Определение молекулярной формулы спирта
Наиболее распространены в тестах ЕГЭ задачи, в которых расчет ведется по уравнению реакции. Рассмотрим наиболее сложную из них.
Задача 2.6.
При взаимодействии 1,48 г предельного одноатомного спирта с металлическим натрием выделился водород в количестве, достаточном для гидрирования 224 мл этилена (н.у.). Определите молекулярную формулу спирта.
Дано:
масса предельного одноатомного спирта: m(спирта) = 1,48 г;
объем этилена (н.у.): V(С2Н4) = 224 мл.
Найти: формулу исходного спирта.
Решение:
Шаг 1. В состав предельного одноатомного спирта входят углерод, водород и один атом кислорода. Общая формула имеет вид: СnH2n+1ОН.
Шаг 2. В условии описаны две последовательные химические реакции:
2СnH2n+1ОН + 2Na —> 2СnH2n+1ОNa + H2
Водород, выделившийся в первой реакции, участвует, во взаимодействии с этиленом:
Н2С = СН2 + Н2 —> Н3С – СН3
Шаг 3 и 4. Соотношение атомов и простейшая формула спирта однозначно определяется по общей формуле, но эти данные не помогут нам при выявлении истинной формулы.
Шаг 5. Для выявления значения «n» в общей формуле спирта необходимо сопоставить массу спирта с количеством образовавшегося водорода по первому уравнению реакции. Количество образовавшегося водорода можно определить по второй реакции гидрирования.
а) Определение количества вещества водорода1:
Составляем пропорцию:
0,224 л Н2С = СН2 взаимодействуют с х моль Н2 (по условию)
22,4 л Н2С = СН2 взаимодействуют с 1 моль Н2 (по уравнению)
– количество вещества водорода, который расходовался в реакции гидрирования этилена.
б) Водород, принявший участие в реакции с этиленом, выделился в первой реакции спирта с металлическим натрием. Следовательно, можно использовать полученные данные для сопоставления с массой исходного спирта.
Составляем пропорцию:
1,48 г СnH2n+1ОН дает 0,01 моль Н2 (по условию)
(28n + 36) г СnH2n+1ОН дает 1 моль Н2 (по уравнению)
1,48 . 1 = (28n + 36) . 0,01
Получили математическое уравнение с одним неизвестным. Решая его, получаем: n = 4.
Подставляем это значение в общую формулу спирта:
С4Н9ОН.
Ответ: С4Н9ОН.
Данная задача была осложнена двумя последовательными уравнениями реакций. Для сопоставления данных с целью определения неизвестного индекса в общей формуле нам
пришлось проводить дополнительный расчет по второму химическому уравнению. В большинстве задач ЕГЭ в условии описана лишь одна реакция и присутствуют данные о двух веществах в ней. После записи уравнения с использованием общей формулы можно сразу приступать к сопоставлению данных и выявлению неизвестных индексов.
Комментарии:
1 Объем газообразного этилена в условии выражен в миллилитрах. Для использования этого данного в пропорции необходимо перевести его в литры, т.к. молярный объем измеряется в л/моль. Ошибку, связанную с приведением данных к одним единицам измерения делают многие учащиеся.
Источник:
ЕГЭ. Химия. Расчетные задачи в тестах ЕГЭ. Части А, В, С / Д.Н. Турчен. — М.: Издательство «Экзамен», 2009. — 399 [1]с. (Серия «ЕГЭ. 100 баллов»). I8ВN 978-5-377-02482-8.
Голосование за лучший ответ
NiNa Martushova
Искусственный Интеллект
(153334)
8 лет назад
Молярная масса спирта равна 22,4 х 2,679= 60 гмоль. Общая формула спиртов CnH2n+1OH, подставляем в неё массу атомов углерода и водорода, получаем 14n+18=60,откуда n=3 – это пропанол С3Н7ОН.
nyuta.chuprinaПрофи (552)
8 лет назад
Обчислите объем водня ( н. у ) , который выделится, если в глицерин поместить натрий массой 15,8 г ?. и второе задание CH4 – C2H2- C2H4 – C2H5OH уравнение реакция составь если сможешь пожалуйста ну ооочень нужно !
NiNa Martushova
Искусственный Интеллект
(153334)
2CH4–>C2H2+3H2; C2H2+H2–>C2H4; C2H4+H2O–>C2H5OH.
Хулиганов Иосиф
Искусственный Интеллект
(268409)
8 лет назад
Молярная масса спирта равна 2,679*22,4=60 (г/моль).
Вычитаем массу ОН-группы, получаем массу углеводородного “хвоста”:
60-17=43(г/моль).
У “хвоста” на каждый атом углерода приходится 2+1/N атомов водорода, т. е. получается уравнение:
N*(12+2+1/N)=43; 14*N+1=43; N=3. Это число атомов углерода. Число атомов водорода в “хвосте” равно 3*(2+1/3)=7ю
Итого, общая формула спирта: С3Н7ОН
nyuta.chuprinaПрофи (552)
8 лет назад
Обчислите объем водня ( н. у ) , который выделится, если в глицерин поместить натрий массой 15,8 г ?
Решение
задач на спирты
2. Предельный простой эфир массой 10 г при
нормальных условиях занимает объем 4.87 л. Выведите молекулярную
формулу эфира.
3. Относительная плотность паров
органического соединения по воздуху равна 2,552. Массовая доля углерода в этом
веществе равна 64,86%, массовая доля водорода равна 13,51%,
массовая доля кислорода равна 21,63%. Выведите молекулярную формулу этого
вещества.
4. Относительная плотность паров
органического соединения по водороду равна 65. Массовая доля углерода в этом
веществе равна 73,85%, массовая доля водорода равна 13,85%, массовая доля
кислорода равна 12,3%. Выведите молекулярную
формулу этого вещества.
5.
Относительная плотность паров органического соединения по водороду равна 51.
При сжигании 30,6 г этого вещества образовалось 79,2 г диоксида углерода и 37,8
г воды. Выведите молекулярную формулу органического соединения.
6. Относительная плотность паров
органического соединения по кислороду равна 3,625.11ри сжигании 29 г этого
вещества образуется 39,2 л углекислого газа (н. у.) и 36 г воды. Выведите
молекулярную формулу органического соединения.
Учитель: А
кто помнит где используется фенол?
Учитель. Хорошо.
Знаете ли вы, что в результате гидролиза аспирина образуется образуется фенол? Это
должные знать те хозяйки, которые любят консервировать огурцы и помидоры и
вместо уксусной кислоты добавляют таблетки аспирина.
