Как найти молярность зная массовую долю

Пересчет массовой доли растворенного вещества в молярность раствора (и наоборот)

Для
пересчета массовой доли растворенного
вещества в молярность необходимо в
уравнениях (I)
массу растворенного вещества выразить
через его количество (моль), и массу
раствора – через его объем (л):
m(X)=n(X)×M(X)
и mр-ра
=
Vр-ра×р-ра,
тогда
получим:
w(X)
= n
×
M(X)/
Vр–ра×
ρр–ра
= c(X)×
M(X)/Vр–ра×
ρр–ра;

в
этом уравнении необходимо учесть
соответствие
единиц измерения плотности
(г/мл,
кг/л)
и молярной
массы (
г/моль),
тогда
получим
окончательное уравнение:

w(X)
= c(X)
×M(X)
/ 1000
ρ


(1.5)

w(X)%
= c(X)
×M(X)
/ 10
ρ

(1.6)

Пример
1.

Рассчитать молярность раствора серной
кислоты с массовой долей растворенного
вещества, w(H2SO4)
= 0,96 и плотностью 1,84 г/мл.

Решение:

1
способ:

w(H2SO4)
= m(H2SO4)/mр–ра,
c(H2SO4)
= n(H2SO4)/Vр–ра;

Для
расчета молярности раствора при заданной
массовой доле растворенного вещества
(или %) необходимо:

а)
рассчитать объем произвольной массы
(удобнее 100 г) этого раствора:

Vр–ра
=
m/ρ
= 100/1,84 ×1000
= 0,0544 л

б)
из w(X),
рассчитать массу, а
затем
количество (моль) содержащегося в этом

объеме
растворенного вещества:

в
100 г раствора содержится 96 г H2SO4,
тогда ее количество (моль):

n(H2SO4)
= m/M(H2SO4)
= 100/98 = 1,02 моль

в)
рассчитать молярность раствора:

c(H2SO4)
= n/Vр–ра
= 1,02/0,054 = 19 моль/л

Ответ:
c(H2SO4)
=
19 моль/л

2
способ:

Вывести
уравнение для пересчета w(H2SO4)
в c(H2SO4):

c(H2SO4)
= w(H2SO4)
×1000
ρ/M(H2SO4)
= 0,96×1000×1,84/98
=

=
18 моль/л
(или
18 М)

Пример
2
.
Имеется 2М раствор H2SO4
с
плотностью 1,12 г/мл;

рассчитать
w(H2SO4).

Решение.

1
способ:
c(H2SO4)
= n(H2SO4)/Vрра;
w(H2SO4)
= m(H2SO4)/mрра,

Для
расчета массовой доли (или %) растворенного
вещества при заданной молярности
раствора необходимо:

а)
рассчитать массу произвольного объема
(удобнее 1000 мл) этого раствора:

m
р–ра
=
Vр–ра
×ρр–ра
= 1000×1,12
= 1120 г

б)
из c(H2SO4)
= n/Vр–ра
рассчитать
количество (моль), а затем массу
содержащегося в нем растворенного
вещества:
в
1000 мл 2М раствора содержится

2
моль H2SO4
(равно молярности раствора, по определению);
тогда
m(H2SO4)
= 98×2
= 196 г

в)
рассчитать массовую долю H2SO4
в растворе:

w(H2SO4)
= m/mрра)
= 196/1120 = 0,175 (17,5%)

Ответ:
w(H2SO4)
=
0,175 или
17,5%

2
способ:

Вывести
уравнение для пересчета c(H2SO4)
в w(H2SO4):

w(H2SO4)
= c(H2SO4)
M(H2SO4)
/1000 ρ
=
2×98/1000×1,12
= 0,175

Обратите
внимание, что при смешивании индивидуальных
веществ или их растворов объем
полученного раствора,
как
правило, не
равен сумме объемов исходных копонентов
.
Чем сильнее меняется химическая природа
веществ при растворении, или чем больше
различаются по концентрации (плотности)
смешиваемые компоненты, тем больше
отличается объем полученного раствора
от суммы объемов исходных компонентов
или растворов (чаще он меньше этой
суммы). Складываются массы
компонентов, а объем полученного раствора
рассчитывается с учетом его плотности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Молярная концентрация

Основные понятия и определения

Под раствором в химии понимают твёрдую или жидкую однородную систему, состоящую из нескольких компонентов. Вещества образующие раствор разделяются на растворители и растворённые.

Например, сахар, находящийся в воде — такая смесь называется двухгомогенная. Если же в сахарную воду добавить уксус, то полученный раствор уже будет трёхгомогенный. Количество в смеси того или иного разжиженного компонента называется концентрацией. Изменяться она может в широких пределах.

