формула усложняется путем добавления третьей координаты – аппликат zb и za для концов вектора:|AB| = √((xb – xa)² + (yb – ya)² + (zb – za)²).
Пусть в рассмотренном примере za = 3, zb = 8, тогда:zb – za = 5;|AB| = √(9 + 4 + 25) = √38.
Видео по теме
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Как найти модуль вектора по заданным проэкциям на оси прямоугольной системы координат?
Знаток
(321),
закрыт
12 лет назад
Евгений Холмов
Знаток
(446)
12 лет назад
Модуль вектора – это длина соответствующего отрезка. Если у тебя есть проекции, значит, есть координаты начала и конца вектора по обеим осям. Модулем будет корень квадратный из суммы квадратов разниц координат по каждой из осей.
Например, проекция на ось X у тебя – это отрезок (2,5). А на ось Y – (1,3). Тогда модуль будет корнем из (5-2)^2+(3-1)^2, что равно корню из 13.
Владимир Кривошеев
Гений
(54360)
12 лет назад
Величина модуля вектора находится по теореме Пифагора.
Здесь гипотенуза прямоугольного треугольника = искомому модулю вектора, а катеты – это длины проекций на оси Х и У.
Таким образом нужно:
1) Определим длину проекции по Х (разность координат Х)
2) Определим длину проекции по У (разность координат по У)
3) По теореме Пифагора, модуль вектора = Квадратный корень из (длина по Х в квадрате + длина по У в квадрате)
Модуль вектора
Формула
Чтобы найти модуль вектора по координатам нужно извлечь квадратный корень из суммы квадратов его координат, то есть найти длину вектора.
Если вектор задан на плоскости в виде $ overline{a} = (x;y) $, то вычисляется модуль по формуле: $$ |overline{a}|=sqrt{x^2+y^2} $$
В случае, когда вектор задан в пространстве тремя координатами $ overline{a}= (x;y;z) $, то модуль находится по формуле: $$ |overline{a}|=sqrt{x^2+y^2+z^2} $$
Для нахождения модуля вектора нам понадобится знать:
- Координаты вектора
- Формулы
Примеры решений
Пример |
Найти модуль вектора $ overline{a} = (3;4;0) $ |
Решение |
Зная координаты мы первым делом определяем на плоскости или в пространстве задана задача. В нашем случае координат у вектора три, поэтому в пространстве (было бы две координаты, то на плоскости). Используем вторую формулу для пространственной задачи: $$ |overline{a}|=sqrt{x^2+y^2+z^2} $$ Подставляя в формулу в место $ x,y,z $ числа из задания получаем модуль: $$ |overline{a}|=sqrt{3^2+4^2+0^2} = sqrt{9+16+0} = sqrt{25}=5 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ |overline{a}|= sqrt{25}=5 $$ |