НООС-С6Н4-О-СО-СН3 (аспирин) + Н2О (t) =
НООС-С6Н4-ОН (гидроксибензойная к-та) + СН3СООН (уксусная к-та)
При нагревании салициловая кислота легко
декарбоксилируется с образованием фенола:
С6H4(OH)COOH=C6H5OH
+ CO2
Но фенол и его производные без труда
проникают в организм человека через кожу и желудочно-кишечный тракт, а пары
фенола – через легкие. В организме фенол легко образует соединения с другими
веществами, присутствующими в организме. Чем выше концентрация фенола в крови,
тем сильнее его неблагоприятное влияние на здоровье человека. Продукты
взаимодействия фенола с другими веществами, а также часть несвязанного фенола
выводятся с мочой.
7. Задача: Найти формулу вещества по
следующим данным: плотность вещества по водороду 31, массовые доли С – 38,7%,
кислорода – 51,6% , водорода – 9,7%
Решение задачи.
- Находим количественный состав
вещества ﻻ= - Ач(С) – 12г/моль
Ач(О) – 16г/моль
Ач(H) – 1г/моль
- Подставляем числовые данные CxHyOz
- x:y:z=(C):(O):(H)=
- Простейшая формула: (CH3O)*2
M=31г/моль - М (ист) = p(H)*M(H2)=32*2=62г/моль
- Ответ: М.ф. вещества C2H6O2
1.
Относительная плотность паров предельного одноатомного спирта по кислороду
равна 2,75. Выведите молекулярную
формулу спирта.
2.
Предельный простой эфир массой 10 г при нормальных условиях занимает объем 4.87
л. Выведите молекулярную
формулу эфира.
3.
Относительная плотность паров органического соединения по воздуху равна 2,552.
Массовая доля углерода в этом
веществе равна 64,86%, массовая доля водорода равна 13,51%,
массовая доля кислорода равна 21,63%. Выведите молекулярную формулу этого
вещества.
4.
Относительная плотность паров органического соединения по водороду равна 65.
Массовая доля углерода в этом веществе равна 73,85%, массовая доля водорода
равна 13,85%, массовая доля кислорода равна 12,3%. Выведите молекулярную
формулу этого вещества.
5.
Относительная плотность паров органического соединения по водороду равна 51.
При сжигании 30,6 г этого вещества образовалось 79,2 г диоксида углерода и 37,8
г воды. Выведите молекулярную формулу органического соединения.
6.
Относительная плотность паров органического соединения по кислороду равна
3,625.11ри сжигании 29 г этого вещества образуется 39,2 л углекислого газа (н.
у.) и 36 г воды. Выведите молекулярную формулу органического соединения.
Задача:
При действии избытка натрия на
раствор фенола в метаноле выделилось 1176 мл газа (н. у.).
Для нейтрализации такого же
количества раствора потребовалось 10 мл водного раствора NaОН с концентрацией
20 мг/мл.
Чему равна массовая доля фенола в
исходном растворе?
Решение:
Для
начала давайте распишем все химические процессы в задаче:
1. Во
второй реакции проявляется то самое различие между спиртами и фенолами — из
второй реакции, в которой метанол не взаимодействует с щелочью, мы можем
найти количество моль фенола,
2. в
условии сказано, что такое же количество прореагировало с Na в первой реакции —
в этой реакции и спирт и фенол реагируют с Na одинаково.
3.
Значит, мы можем найти то количество водорода (газ), которое соответствует
фенолу,
4.
найти остаток водорода и вычислить количество моль метанола.
В
вопросе сказано найти массовую долю фенола, значит, используем стандартную
формулу для массовой доли вещества в растворе
Давайте
напишем подробное решение:
1.
Дано 10 мл водного раствора NaОН с концентрацией 20 мг/мл. Значит,
находим количество моль:
n (NaOH) = mMr=V*C(концентрация)Mr = 10 (мл) *
0,020( гмл) 40 (гмоль) = 0,005 моль
Значит, по уравнению реакции, n(фенола) = 0,005 моль
2.
Значит, количество фенола, вступившего в первую реакцию тоже 0,05 моль
3.
Водорода по уравнению реакции получается в 2 раза меньше, чем фенола:
4. При
действии избытка натрия на раствор фенола в метаноле выделилось 1176 мл газа
(н. у.). Нам нужно найти количество моль водорода.
n(H2)=V22,4 (лмоль) = 1.176 (л) 22.4
(лмоль) = 0.0525 моль
Значит,
в реакции с метанолом выделилось 0.0525 — 0.0025 = 0,05 моль
водорода
n
(метанола) = 0.1 моль
Находим массовую долю:
m(фенола) = 0,05 (моль)*94 (гмоль) = 0,47 г
m(метанола) = 0,1 (моль) * 32 (гмоль) = 3,2 г
w(фенола) = m(фенола) (m(фенола) + m(метанола)
)*100%= 0,47 (г) 3,67 (г)*100% = 12,8%
Содержание:
Спирты:
Углеводороды образуют различные функциональные производные при замещении в молекуле одного или нескольких атомов водорода на функциональную группу
Спирты и фенолы относятся к монофункциональным гидроксилпроизвод-ным углеводородов.
Спиртами называют производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.
Классификация спиртов
В зависимости от числа гидроксильных групп в молекуле спирты подразделяют на одноатомные, двухатомные, трехатомные, четырехатомные и т. д. (рис. 42). Например:
- — трехатомный спирт.
Спирты, содержащие несколько гидроксильных групп, объединяют общим названием многоатомные спирты.
В зависимости от строения углеродного скелета различают спирты насыщенные, ненасыщенные, ароматические (рис. 43).
Насыщенные спирты — производные алканов, например Ненасыщенные спирты — производные ненасыщенных углеводородов, в молекулах которых содержатся кратные (двойные и тройные) связи между атомами углерода, например
Некоторые одноатомные ненасыщенные спирты, содержащиеся в винограде, из которого производят вина, определяют характерный аромат ряда мускатных вин и рислингов. В процессе старения этих вин одноатомные спирты превращаются в двухатомные. По концентрации образовавшегося двухатомного спирта можно судить о степени старения вина.
К ароматическим относят спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, которые связаны друг с другом через атом углерода, например:
Если в молекулах органических соединений гидроксильные группы связаны непосредственно с атомом углерода бензольного кольца, например:
то такие соединения относят к другому классу органических соединений фенолам.
В лепестках розы (рис. 44) содержится ароматический фенилэтиловый спирт, формула которого Он является одним из основных компонентов розового масла и применяется в парфюмерии.
В зависимости от типа атома углерода, с которым связана гидроксильная группа, спирты классифицируют как первичные, вторичные, третичные.
Гидроксильная группа в молекулах первичных спиртов связана с первичным атомом углерода, в молекулах вторичных спиртов — с вторичным атомом углерода и в молекулах третичных спиртов — с третичным атомом углерода. Например:
Спирты — производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.
Спирты различают по числу гидроксильных групп (атомность спиртов), строению углеродного скелета, типу атома углерода, связанного с гидроксильной группой.