Существует несколько способов выражения концентрации растворов:

Концентрация растворов

Моляльный раствор

  1. Массовый. Обозначается латинской буквой P и определяется количеством растворённого вещества в 100 граммах смеси. Для нахождения массовой концентрации используется формула: P = (n / (n + m)) * 100%, где: n — масса растворяемого вещества, m — масса растворителя, (n + m) — масса раствора. Сумма веществ выражается произведением объёма раствора на его плотность, то есть (n + m) = p * V и измеряется в граммах. Например, 25% раствор обозначает, что в 100 граммах смеси содержится 25 грамм вещества n.
  2. Молярный. Показывает количество моль разжиженного тела в одном кубическом дециметре. Обозначается характеристика латинскими символами Cb и находится из выражения: Cb = v моль / V дм³. То есть запись: 0,6 M NaCl будет означать, что 0,6 моль NaCl растворено в одном кубическом дециметре смеси.
  3. Эквивалентный. Способ ещё называется нормальным. Он так же как и молярный показывает количество растворённого вещества в дециметре кубическом, только используется моль эквивалента. Под последним понимается количество соединений с одним молем атома или замещения при прохождении реакций. Обозначается символом Cэ и находится по формуле Cэ = n / Mэкв * V дм³. Например, 0,1 HCl означает, что 0,1 моль эквивалента соляной кислоты содержится в 1 дм³ раствора.
  4. Моляльный. Используется, чтобы узнать, какое количество моль разжиженного вещества находится в килограмме растворителя. Моляльность рассчитывается с помощью формулы: Cm = (n*100) / (M * m).
  5. Титр раствора. Определяется количеством растворённого вещества, выраженного в одном сантиметре кубическом. Измеряется в граммах: Т = n / V см³.

Молярная масса и доли

Для измерения массы используются граммы, килограммы, тонны, но для обозначения количества вещества они не подходят. В химических процессах принимают участие различные частицы, такие как молекулы, атомы, ионы. Поэтому для того чтобы определить, сколько вещества содержится в той или иной смеси, ввели специальную единицу — моль. Иными словами — это множество, в котором объединены масса с числом.

Молекулы, атомы

Концентрация — это значение количества объёма раствора к растворенному в нём телу. Наиболее часто для измерения применяется массовая доля разжиженного вещества, молярная и нормальная концентрация. Массовая часть — это неизмеряемая величина. Складывается она из двух масс:

  • растворителя — вещества способного ослаблять другие тела;
  • растворимого — разжижающегося состава, поглощаемого растворителем.

Способность же вещества поглощаться другим называют растворимостью. При определении результата взаимодействия растворов находится массовая доля каждого из них.

Молярная масса показывает массу одного моль вещества и измеряется в граммах, делённых на моль. Если необходимо отмерить один моль, то нужно будет взять столько граммов вещества, сколько их содержится в относительной атомной массе или же, относительной молекулярной массе. Один моль всегда содержит постоянное число молекул, называемое константой Авогадро. Равно оно: N = 6 * 1023. Для того чтобы рассчитать число молекул в определённом веществе используют формулу:

Формула Молярная масса

N = Na * n, где Na — постоянная Авогадро, n — количество вещества. То есть моль — это количество в котором содержится 6 * 1023 молекул. Молярная концентрация определяет, сколько моль разжиженного вещества содержится в одном литре раствора.

Считается, что в единице объёма находится некая величина, определяемая числом молекул. Записывается это определение как n = N / V и называется концентрацией молекул. Измеряется она в м3. Важно отметить, что концентрация связана с плотностью соотношением: n = p / m0 и показывает число структурных молекул, находящихся в единице объёме. Поэтому плотность используется при нахождении массы на единицу объёма, а концентрация при вычислении количества молекул.

Массовая доля растворимого часто называется процентной концентрацией. При этом вместо процентного определения используется молярная концентрация. Другими словами, отношение количества к объёму в литрах. Зная число молей в одном литре довольно просто подобрать необходимое число молей используя специальную посуду.

Формулы перехода

Конвертация от массовой доли к молярной массе

Расчёт количества той или иной части концентрированной смеси, возможно, выполнить в различных единицах. Но между тем существуют формулы перехода от одних выражений к другим. При пересчёте происходит округление знака после запятой, поэтому при переходе с одной величины на другую появляется определённая погрешность.

Конвертация от массовой доли к молярной массе выполняется по формуле: Cb = (p * ɷb) / M (B), где: Cb — молярная концентрация, p — плотность, ɷb — массовая доля, M (B) — молярная масса. При этом когда плотность раствора изначально обозначается в грамм на миллилитр, а молярная в грамм на моль, то ответ необходимо умножить на 1 тыс. мл/л. Если же значение доли указано в процентах, то ответ необходимо разделить на 100%.

Для перехода от молярной к нормальной концентрации (молярной концентрации эквивалента), используется выражение: c * ((1 / z) * B) = Cb * z. Где молярность измеряется в моль на литр, а z — число эквивалентности (сопоставимое с одним молем катионов водорода в проходящей реакции). В определённых ситуациях выполняется и перевод массовой доли к титру. Выполняют это по формуле: T = p * ɷ, где p — плотность, измеряемая в граммах, делённых на миллилитры, а ɷ – массовая часть растворённого, в долях.