Насыщенные одноатомные спирты
Строение: Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу и содержатся только -связи.
В органической химии известно большое число насыщенных одноатомных спиртов, химический состав и строение которых выражается общей формулой В общем виде формула насыщенных одноатомных спиртов записывается где R — алкильная группа.
— общая формула, отражающая молекулярный состав насыщенных одноатомных спиртов.
Простейшим представителем данного класса спиртов является метанол молекулярная, структурная и электронная формулы которого:
Шаростержневая и масштабная модели молекулы метанола представлены на рисунке 45.
Так как электронное строение алканов и соответствующих им алкильных групп вами уже изучено, то при изучении спиртов — производных алканов — будет рассматриваться только электронное строение функциональной группы спиртов Именно эта группа определяет важнейшие химические и физические свойства спиртов.
В состав функциональной группы спиртов входит атом кислорода, который обладает большой электроотрицательностью и в силу этого оттягивает к себе электронную плотность -связей связанных с ним атомов водорода и углерода: По этой причине атом кислорода приобретает частичный отрицательный заряд, а атомы водорода и углерода — частичные положительные заряды: Связи полярны. Валентный угол СОН близок к 110°.
Номенклатура: По правилам номенклатуры ИЮПАК, названия насыщенных одноатомных спиртов образуются от названий соответствующих алканов с добавлением суффикса -ол. Например, — метанол, — этанол.
Систематическая номенклатура допускает употребление названий, связанных с названием алкильных групп, для низших членов ряда. Например, — метиловый спирт, — этиловый спирт.
В таблице 22 приведены названия первых десяти представителей гомологического ряда спиртов, у которых функциональная группа —ОН находится у первичного атома углерода, по номенклатуре ИЮПАК и тривиальные.
При названии спиртов с неразветвленной углеродной цепью, начиная с пропанола, цифрой указывается атом углерода, с которым связана гидроксильная группа. Нумерация углеродных атомов начинается с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к названию соответствующего алкана, цифрой указывается положение гидроксильной группы в цепи. Например:
Для названий спиртов с разветвленной углеродной цепью выбирают самую длинную цепь, содержащую функциональную гидроксильную группу, и нумеруют с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к назанию алкана, соответствующего самой длинной цепи, цифрой указываются атомы углерода, с которыми связана гидроксильная группа и заместители. Названия заместителей перечисляются в алфавитном порядке. Например:
Изомерия: Для насыщенных одноатомных спиртов характерна структурная изомерия. Структурная изомерия спиртов обусловлена изомерией углеродного скелета и изомерией положения гидроксильной группы. Первые два члена гомологического ряда — метанол и этанол — не имеют изомеров спиртов. Начиная с пропанола, число структурных изомеров в гомологическом ряду спиртов быстро возрастает. Например, бутанолы существуют в виде четырех изомеров, гептанолы — восьми, а деканолы — пятисот семидесяти шести.
Рассмотрим примеры изомеров спиртов состава В зависимости от строения углеродного скелета изомерами будут два спирта — производные бутана и 2-метилпропана:
В зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще два изомерных спирта:
Общее число структурных изомеров спиртов состава (за исключением стереоизомеров) равно четырем.
Физические свойства: Первые представители класса насыщенных одноатомных спиртов при комнатной температуре — жидкости. Высшие спирты (начиная с ) при комнатной температуре — твердые вещества. Следовательно, среди спиртов данного класса при нормальных условиях отсутствуют газообразные вещества.
Низшие спирты обладают характерным алкогольным запахом, запах спиртов, стоящих в середине гомологического ряда, сильный и часто неприятный, а высшие спирты (более ) практически не имеют запаха.
Низшие спирты () смешиваются с водой в любых соотношениях, средние — ограниченно. Следовательно, с увеличением относительной молекулярной массы растворимость спиртов в воде падает. В большинстве же органических растворителей все спирты растворимы.
Спирты обладают аномально высокими температурами кипения по сравнению с представителями алканов с приблизительно такой же относительной молекулярной массой. Например, температура кипения этанола 78,3 °С, а пропана -42,2 °С. В таблице 23 приводятся температуры кипения, плавления и агрегатное состояние некоторых спиртов.
Причиной отсутствия газообразных спиртов при нормальных условиях, а также более высоких температур кипения спиртов по сравнению с алканами с одинаковой относительной молекулярной массой являются межмолекулярные водородные связи, характерные для спиртов. Как отмечалось, связь в молекуле спирта сильно поляризована: На атоме водорода возникает частичный положительный заряд. В силу этого такой атом водорода может притягиваться неподеленной парой электронов атома кислорода другой молекулы спирта. Между молекулами спирта возникает межмолекулярная водородная связь. Таким образом, молекулы спиртов находятся в ассоциированном состоянии, как бы с увеличенной относительной молекулярной массой. Несмотря на то что энергии межмолекулярных водородных связей спиртов невелики, водородные связи обусловливают значительную ассоциацию молекул спиртов, что и ведет к росту теплоты испарения, а следовательно, и температуры кипения. Графически водородную связь принято обозначать тремя точками. Схема образования водородной связи между молекулами спирта показана на рисунке 46, а.
Образованием межмолекулярных водородных связей между молекулами спиртов и полярными молекулами воды (рис. 46, б) объясняется хорошая растворимость низших спиртов, в отличие от углеводородов, которые из-за малой полярности связей С—Н не образуют с водой водородных связей. С увеличением длины цепи алкильных групп растворимость спиртов понижается, и октанол уже не смешивается с водой.
Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу.
Общая формула насыщенных одноатомных спиртов
Структурная изомерия спиртов обусловлена строением углеродного скелета и различным положением гидроксильной группы при одинаковой углеродной цепи.
На физические свойства спиртов большое влияние оказывает водородная связь между молекулами спиртов или молекулами спиртов и воды в их растворах.
Химические свойства спиртов
Характерные реакции спиртов определяются наличием в составе их молекул гидроксильиой группы, атом кислорода которой смещает электронную плотность как от атома водорода, так и от атома углерода. Такая поляризация может способствовать разрыву связей . Атом водорода в гидроксильной группе за счет сильной поляризации связи становится более подвижным, способным отщепляться в виде протона. В этом случае спирты проявляют кислотные свойства. В то же время наличие в молекуле спирта атома кислорода, имеющего две неподеленные пары электронов, обусловливает проявление спиртами свойств оснований. Следовательно, спирты можно рассматривать как амфотерные соединения, которые могут проявлять как свойства кислот, так и свойства оснований. Спирты являются слабыми кислотами и в то же время основаниями средней силы.
Рассмотрим важнейшие химические свойства спиртов на примере алифатических насыщенных одноатомных спиртов.
Взаимодействие со щелочными металлами: При взаимодействии щелочных металлов со спиртами (рис. 47) происходит разрыв и замещение атомов водорода на атомы металла с образованием соединений алкоксидов (алкоголятов) и водорода:
Спирты — очень слабые электролиты, слабее даже, чем вода. Поэтому алкокеиды (алкоголяты) легко разлагаются водой:
При взаимодействии с металлами у спиртов проявляются кислотные свойства, но к классу кислот спирты не относят, так как степень их диссоциации незначительна. Поэтому спирты с водными растворами щелочей взаимодействуют обратимо.
Взаимодействие с карбоновыми и кислородсодержащими минеральными кислотами с образованием сложных эфиров.
В реакции с карбоновыми кислотами от молекулы спирта отщепляется атом водорода, а от молекулы карбоновой кислоты — гидроксильная группа с образованием молекулы воды. Реакция обратима, но равновесие смещается вправо в присутствии концентрированной серной кислоты и при выводе воды из зоны реакции:
В реакциях с кислородсодержащими минеральными кислотами спирты образуют сложные эфиры этих кислот:
Взаимодействие с галогеноводородами с образованием галогеналканов
В реакции с галогеноводородами в молекуле спирта происходит разрыв связи В результате реакции образуется галогеналкан. Уравнение реакции в общем виде выглядит так:
Данная реакция обратима. В этой реакции проявляются слабые основные свойства спирта.
При взаимодействии этанола с бромоводородом образуется бромэтан — тяжелая жидкость:
Внутримолекулярная дегидратация с образованием алкена
Первичные спирты дегидратируются под действием катализатора — концентрированной серной кислоты — при высоких температурах (выше 140 °С) с образованием алкена:
Реакция дегидратации обусловлена отщеплением водорода в виде протона и гидроксильной группы от соседних атомов углерода.
Например, в результате внутримолекулярного отщепления молекулы воды от молекулы этанола (под действием катализатора — концентрированной серной кислоты) образуется этен:
Реакции окисления
Спирты горят на воздухе или в кислороде некоптящим пламенем с выделением большого количества теплоты (рис. 48):
С более слабым, чем кислород, окислителем, например с оксидом меди(II), происходит частичное окисление спиртов, при этом первичные спирты окисляются до альдегидов.
Если в пробирку с этанолом опустить раскаленную скрученную в спираль медную проволоку, покрытую черным налетом оксида меди(II), то черный налет на проволоке исчезает. Спираль приобретает розово-красный цвет, при этом чувствуется неприятный запах образовавшегося альдегида:
Под действием таких окислителей, как подкисленный раствор перманганата калия или дихромата калия, первичные спирты окисляются до карбоновых кислот.
Кислотно-основные свойства насыщенных одноатомных спиртов обусловлены наличием в их молекулах функциональной гидроксильной группы.
Спирты взаимодействуют со щелочными металлами, галогеноводородами, карбоновыми и минеральными кислотами; вступают в реакции дегидратации и окисления.
Получение и применение спиртов
Получение: Для промышленного получения спиртов используют ненасыщенные углеводороды, извлекаемые из нефтепродуктов, или галогеналканы.
Познакомимся с основными общими промышленными и лабораторными способами получения насыщенных одноатомных спиртов и специфическими способами получения этанола и метанола.
1) Одним из наиболее важных общих промышленных способов получения спиртов является гидратация алкенов.
Этанол получают гидратацией этена водяными парами при повышенной температуре (280—300 °С), повышенном давлении (7—8 мПа) и в присутствии катализатора
Спирт, полученный из этена, называют синтетическим.
2) В пищевой промышленности этанол получают характерным только для него способом при спиртовом брожении глюкозы под действием ферментов, выделяемых некоторыми видами дрожжевых грибков:
Брожению подвергают виноградный сок, содержащий глюкозу, а также картофельный крахмал, который превращается в глюкозу под действием особого фермента. Этанол, полученный при ферментативном расщеплении различных пищевых продуктов, используют в основном для изготовления спиртных напитков.
В промышленности этанол производят гидролизным способом из древесных опилок, отходов целлюлозно-бумажной промышленности и т. д. Содержащуюся в древесине целлюлозу подвергают гидролизу с образованием глюкозы, которую далее подвергают брожению, и получают этанол, называемый гидролизным спиртом.
3) В промышленности метанол получают характерным только для него способом при взаимодействии водорода с угарным газом (СО) при повышенном давлении и высокой температуре в присутствии катализатора:
Смесь угарного газа и водорода, взятых в количественном соотношении 1 : 2, называют синтез-газом.
Историческое название метанола — древесный спирт. Оно указывает на старый способ получения спирта — сухую перегонку древесины твердых пород дерева (нагревание древесины без доступа воздуха).
Для получения спиртов в лаборатории используют галогеналканы.
При гидролизе моногалогеналканов с галогеном при первичном атоме углерода в водных растворах щелочей при нагревании образуются первичные спирты:
Гидролиз галогеналканов, проводимый в присутствии щелочи, является практически необратимым процессом и используется как общий метод получения первичных насыщенных спиртов в лаборатории.
Применение: Спирты находят широкое применение. В химической промышленности спирты — исходные вещества для разнообразных синтезов. Во многих производствах спирты применяют в качестве растворителей. Рассмотрим несколько примеров промышленного использования важнейших насыщенных одноатомных спиртов.
Метанол (метиловый спирт) используется в промышленном органическом синтезе при получении формальдегида, применяемого в производстве пластмасс, для синтеза некоторых лекарственных веществ.
Метанол — прекрасный растворитель для многих органических и неорганических веществ.
Необходимо знать, что метанол — сильнейший яд. Употребление даже нескольких граммов метанола приводит к слепоте, а затем и смерти. Вот поэтому на банках, в которых хранится этот спирт, используемый для технических нужд, имеется надпись: «Метанол — яд». Это должно служить серьезным предостережением при работе с ним.
Этанол (этиловый спирт) используется во многих отраслях промышленности: лакокрасочной, фармацевтической, взрывчатых веществ, бытовой химии, кондитерской и т. д. (рис. 49).
Этанол является исходным веществом в промышленном органическом синтезе (диэтиловый эфир, этилацетат и другие эфиры и т. д.), окислением этанола получают пищевую уксусную кислоту.
Спирт-ректификат, получаемый в промышленности, представляет собой смесь этанола (массовая доля 95,6 %) и воды (массовая доля 4,4 %). Безводный спирт называют абсолютным спиртом.
Следует помнить, что этанол — своего рода наркотик, возбуждающе действующий на организм человека. Даже небольшие дозы снижают остроту зрения, замедляют реакции и уменьшают способность здраво рассуждать. Длительное употребление спирта вызывает тяжелые заболевания нервной и сердечно-сосудистой систем, разрушение печени и приводит к преждевременной смерти.