Перевести можно и молярность к титру.

Перевести можно и молярность к титру. Используют для этого следующую формулу перехода: Т = Cb * M, в которой М — молярная масса разжиженного вещества. В случае же когда концентрация выражается в моль на литр, а масса в грамм на моль, ответ нужно разделить на 1 тыс. миллилитров на литр. Молярность связана с моляльностью формулой: mb = Cb / p, где р — плотность раствора, измеряемая в граммах, делённых на миллилитры.

Самый же сложный перевод происходит при конвертации моляльности к мольной доле. Для решения такой задачи используется формула для мольного элемента: Yb = mb / (mb + 1/ M (A)). В выражении mb обозначает моляльность, а M (A) — молярную массу растворителя. Чтобы ответ получился в одинаковых единицах измерения, цифра один в формуле представляется как 1000 г/кг. Это необходимо, когда моляльность подставляется в моль на килограмм, а масса в грамм на моль.

Вычисление концентрации

Чтобы получить раствор, необходимо между собой смешать растворитель и растворимое. Для того чтобы вычислить концентрацию, нужно знать или найти общий объём смеси, который будет равен сумме элементов, используемых при создании раствора. Измеряться концентрация может в различных величинах. Основные из них:

  • грамм на литр (г/л) — отношение массы к объёму;
  • молярность (моль) — содержание растворенных элементов к объёму раствора;
  • миллионная часть (г / единица раствора) — соотношение растворённых веществ к одному миллиону единиц смеси;
  • проценты (%) — ответ выражается в количестве растворённой доли в граммах к ста частям раствора.

Найти молярность, характеризуемую числом доли растворенных элементов, зная массу и формулу вещества несложно. Если количество растворённой части задано в других единицах, то их преобразуют в граммы.

Вычисление концентрации

Каждый элемент характеризуется молярной массой и определяется отношением массы к числу моль. Равна она атомной массе, которую можно взять из таблицы Менделеева. Для нахождения молярной величины нужно сложить все атомные числа элементов, смешанных в растворе.

Найдя молекулярное значение можно перейти к вычислению количества молей. Делается это с помощью формулы для молярной концентрации: масса растворённого вещества умножается на обратную молярную часть. Результат должен получиться в моль. На следующем этапе находится молярность. Полученное число молей делится на объём, измеряемого в литрах раствора. Обычно объёмом растворённой части пренебрегают.

По аналогии вычисляется концентрация и в процентном составе. Для этого нужно найти массу частей, составляющих раствор. На первом этапе все единицы измерения переводятся в граммы. Находится плотность, затем она умножается на объём и получается масса вещества в граммах. Вычисление концентрации в процентном составе находится как масса растворённого вещества, делённая на сумму массы растворяемого и растворителя, а после результат умножается на сто.

Так как проценты являются сотой долей, то для получения ответа в миллионной доле результат нужно умножить ещё на 10 тысяч.

Примеры расчёта

Определение молярности раствора

Определением молярности раствора занимается химия. В процессах участвуют различные частицы, количество которых даже в малых объёмах велико. Значение молярной концентрации определяется не только количественным, но и качественным составом. Самые простые задачи связаны с нахождением молярной массы. Например, для соединения CH4 она наводится следующим образом:

Мr (CH4) = Ar + 4Ar (H) = 12 + 4 =16

Получается, что масса метана содержит 16 г/моль или 6,02Ч * 1023 молекул. Буква «Ч» используется для обозначения части.

Теперь можно найти массу в объёмном количестве. Например, нужно определить массу метана смешанном в количестве двух моль. Так как для метана его масса составляет 16 г/моль, то ответом будет:

м (метан) = 2 * 16 = 32 г

Много задач встречается на нахождение массовой доли в растворе. Например, в 200 грамм соли добавили 80 грамм воды. Чтобы определить часть соли в полученной смеси необходимо найти первоначальную её долю в растворе: M1 = w * m = 0,14 * 200 = 28 гамм. Затем вычислить массу нового раствора: М2 = 200 + 80 = 280 грамм. И воспользовавшись формулой получить ответ: W = M1 / M2 = 28 / 280 = 0,100.

Немного сложнее задачи на расчёт грамм-эквивалента. Пусть нужно найти нормальность серной кислоты, смешанной с раствором щёлочи. При смешении образуется соединение: NaSO4. Так как при реакции серная кислота нейтрализует гидросульфат натрия только частично то можно записать: Н2SO4 + NaOH = NaHSO4 + Н2О. Серная кислота представляет основу равную единице, поэтому и фактор эквивалентности также будет составлять единицу.

Экв (H2SO4) =1 * ф = 1/1 = 1

Отсюда следует, что значение молярности эквивалента кислоты:

Мэкв (H2SO4) = M * Ф = M/1 = 98/1 = 98 г/экв

Найти массовую часть и молярность эквивалента смеси,

Нужно найти массовую часть и молярность эквивалента смеси, полученной при смешивании 400 мл раствора серной кислоты (p =1, 18 г/мл) и 400 мл восьмипроцентного раствора серной кислоты (p = 1,05 г/мл).

Вначале следует вычислить массу первого раствора и содержание в нём серной кислоты:

m (р-ра) = p (р-ра) * V (р-ра) = 1,18 * 400 = 720 г

m (H2SO4) = V (H2SO4) * м (H2SO4)= С (H2SO4) * V (р-ра) * М (H2SO4) = 720 * 0,2 — 98 = 46 г

Затем определить массу второго раствора и содержание в нём количества серной кислоты:

m (р-ра) = р (р-ра) * V (р-ра) = 1,05 * 400 = 420 г

m = m (р-ра) * (H2SO4)= 420 * 0,08 = 24 г

Часть полученного раствора находится по формуле:

ɷ (H2SO4) = m (H2SO4) / m (р-ра) = (46 + 24) / (720+420) = 0,146

Ответ удобнее записать в процентном соотношении — 14,6%.

Существует множество способов измерить концентрацию раствора. Это так называемые способы выражения концентрации раствора.

Концентрация раствора — это количество вещества, находящегося в единице объема или массы раствора.

Что такое раствор

Среди окружающих нас веществ, лишь немногие представляют собой чистые вещества. Большинство являются смесями, состоящими из нескольких компонентов, которые могут находиться в одном или различных фазовых состояниях.

Смеси, имеющие однородный состав являются гомогенными, неоднородный состав – гетерогенными.

Иначе, гомогенные смеси, называют растворами, в которых одно вещество полностью растворяется в другом (растворителе). Растворитель – это тот компонент раствора, который при образовании раствора сохраняет свое фазовое состояние. Он обычно находится в наибольшем количестве.

Существуют растворы газовые, жидкие и твердые. Но более всего распространены жидкие растворы, поэтому, в данном разделе, именно на них мы сосредоточим свое внимание.

Концентрацию раствора можно охарактеризовать как:

  • качественную
  • количественную.

Качественная концентрация характеризуется такими понятиями, как разбавленный и концентрированный раствор.
С этой точки зрения растворы можно классифицировать на:

  • Насыщенные – растворы с максимально возможным количеством растворенного вещества. Количество растворяемого вещества, необходимое для получения насыщенного раствора определяет растворимость этого вещества.
  • Ненасыщенные – любые растворы, которые все еще могут растворять введенное вещество.
  • Пересыщенные – растворы, в которых растворено больше вещества, чем максимально возможное. Такие растворы очень нестабильны и в определенных условиях растворенное вещество будет выкристаллизовываться из него, до тех пор, пока не образуется насыщенный раствор.

Количественная концентрация выражается через молярную, нормальную (молярную концентрацию эквивалента), процентную, моляльную концентрации, титр и мольную долю.

Способы выражения концентрации растворов

Молярная концентрация растворов (молярность)

Наиболее распространенный способ выражения концентрации растворов –  молярная концентрация или молярность. Она определяется как количество молей n растворенного вещества в одном литре раствора V. Единица измерения молярной концентрации моль/л или моль ·л-1:

См = n/V

Раствор называют молярным или одномолярным, если в 1 литре раствора растворено 1 моль вещества,  децимолярным – растворено 0,1 моля вещества, сантимолярным — растворено 0,01 моля вещества, миллимолярным — растворено 0,001 моля вещества.

Термин «молярная концентрация» распространяется на любой вид частиц.

Вместо обозначения единицы измерения — моль/л, возможно такое ее обозначение – М, например, 0,2 М HCl.

Молярная концентрация эквивалента или нормальная концентрация растворов (нормальность).

Понятие эквивалентности мы уже вводили. Напомним, что эквивалент – это условная частица, которая равноценна по химическому действию одному иону водорода в кислотоно-основных реакциях или одному электрону в окислительно – восстановительных реакциях.

Например, эквивалент KMnO4 в окислительно – восстановительной реакции в кислой среде равен 1/5 (KMnO4).

Еще одно необходимое понятие — фактор эквивалентности – это число, обозначающее, какая доля условной частицы реагирует с 1 ионом водорода в данной  кислотоно-основной реакции или с одним электроном в данной окислительно – восстановительной реакции.

Он может быть равен 1 или быть меньше 1. Фактор эквивалентности, например, для KMnO4 в окислительно – восстановительной реакции в кислой среде составляет  fэкв(KMnO4) = 1/5.

Следующее понятие – молярная масса эквивалента вещества х. Это масса 1 моля эквивалента этого вещества, равная произведению фактора эквивалентности на молярную массу вещества х:

Мэ = fэкв· М(х)

Молярная концентрация эквивалента (нормальность) определяется числом молярных масс эквивалентов на 1 литр раствора.