В этанол, применяемый для технических целей, специально добавляют небольшие количества трудноотделяемых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют денатуратом. Употребление денатурата смертельно опасно.
Другие (низшие) спирты используются в качестве растворителей при изготовлении различных лаков и красок на предприятиях лакокрасочной промышленности, одним из которых является ОАО «Лакокраска» в Лиде.
Высшие спирты ( и более) используют во многих областях производства. Например, спирты состава используются для изготовления медицинских препаратов, — парфюмерно-косметической продукции, — антикоррозийной смазки.
Ненасыщенный аллиловый спирт применяется в производстве глицерина, аллиловых эфиров, использующихся в фармацевтической и парфюмерной промышленности.
В промышленном масштабе этанол получают гидратацией этена, гидролизным способом, в процессе спиртового брожения глюкозы.
Метанол в промышленных масштабах в основном получают из синтез-газа.
В лаборатории первичные насыщенные одноатомные спирты получают в процессе щелочного гидролиза моногалогеналканов.
Спирты используют для синтеза многих органических веществ.
Решение расчетных задач
В параграфе рассмотрены образцы решения задач таких типов, как расчеты по химическим уравнениям, если одно из реагирующих веществ взято в избытке, и определение молекулярных формул органических веществ на основании качественного и количественного состава.
Пример 1.
Определите массу бромэтана, полученного в реакции, для которой был взят этанол массой 5,98 г и бромоводород объемом (н. у.)
Решение
1. Общие формулы, используемые при расчетах:
2. Значения молярных масс веществ, молярный объем:
3. Определяем химические количества спирта и бромоводорода, взятых для реакции:
4. На основе анализа уравнения реакции определяем, какое из веществ взято в избытке, а затем рассчитываем химическое количество и массу продукта реакции:
Следовательно, спирт взят в избытке. Расчеты продукта реакции проводятся исходя из данных о химическом количестве хлороводорода:
Ответ:
Пример 2.
Массовая доля углерода в насыщенном одноатомном спирте равна 0,6. Определите молекулярную формулу спирта. Составьте структурные формулы возможных изомеров и назовите их по номенклатуре ИЮПАК.
Решение
1. Для решения задачи используем общую формулу и общую формулу насыщенных одноатомных спиртов Расчеты проводим, исходя из массы углерода в спирте химическим количеством 1 моль и массы спирта химическим количеством 1 моль.
2. Определяем формулу искомого спирта.
Общая формула следовательно, при молекулярная формула спирта —
Изомеры:
Ответ:
Пример 3.
В результате ряда последовательных реакций из алкана массой 69,6 г получен первичный насыщенный одноатомный спирт массой 88,8 г с тем же числом атомов углерода в молекуле, что и у алкана (алкан галогеналкан насыщенный одноатомный спирт). Определите молекулярную формулу спирта и составьте формулы структурных изомеров.
Решение
1. Из алкана химическим количеством 1 моль получают спирт химическим количеством 1 моль:
2. Разница масс взятого и полученного веществ равна 19,2 г (88,8 – 69,6). Разница молярных масс спирта и алкана равна 16, что хорошо видно при анализе общих формул алканов и насыщенных одноатомных спиртов:
— общая формула насыщенных одноатомных спиртов;
— общая формула алканов.
3. Используя общую формулу определяем химическое количество полученного спирта:
4. Зная химическое количество и массу спирта, определяем его молярную массу и молекулярную формулу:
Решая уравнение
Следовательно, молекулярная формула спирта — а структурные формулы возможных изомеров:
Ответ:
Пример 4.
При гидратации алкена массой 22,68 г получили вторичный насыщенный одноатомный спирт массой 32,40 г. Определите молекулярную формулу спирта, составьте структурную формулу и назовите спирт по номенклатуре ИЮПАК.
Решение
1. Анализ уравнения реакции гидратации, записанного в общем виде, показывает, что для гидратации алкена химическим количеством 1 моль требуется вода химическим количеством 1 моль. Следовательно, разница масс алкена и спирта и есть масса присоединенной воды:
2. Определяем химическое количество воды и спирта, далее молярную массу и молекулярную формулу спирта:
Следовательно,
Решая уравнение получим:
Молекулярная формула спирта — структурная формула — пропанол-2.
Ответ:
Пример 5.
Определите молекулярную формулу органического вещества, относительная плотность паров которого по гелию равна 22, если при сгорании его массой 19,36 г образовались углекислый газ объемом (н. у.) 2 и вода массой 23,76 г.
Решение
1. Определяем молярную массу неизвестного вещества, его химическое количество, а также химические количества образовавшихся оксида углерода (IV) и воды:
2. Проанализируем схему реакции горения вещества, предположив, что сожгли углеводород химическим количеством 1 моль. На основе данных о продуктах реакции рассчитаем количественный состав вещества:
Формула вещества —
3. Молярная масса вещества равна 72 г/моль, а молярная масса искомого вещества — 88 г/моль, разница молярных масс — 16 г/моль. Следовательно, в состав неизвестного вещества входил атомарный кислород химическим количеством 1 моль. Молекулярная формула вещества —
Ответ:
Многоатомные спирты
Строение: Производные углеводородов, в молекулах которых два и более атомов водорода у соседних атомов углерода замещены на гидроксильные группы, называют многоатомными спиртами.
Гидроксильные группы во всех устойчивых многоатомных спиртах связаны с соседними атомами углерода.
Простейшим представителем двухатомных спиртов (гликолей) является этиленгликоль, структурная формула которого:
Шаростержневая модель молекулы этиленгликоля приведена на рисунке 50, а.
Простейшим представителем трехатомных спиртов (глицеринов) является глицерин (от греч. glykeros — сладкий), структурная формула которого:
Шаростержневая модель молекулы глицерина приведена на рисунке 50, б.
На примере этих двух спиртов вы познакомитесь с основными характеристиками многоатомных спиртов.
Номенклатура: По номенклатуре ИЮНАК двухатомный спирт и трехатомный спирт называют этанциол-1,2 и про-яянтриол-1,2,3. Правилами ИЮПАК допускаются названия этиленгликоль и глицерин.
Физические свойства: Этиленгликоль и глицерин — бесцветные вязкие жидкости, тяжелее воды, неограниченно растворимы в воде, хорошо растворяются в этаноле. Эти свойства присущи и другим многоатомным спиртам.
Этиленгликоль ядовит, его водные растворы не кристаллизуются при низких температурах, что позволяет применять его как компонент незамерзающих жидкостей — антифризов. Глицерин имеет сладковатый вкус, гигроскопичен, нелетуч.
Впервые глицерин был получен из оливкового масла шведским химиком и фармацевтом К. Шееле в 1783 г.
Хорошая растворимость этиленгликоля и глицерина в воде объясняется наличием межмолекулярных водородных связей между молекулами спиртов и воды. Число таких связей больше, чем у одноатомных спиртов, из-за большего числа гидроксильных групп в молекулах.
Температуры кипения этих спиртов по сравнению с одноатомными спиртами с таким же числом атомов угелерода в молекуле намного выше:
Причиной более высоких температур кипения многоатомных спиртов является большее число межмолекулярных водородных связей между молекулами спиртов за счет большего числа гидроксильных групп в составе молекул.
Химические свойства: Для этиленгликоля и глицерина характерны все реакции одноатомных спиртов, обусловленные наличием функциональной группы —ОН, и особые свойства, обусловленные одновременным присутствием в молекуле нескольких гидроксильных групп.
1) Взаимодействие со щелочными металлами. Многоатомные спирты реагируют с активными металлами с образованием соединений, которые по аналогии с алкоголятами называют гликолятами и глицератами. Названия «гликоляты» и «глицераты» допускаются в номенклатуре ИЮНАК.
В реакциях могут участвовать одна или более гидроксильных групп. Многоатомные спирты, как и одноатомные, проявляют кислотные свойства в реакциях со щелочными металлами.
2) Взаимодействие с основаниями. В отличие от одноатомных спиртов, этиленгликоль и глицерин реагируют не только со щелочными металлами, но и с нерастворимыми гидроксидами тяжелых металлов. Такие реакции возможны для многоатомных спиртов, потому что из-за взаимного влияния гидроксильных групп в молекуле их кислотность выше, чем у одноатомных спиртов.
Если в стакан с раствором щелочи добавить несколько капель раствора сульфата меди(II) и к образовавшемуся гидроксиду меди(II) прилить многоатомный спирт, например глицерин, то образуется прозрачный раствор ярко-синего цвета (рис. 51). Цвет раствора обусловлен образованием комплексного соединения меди.
Реакция со свежеприготовленным гидроксидом меди(II) является качественной реакцией на многоатомные спирты с гидроксильными группами, находящимися у соседних атомов углерода. Из-за сложности строения образовавшегося глицерата меди уравнение реакции не приводится.
3) Образование сложных эфиров. Для многоатомных спиртов, как и для одноатомных, характерно образование сложных эфиров при взаимодействии с кислородсодержащими минеральными кислотами и карбоновыми кислотами. В частности, в реакции глицерина с избытком азотной кислоты в присутствии каталитических количеств серной кислоты образуется глицеринтринитрат, известный под названием нитроглицерин:
Название «нитроглицерин» относится к тривиальным названиям, оно не отражает строение вещества. Известно, что в химии к нитросоединениям относят вещества, в которых группа — непосредственно связана с атомом углерода.
Реакцию глицерина с карбоновыми кислотами е образованием сложных эфиров вы будете рассматривать при изучении темы «Жиры».
Получение: Двухатомные и трехатомные спирты можно получать теми же способами, что и одноатомные спирты. В качестве исходных веществ используются алкены и галогеналканы.
Лабораторные способы: Общим способом получения гликолей является окисление алкенов раствором перманганата калия в слабощелочной или нейтральной среде:
Этиленмиколь также получают гидролизом соответствующего дигалогеналкана:
Промышленные способы. Глицерин получают в процессе гидролиза жиров и синтетическим способом из пропена, образующегося при крекинге нефтепродуктов.
Этиленгликоль в промышленных масштабах получают гидратацией эпоксида который получают при окислении этилена в присутствии катализатора — серебра:
Применение: Этиленгликоль используют для синтеза полимерных материалов, синтетических волокон, например лавсана; в качестве антифризов (от анти — против и англ. freeze — морозить, замерзать) — жидкостей, добавляемых в воду, чтобы понизить температуру замерзания. Антифризы заливаются в системы охлаждения, в частности автомобильных двигателей. Температура замерзания антифриза с объемной долей этиленгликоля 52,5 % равна -40 °С. Этиленгликоль применяют для получения пластификаторов (смягчителей), используемых в лакокрасочной промышленности.
Применение глицерина основано на его гигроскопичности. Его используют для приготовления мазей, в кожевенном производстве — для предохранения кож от высыхания, в текстильной промышленности — для отделки тканей с целью придания им мягкости и эластичности и др. Глицерин применяют при изготовлении косметики, где он играет роль смягчающего и успокаивающего средства; как добавку к зубной пасте, клеям, чтобы предохранить их от быстрого высыхания; для приготовления антифризов.
Незамерзание клеточной жидкости иногда объясняют усиленной выработкой глицерина в растительных клетках.
Большое количество глицерина идет на получение нитроглицерина, который служит сырьем при производстве бездымных порохов и динамита.
Нитроглицерин токсичен, но в малых дозах используется как лечебное средство, так как расширяет кровеносные сосуды сердечной мышцы и тем самым улучшает кровоснабжение сердца.
Многоатомными спиртами называют производные углеводородов, в молекулах которых содержится несколько гидроксильных групп, связанных с соседними атомами углерода.
Многоатомные спирты взаимодействуют с активными металлами, щелочами, гидроксидами тяжелых металлов, кислородсодержащими неорганическими кислотами и карбоновыми кислотами.
Реакция с гидроксидом меди(II) используется для качественного обнаружения многоатомных спиртов.
Этиленгликоль применяют для получения синтетического волокна лавсан, в качестве антифриза; глицерин используется во многих отраслях промышленности.
- Фенолы в химии
- Альдегиды в химии
- Карбоновые кислоты в химии
- Сложные эфиры в химии
- Теория химического строения органических соединений А. М. Бутлерова
- Насыщенные углеводороды
- Ненасыщенные углеводороды
- Ароматические углеводороды
Гидроксисоединения – это органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
Гидроксисоединения делят на спирты и фенолы.
Строение, изомерия и гомологический ряд спиртов
Химические свойства спиртов
Способы получения спиртов
Если гидроксогруппа ОН соединена с бензольным кольцом, то вещество относится к фенолам.
Общая формула предельных нециклических спиртов: CnH2n+2Om, где m ≤ n.
Классификация спиртов
По числу гидроксильных групп:
- одноатомные спирты — содержат одну группу -ОН. Общая формула CnH2n+1OH или CnH2n+2O.
- двухатомные — содержат две группы ОН. Общая формула CnH2n(OH)2 или CnH2n+2O2.
- трехатомные спирты — содержат три группы ОН. Общая формула CnH2n-1(OH)3 или CnH2n+2O3.
Двухатомные спирты с двумя и тремя гидроксогруппами у одного атома углерода R‒CH(OH)2 или R-C(OH)3 неустойчивы, от них легко отрывается вода и образуется карбонильное соединение.
Классификация по числу углеводородных радикалов у атома углерода при гидроксильной группе
- Первичные спирты – группа ОН соединена с первичным атомом углерода. Например, этанол СН3–СН2–ОН.