Эквивалент определяется в соответствии с типом рассматриваемой реакции. Единица измерения нормальной концентрации такая же как и у молярной концентрации — моль/л или моль·л-1

Сн = nэ/V

Для обозначения нормальной концентрации допускается сокращение  «н» вместо «моль/л».

Процентная концентрация раствора или массовая доля

Массовая концентрация показывает сколько единиц массы растворенного вещества содержится в 100 единицах массы раствора.

Это отношение массы m(х) вещества x к общей массе m раствора или смеси веществ:

ω(х) = m(х)/m

Массовую долю выражают в долях от единицы или процентах.

Моляльная концентрация раствора

Моляльная концентрация раствора b(x) показывает количество молей n растворенного вещества х в 1 кг. растворителя m. Единица измерения моляльной концентрации — моль/кг :

b(x) = n(x)/m

Титр раствора

Титр раствора показывает массу растворенного вещества х, содержащуюся в 1 мл. раствора. Единица измерения титра — г/мл:

Т(х) = m(х)/V,

Мольная или молярная доля

Мольная или молярная доля α(х) вещества х в растворе равна отношению количества данного вещества n(х) к общему количеству всех веществ, содержащихся в растворе Σn:

α(х) = n(х)/Σn

Между приведенными способами выражения концентраций существует взаимосвязь, которая позволяет, зная одну единицу измерения концентрации  найти (пересчитать) ее в другие единицы. Существуют формулы, позволяющие провести такой пересчет, которые, в случае необходимости, вы сможете найти в сети.  В разделе задач показано, как произвести такой пересчет, не зная формул.

Пример перевода процентной концентрации в молярную, нормальную концентрацию, моляльность, титр

Дан раствор объемом 2 л с массовой долей FeSO2% и плотностью 1029 кг/м3. Определить молярность, нормальность, моляльность и титр этого раствора раствора.

Решение.

1. Рассчитать молярную массу FeSO4:

M (FeSO4) =
56+32+16·4 = 152 г/моль

2. Рассчитать молярную массу эквивалента:

Мэ = fэкв·
М(FeSO4) = 1/2·152
= 76 г/моль

3. Найдем m раствора объемом 2 л

m = V·ρ = 2·10-3 ·1029
= 2,06 кг

4. Найдем массу 2 % раствора по формуле:

m(FeSO4) = ω(FeSO4) · mр-ра 

m(FeSO4) =
0,02·2,06 = 0,0412 кг = 41,2 г

5. Найдем молярность, которая определяется как количество молей растворенного вещества в одном литре раствора:

n = m/М

n = 41,2/152 = 0,27 моль

См = n/V

См  = 0,27/2 = 0,135 моль/л

6. Найдем нормальность:

nэ = m/Мэ

nэ = 41,2/76 = 0,54 моль

Сн = nэ/V

Сн = 0,54/2 = 0,27 моль/л

7. Найдем моляльность раствора. Моляльная концентрация равна:

b (x) = n(x)/m

Масса растворителя, т.е.
воды в растворе равна:

mH2O = 2,06-0,0412
=  2,02 кг

b
(FeSO4) = n(FeSO4)/m = 0,27/2,02 = 0,13 моль/кг

8. Найдем титр раствора, который показывает какая масса вещества содержится в 1 мл раствора:

Т(х) = m (х)/V

Т(FeSO4) = m (FeSO4)/V = 41,2/2000 = 0,0021 г/мл

Еще больше задач приведены в разделе Задачи: Концентрация растворов, Правило креста

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

Large w_{i}=frac{m_{i}}{m}, ;;;;;(1)

где Large w_{i} — массовая доля компонента i в смеси,

Large m_{i} — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть Large m_{i} по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

Large m = m_{п}+m_{с}= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

Large w_{с} = frac{m_{с}}{m} = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно Large m_{1} и Large m_{2}. Массу полученного после смешения раствора обозначим Large m и найдём:

Large m = m_{1} + m_{2} = 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим Large m_{гл. 1} и Large m_{гл. 2}. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

Large m_{гл. 1} = w_{1}cdot m_{1} = 0.25 cdot 200 г = 50 г

Large m_{гл. 2} = w_{2}cdot m_{2} = 0.1 cdot 300 г = 30 г

Таким образом, общая масса глюкозы Large m_{гл}:

Large m_{гл} = m_{гл. 1} + m_{гл. 2} = 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

Large phi_{B}=frac{V_{B}}{sum{V_{i}}}, ; ;;;; (2)

где Large phi_{B} — объёмная доля компонента B;

Large V_{B} — объём компонента B;

Large sum{V_{i}} — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Large phi_{H_{2}SO_{4}} = frac{V_{ H_{2}SO_{4} }} { V_{ H_{2}SO_{4}} + V_{H_{2}O}} = frac{1 : объём}{1 : объём + 6 : объёмов} = frac{1 : объём}{7 : объёмов} = 0.143, : или : 14.3%

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

Large 100% – 21% – 1% = 78%.