- Вторичные спирты – группа ОН соединена с вторичным атомом углерода. Например, пропанол-2: СН3–СН(СН3)–ОН.
- Третичные спирты – группа ОН соединена с третичным атомом углерода. Например, 2-метилпропанол-2: (СН3)3С–ОН.
- Метанол не относится ни к первичным, ни к вторичным, ни к третичным спиртам.
Классификация по строению углеводородного радикала
- Предельные спирты – группа ОН соединена с предельным радикалом. Например, пропанол-1: СН3–СН2–СН2–ОН.
- Непредельные спирты – группа ОН соединена с непредельным радикалом. Например, алкенолы: СН2=СН–СН2–ОН.
Непредельные спирты, в которых гидроксильная группа соединена с атомом углерода при двойной связи (алкенолы), неустойчивы и изомеризуются в соответствующие карбонильные соединения.
- Ароматические спирты – содержат в радикале ароматическое кольцо, не связанное непосредственно с группой ОН. Например, бензиловый спирт.
Строение спиртов и фенолов
В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.
Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).
Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:
Атом кислорода в спиртах находится в состоянии sp3-гибридизации.
В образовании химических связей с атомами C и H участвуют две 2sp3-гибридные орбитали, а еще две 2sp3-гибридные орбитали заняты неподеленными электронными парами атома кислорода.
Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108о.
Водородные связи и физические свойства спиртов
Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:
Поэтому спирты – жидкости с относительно высокой температурой кипения (температура кипения метанола +64,5оС). Температуры кипения многоатомных спиртов и фенолов значительно выше.
Таблица. Температуры кипения некоторых спиртов и фенола.
Название вещества | Температура кипения |
Метанол | 64 |
Этанол | 78 |
Пропанол-1 | 92 |
Бутанол-1 | 118 |
Этиленгликоль | 196 |
Фенол | 181,8 |
Водородные связи образуются не только между молекулами спиртов, но и между молекулами спиртов и воды. Поэтому спирты очень хорошо растворимы в воде. Молекулы спиртов в воде гидратируются:
Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.
Низшие спирты (метанол, этанол, пропанол, изопропанол, этиленгликоль и глицерин) смешиваются с водой в любых соотношениях.
Номенклатура спиртов
- По систематической номенклатуре к названию углеводорода добавляют суффикс «-ОЛ» и цифру, указывающую номер атома углерода, к которому присоединена гидроксильная группа.
Нумерация ведется от ближайшего к ОН-группе конца цепи.
- По радикально-функциональной номенклатуре названия спиртов составляют от названий углеводородных радикалов, соединенных с группой ОН, с добавлением слова «спирт».
Например: СН3ОН – метиловый спирт, С2Н5ОН – этиловый спирт и т.д.
- В названиях многоатомных спиртов количество групп ОН указывают суффиксами -диол в при наличии двух ОН-групп, -триол при наличии трех ОН-групп и т.д. После этого добавляют номера атомов углерода, связанных с гидроксильными группами.
Например, пропандиол-1,2 (пропиленгликоль):
Изомерия спиртов
Структурная изомерия
Для спиртов характерна структурная изомерия – изомерия углеродного скелета, изомерия положения гидроксильной группы и межклассовая изомерия.
Структурные изомеры — это соединения с одинаковым составом, которые отличаются порядком связывания атомов в молекуле, т.е. строением молекул.
Изомеры углеродного скелета характерна для спиртов, которые содержат не менее четырех атомов углерода.
Например. Формуле С4Н9ОН соответствуют четыре структурных изомера, из них два различаются строением углеродного скелета
Межклассовые изомеры — это вещества разных классов с различным строением, но одинаковым составом. Спирты являются межклассовыми изомерами с простыми эфирами. Общая формула и спиртов, и простых эфиров — CnH2n+2О.
Например. Межклассовые изомеры с общей формулой С2Н6О этиловый спирт СН3–CH2–OH и диметиловый эфир CH3–O–CH3
Этиловый спирт | Диметиловый эфир |
СН3–CH2–OH | CH3–O–CH3 |
Изомеры с различным положением группы ОН отличаются положением гидроксильной группы в молекуле. Такая изомерия характерна для спиртов, которые содержат три или больше атомов углерода.
Например. Пропанол-1 и пропанол-2
Химические свойства спиртов
Спирты – органические вещества, молекулы которых содержат, помимо углеводородной цепи, одну или несколько гидроксильных групп ОН.
Химические реакции гидроксисоединений идут с разрывом одной из связей: либо С–ОН с отщеплением группы ОН, либо связи О–Н с отщеплением водорода. Это реакции замещения, либо реакции отщепления (элиминирования).
Свойства спиртов определяются строением связей С–О–Н. Связи С–О и О–Н — ковалентные полярные. При этом на атоме водорода образуется частичный положительный заряд δ+, на атоме углерода также частичный положительный заряд δ+, а на атоме кислорода — частичный отрицательный заряд δ–.
Такие связи разрываются по ионному механизму. Разрыв связи О–Н с отрывом иона Н+ соответствует кислотным свойствам гидроксисоединения. Разрыв связи С–О соответствует основным свойствам и реакциям нуклеофильного замещения.
С разрывом связи О–Н идут реакции окисления, а с разрывом связи С–О — реакции восстановления.
- слабые кислотные свойства, замещение водорода на металл;
- замещение группы ОН
- отрыв воды (элиминирование) – дегидратация
- окисление
- образование сложных эфиров — этерификация
1. Кислотные свойства
Спирты – неэлектролиты, в водном растворе не диссоциируют на ионы; кислотные свойства у них выражены слабее, чем у воды.
1.1. Взаимодействие с раствором щелочей
При взаимодействии спиртов с растворами щелочей реакция практически не идет, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.
Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому спирты не взаимодействуют с растворами щелочей.
Многоатомные спирты также не реагируют с растворами щелочей.
1.2. Взаимодействие с металлами (щелочными и щелочноземельными)
Спирты взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.
Например, этанол взаимодействует с калием с образованием этилата калия и водорода.
Видеоопыт взаимодействия спиртов (метанола, этанола и бутанола) с натрием можно посмотреть здесь.
Алкоголяты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.
Например, этилат калия разлагается водой:
CH3OH > первичные спирты > вторичные спирты > третичные спирты
Многоатомные спирты также реагируют с активными металлами:
Видеоопыт взаимодействия глицерина с натрием можно посмотреть здесь.
1.3. Взаимодействие с гидроксидом меди (II)
Многоатомные спирты взаимодействуют с раствором гидроксида меди (II) в присутствии щелочи, образуя комплексные соли (качественная реакция на многоатомные спирты).