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

Large x_{B} = frac{n_{B}}{sum{n_{i}}}, ;;;;;(3)

где Large x_{B} — мольная доля компонента B;

Large n_{B} — количество компонента B, моль;

Large sum{n_{i}} — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Large n_{N_{2}} = frac{ m_{N_{2}}}{M_{N_{2}}} = frac {3000 : г}{28 : ^г/_{моль}} = 107.14 : моль

Large n_{O_{2}} = frac{ m_{O_{2}}}{M_{O_{2}}} = frac {1000 : г}{32 : ^г/_{моль}} = 31.25 : моль

Large n_{He} = frac{ m_{He}}{M_{He}} = frac {500 : г}{4 : ^г/_{моль}} = 125 : моль

Затем считаем сумму количеств:

Large sum {n} = 107.14 : моль + 31.25 : моль + 125 : моль = 263.39 : моль

И находим мольную долю каждого компонента:

Large y_{N_{2}} = frac {107.14 : моль}{263.39 : моль} = 0.4068, : или : 40.68 %;

Large y_{O_{2}} = frac {31.25 : моль}{263.39 : моль} = 0.1186, : или : 11.86 %;

Large y_{He} = frac {125 : моль}{263.39 : моль} = 0.4746, : или : 47.46 %;

Проверяем:

Large 40.68 % + 11.86 % + 47.46 % = 100%.

И радуемся правильному решению.

Ответ: 40.68%, 11.86% , 47.46%.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na+] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

Large c_{B} = frac{n_{B}}{V} ; ; ;;; (4)

где Large n_{B} — количество вещества компонента B, моль;

Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Large n_{сахарозы} = frac{24 : г}{342 : г/моль} = 0.0702 моль

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Large c_{сахарозы} = frac{0.0702 : моль}{0.568 : л} = 0.1236 моль/л

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

Large c_{N} = z cdot c_{B} = z cdot frac{n_{B}}{V}= frac{1}{f_{eq}} cdot frac {n_{B}}{V} ; ;;;; (5)

где Large n_{B} — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности Large f_{eq} = 1/z ).

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Large n_{KMnO_{4}}=frac{m _{KMnO_{4}}}{M _{KMnO_{4}} } = frac{40 : г}{158 г/моль}= 0.253 моль

Теперь считаем нормальную концентрацию:

Large c_{N_{KMnO_{4}}}= z cdot frac{n_{KMnO_{4}}}{V} = 3 cdot frac{0.253 : моль}{1 : л} = 0.759 моль-экв/л

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

Large m_{B} = frac{n_{B}}{m_{A}}, ;;;;; (6)

где Large n_{B} — количество вещества компонента B, моль;

Large m_{A} — масса растворителя, кг.

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

Large rho_{B}=frac{m_{B}}{V}, ;;;;; (7)

где Large m_{B} — масса растворенного вещества, г;

Large V — общий объём смеси, л.

В системе СИ выражается в кг/м3.

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Large rho_{ KMnO_{4} }=frac{m_{ KMnO_{4} }}{V} =frac{40 : г}{1 : л} = 40 г/л.

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Массовая доля, large omega, % Мольная доля, large x , % Объёмная доля, large phi, % Молярная концентрация, large c, моль/л Нормальная концентрация, large c_{N} , моль-экв/л Моляльная концентрация, large m, моль/кг Массовая концентрация, large rho, г/л
Массовая доля, large omega, % = large omega_{B}=LARGE frac{x_{B} cdot M(B)}{sum x_{i} cdot M_{i}} Для газов:
omega = LARGE frac{phi_{A} cdot M(A)}{sum (M_{i} cdot phi_{i})}
large omega_{B}= LARGE frac{c_{B} cdot M(B)}{rho} large omega_{B}=LARGE frac{c_{N} cdot M(B)}{rho cdot z} large omega_{B}= LARGE frac{gamma_{B}}{rho}
Мольная доля, large x , % large x_{B}=LARGE frac{frac{omega_{B}}{M(B)}}{sum frac{omega_{i}}{M_{i}}} = large x_{B}=LARGE frac{m_{B}}{m_{B}+frac{1}{M(A)}}
Объёмная доля, large phi, % Для газов:
large phi_{A}=LARGE frac{frac{omega_{A}}{M(A)}}{sum frac{omega_{i}}{M_{i}}}
=
Молярная концентрация, large c, моль/л large c_{B}=LARGE frac{rho cdot omega_{B}}{M(B)} = large c_{B}=Large frac{c_{N}}{z}
Нормальная концентрация, large c_{N} , моль-экв/л large c_{N}=LARGE frac{rho cdot omega_{B} cdot z}{M(B)} large c_{N}=c_{B} cdot z =
Моляльная концентрация, large m, моль/кг large m_{B}=Large frac{x_{B}}{M(A)(1-x_{B})} =
Массовая концентрация, large gamma, г/л large gamma_{B}=rho cdot omega_{B} =

Таблица будет пополняться.