Например, при взаимодействии этиленгликоля со свежеосажденным гидроксидом меди (II) образуется ярко-синий раствор гликолята меди:
Видеоопыт взаимодействия этиленгликоля с гидроксидом меди (II) можно посмотреть здесь.
2. Реакции замещения группы ОН
2.1. Взаимодействие с галогеноводородами
При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.
Например, этанол реагирует с бромоводородом.
Видеоопыт взаимодействия этилового спирта с бромоводородом можно посмотреть здесь.
третичные > вторичные > первичные > CH3OH.
Многоатомные спирты также, как и одноатомные спирты, реагируют с галогеноводородами.
Например, этиленгликоль реагирует с бромоводородом:
2.2. Взаимодействие с аммиаком
Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.
Например, при взаимодействии этанола с аммиаком образуется этиламин.
2.3. Этерификация (образование сложных эфиров)
Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры.
Например, этанол реагирует с уксусной кислотой с образованием этилацетата (этилового эфира уксусной кислоты):
Многоатомные спирты вступают в реакции этерификации с органическими и неорганическими кислотами.
Например, этиленгликоль реагирует с уксусной кислотой с образованием ацетата этиленгликоля:
2.4. Взаимодействие с кислотами-гидроксидами
Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.
Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат:
Например, глицерин под действием азотной кислоты образует тринитрат глицерина (тринитроглицерин):
3. Реакции замещения группы ОН
В присутствии концентрированной серной кислоты от спиртов отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.
3.1. Внутримолекулярная дегидратация
При высокой температуре (больше 140оС) происходит внутримолекулярная дегидратация и образуется соответствующий алкен.
Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен:
В качестве катализатора этой реакции также используют оксид алюминия.
Отщепление воды от несимметричных спиртов проходит в соответствии с правилом Зайцева: водород отщепляется от менее гидрогенизированного атома углерода.
Например, в присутствии концентрированной серной кислоты при нагревании выше 140оС из бутанола-2 в основном образуется бутен-2:
3.2. Межмолекулярная дегидратация
При низкой температуре (меньше 140оС) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.
Например, при дегидратации этанола при температуре до 140оС образуется диэтиловый эфир:
4. Окисление спиртов
Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).
В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.
Первичный спирт → альдегид → карбоновая кислота
Метанол → формальдегид → углекислый газ
Вторичные спирты окисляются в кетоны: вторичные спирты → кетоны
Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.
Легкость окисления спиртов уменьшается в ряду:
метанол < первичные спирты < вторичные спирты < третичные спирты
Продукты окисления многоатомных спиртов зависят от их строения. При окислении оксидом меди многоатомные спирты образуют карбонильные соединения.
4.1. Окисление оксидом меди (II)
Cпирты можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.
Например, этанол окисляется оксидом меди до уксусного альдегида
Видеоопыт окисления этанола оксидом меди (II) можно посмотреть здесь.
Например, пропанол-2 окисляется оксидом меди (II) при нагревании до ацетона
Третичные спирты окисляются только в жестких условиях.
4.2. Окисление кислородом в присутствии катализатора
Cпирты можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Первичные спирты окисляются до альдегидов, вторичные до кетонов, а метанол окисляется до метаналя.
Например, при окислении пропанола-1 образуется пропаналь
Видеоопыт каталитического окисления этанола кислородом можно посмотреть здесь.
Например, пропанол-2 окисляется кислородом при нагревании в присутствии меди до ацетона
Третичные спирты окисляются только в жестких условиях.
4.3. Жесткое окисление
При жестком окислении под действием перманганатов или соединений хрома (VI) первичные спирты окисляются до карбоновых кислот, вторичные спирты окисляются до кетонов, метанол окисляется до углекислого газа.
При нагревании первичного спирта с перманганатом или дихроматом калия в кислой среде может образоваться также альдегид, если его сразу удаляют из реакционной смеси.
Третичные спирты окисляются только в жестких условиях (в кислой среде при высокой температуре) под действием сильных окислителей: перманганатов или дихроматов. При этом происходит разрыв углеродной цепи и могут образоваться углекислый газ, карбоновая кислота или кетон, в зависимости от строения спирта.
Спирт/ Окислитель | KMnO4, кислая среда | KMnO4, H2O, t |
Метанол СН3-ОН | CO2 | K2CO3 |
Первичный спирт R-СН2-ОН | R-COOH/ R-CHO | R-COOK/ R-CHO |
Вторичный спирт R1-СНОН-R2 | R1-СО-R2 | R1-СО-R2 |
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ
Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота
Например, при взаимодействии изопропанола с перманганатом калия в серной кислоте образуется ацетон
4.4. Горение спиртов
Образуются углекислый газ и вода и выделяется большое количество теплоты.
CnH2n+1ОН + 3n/2O2 → nCO2 + (n+1)H2O + Q
Например, уравнение сгорания метанола:
2CH3OH + 3O2 = 2CO2 + 4H2O
5. Дегидрирование спиртов
При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола и первичных спиртов образуются альдегиды, при дегидрировании вторичных спиртов образуются кетоны.
Например, при дегидрировании этанола образуется этаналь
Например, при дегидрировании этиленгликоля образуется диальдегид (глиоксаль)
Получение спиртов
1. Щелочной гидролиз галогеналканов
При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.
Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол
Например, глицерин можно получить щелочным гидролизом 1,2,3-трихлорпропана:
2. Гидратация алкенов
Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.
Например, при взаимодействии этилена с водой образуется этиловый спирт.
Гидратация алкенов также протекает по ионному (электрофильному) механизму.
Для несимметричных алкенов реакция идёт преимущественно по правилу Марковникова.
Например, при взаимодействии пропилена с водой образуется преимущественно пропанол-2.
3. Гидрирование карбонильных соединений
Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.
Например, при гидрировании этаналя образуется этанол
Например: при гидрировании ацетона образуется изопропанол
Например, гидрирование диальдегида – один из способов получения этиленгликоля
4. Окисление алкенов холодным водным раствором перманганата калия
Алкены реагируют с водным раствором перманганата калия без нагревания. При этом образуются двухатомные спирты (гликоли).
5. Промышленное получение метанола из «синтез-газа»
Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.
Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:
CO + 2H2 ⇄ CH3OH
6. Получение этанола спиртовым брожением глюкозы
Для глюкозы характерно ферментативное брожение, то есть распад молекул на части под действием ферментов. Один из вариантов — спиртовое брожение.
7. Гидролиз жиров – способ получения многоатомных спиртов
Под действием кислоты жиры гидролизуются до глицерина и карбоновых кислот, которых входили в молекулу жира.
Например: при гидролизе тристеарата глицерина образуется глицерин и стеариновая кислота
При щелочном гидролизе жиров образуется глицерин и соли карбоновых кислот, входивших в состав жира.
Например: при щелочном гидролизе тристеарата глицерина образуется глицерин и соль стеариновой кислоты (стеарат)