Концентра́ция или до́ля компонента смеси — величина, количественно характеризующая содержание компонента относительно всей смеси. Терминология ИЮПАК под концентрацией компонента понимает четыре величины: соотношение молярного, или численного количества компонента, его массы, или объёма исключительно к объёму раствора[1] (типичные единицы измерения — соответственно моль/л, л−1, г/л, и безразмерная величина). Долей компонента ИЮПАК называют безразмерное соотношение одной из трёх однотипных величин — массы, объёма или количества вещества.[2] Однако в обиходе термин «концентрация» могут применять и для долей, не являющихся объёмными долями, а также к соотношениям, не описанным ИЮПАК. Оба термина могут применяться к любым смесям, включая механические смеси, но наиболее часто применяются к растворам.

Можно выделить несколько типов математического описания: массовая концентрация, молярная концентрация, концентрация частиц и объемная концентрация[3].

Эти стаканы, содержащие красный краситель, демонстрируют качественные изменения концентрации. Растворы слева более разбавлены, по сравнению с более концентрированными растворами справа.

Массовая доля[править | править код]

Массовая доля

определение Массовая доля компонента — отношение массы данного компонента к сумме масс всех компонентов.
обозначение w — по рекомендациям ИЮПАК[4].

omega — чаще в русскоязычной литературе.

В технической литературе:

{displaystyle {bar {x}}} — для массовой доли жидкой смеси

{displaystyle {bar {y}}} — для массовой доли газовой смеси

единицы измерения доли,

%масс (для выражения в %масс следует умножить указанное выражение на 100 %)

формула {displaystyle omega _{mathrm {B} }={frac {m_{mathrm {B} }}{m}}}где:

  • ωB — массовая доля компонента B
  • mB — масса компонента B;
  • m — общая масса всех компонентов смеси.

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят два измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры (денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Объёмная доля[править | править код]

Объёмная доля

определение Объёмная доля — отношение объёма компонента к сумме объёмов компонентов до смешивания.
обозначение {displaystyle phi _{mathrm {B} }}
единицы измерения доли единицы,

%об (ИЮПАК не рекомендует добавлять дополнительные метки после знака %)

формула
{displaystyle phi _{mathrm {B} }={frac {V_{mathrm {B} }}{sum V_{i}}}},

где:

  • {displaystyle phi _{mathrm {B} }} — объёмная доля компонента B,
  • VB — объём компонента B;
  • {displaystyle sum V_{i}} — сумма объёмов всех компонентов до смешивания.

При смешивании жидкостей их суммарный объём может уменьшаться, поэтому не следует заменять сумму объёмов компонентов на объём смеси.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)[править | править код]

Молярная концентрация (молярность, мольность[5])

определение Молярность — количество вещества (число молей) компонента в единице объёма смеси.
обозначение По рекомендации ИЮПАК, обозначается буквой c или {displaystyle [B]}, где B — вещество, концентрация которого указывается.[6]
единицы измерения В системе СИ — моль/м³

На практике чаще — моль/л или ммоль/л.
Также используют выражение «в молярности». Возможно другое обозначение молярной концентрации, которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным, записывают «0,5 M».

Примечание: После числа пишут «моль», подобно тому, как после числа пишут «см», «кг» и т. п., не склоняя по падежам.

формула
{displaystyle {c_{mathrm {B} }}={frac {n_{mathrm {B} }}{V}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество вещества компонента, моль;
  • V — общий объём смеси, л

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)[править | править код]

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

определение Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси.
обозначение {displaystyle C_{N}(B)}, {displaystyle C_{H}(B)}, {displaystyle c(f_{eq}~mathrm {B} )}
единицы измерения Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н» или «N». Например, раствор, содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н.
формула
{displaystyle c(f_{eq}~mathrm {B} )=c{big (}(1/z)~mathrm {B} {big )}=zcdot c_{mathrm {B} }=zcdot {frac {n_{mathrm {B} }}{V}}={frac {1}{f_{eq}}}cdot {frac {n_{mathrm {B} }}{V}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество вещества компонента, моль;
  • V — общий объём смеси, литров;
  • z — число эквивалентности (фактор эквивалентности f_{{eq}}=1/z).

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H2SO4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата калия KHSO4, и двухнормальным в реакции с образованием K2SO4.

Мольная (молярная) доля[править | править код]

Мольная (молярная) доля

определение Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов.
обозначение ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y)[7], также в литературе встречаются обозначения chi , X.
единицы измерения Доли единицы или %мольн (ИЮПАК не рекомендует добавлять дополнительные метки после знака %)
формула
{displaystyle x_{mathrm {B} }={frac {n_{mathrm {B} }}{sum n_{i}}}}, где:
  • {displaystyle x_{mathrm {B} }} — мольная доля компонента B;
  • {displaystyle n_{mathrm {B} }} — количество компонента B, моль;
  • sum n_{i} — сумма количеств всех компонентов.

Мольная доля может использоваться, например, для количественного описания уровня загрязнений в воздухе, при этом её часто выражают в частях на миллион (ppm — от англ. parts per million). Однако, как и в случае с другими безразмерными величинами, во избежание путаницы, следует указывать величину, к которой относится указанное значение.

Моляльность (молярная весовая концентрация, моляльная концентрация)[править | править код]

Моляльная концентрация (моляльность,[5] молярная весовая концентрация) 

определение Моляльная концентрация (моляльность,[5] молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.
обозначение mПримечание: чтобы не путать с массой, в тех формулах где применяется моляльность, массу обозначают как g
единицы измерения моль/кг.

Также распространено выражение в «моляльности». Так, раствор с концентрацией 0,5 моль/кг называют 0,5-мольным.

формула
{displaystyle {m_{mathrm {B} }}={frac {n_{mathrm {B} }}{m_{mathrm {A} }}}},

где:

  • {displaystyle n_{mathrm {B} }} — количество растворённого вещества, моль;
  • {displaystyle m_{mathrm {A} }} — масса растворителя, кг.

Следует обратить особое внимание, что, несмотря на сходство названий, молярная концентрация и моляльность — величины различные. Прежде всего, в отличие от молярной концентрации, при выражении концентрации в моляльности расчёт ведут на массу растворителя, а не на объём раствора. Моляльность, в отличие от молярной концентрации, не зависит от температуры.

Массовая концентрация (Титр)[править | править код]

Массовая концентрация (Титр)

определение Массовая концентрация — отношение массы растворённого вещества к объёму раствора.
обозначение gamma или rho — по рекомендации ИЮПАК[8].

T — в аналитической химии

единицы измерения доли,

%масс (для выражения в %масс следует умножить указанное выражение на 100 %)

формула
{displaystyle rho _{mathrm {B} }={frac {m_{mathrm {B} }}{V}}}.

где:

  • {displaystyle m_{mathrm {B} }} — масса растворённого вещества;
  • V — общий объём раствора;

В аналитической химии используется понятие титр по растворённому или по определяемому веществу (обозначается буквой T).

Концентрация частиц[править | править код]

определение Концентрация частиц — отношение числа частиц N к объёму V, в котором они находятся
обозначение C — по рекомендации ИЮПАК[9].

однако также часто встречается обозначение n (не путать с количеством вещества).

единицы измерения м−3 — в системе СИ,

1/л

формула
{displaystyle C_{mathrm {B} }={frac {N_{mathrm {B} }}{V}}={frac {n_{mathrm {B} }cdot N_{mathrm {A} }}{V}}=c_{mathrm {B} }cdot N_{mathrm {A} }},

где:

  • {displaystyle N_{mathrm {B} }} — количество частиц,
  • V — объём,
  • {displaystyle {ce {n_{mathrm {B} }}}} — количество вещества B,
  • {displaystyle N_{mathrm {A} }} — постоянная Авогадро,
  • {displaystyle c_{mathrm {B} }} — молярная концентрация B.

Весообъёмные (массо-объёмные) проценты[править | править код]

Иногда встречается использование так называемых «весообъёмных процентов»[10], которые соответствуют массовой концентрации вещества, где единица измерения г/(100 мл) заменена на процент. Этот способ выражения используют, например, в спектрофотометрии, если неизвестна молярная масса вещества или если неизвестен состав смеси, а также по традиции в фармакопейном анализе.[11] Стоит отметить, что поскольку масса и объём имеют разные размерности, использование процентов для их соотношения формально некорректно. Также международное бюро мер и весов[12] и ИЮПАК[13] не рекомендуют добавлять дополнительные метки (например «% (m/m)» для обозначения массовой доли) к единицам измерения.

Другие способы выражения концентрации[править | править код]

Существуют и другие, распространённые в определённых областях знаний или технологиях, методы выражения концентрации. Например, при приготовлении растворов кислот в лабораторной практике часто указывают, сколько объёмных частей воды приходится на одну объёмную часть концентрированной кислоты (например, 1:3). Иногда используют также отношение масс (отношение массы растворённого вещества к массе растворителя) и отношение объёмов (аналогично, отношение объёма растворяемого вещества к объёму растворителя).

Применимость способов выражения концентрации растворов, их свойства[править | править код]

В связи с тем, что моляльность, массовая доля, мольная доля не включают в себя значения объёмов, концентрация таких растворов остаётся неизменной при изменении температуры. Молярность, объёмная доля, титр, нормальность изменяются при изменении температуры, так как при этом изменяется плотность растворов. Именно моляльность используется в формулах повышения температуры кипения и понижения температуры замерзания растворов.

Разные виды выражения концентрации растворов применяются в разных сферах деятельности, в соответствии с удобством применения и приготовления растворов заданных концентраций. Так, титр раствора удобен в аналитической химии для волюмометрии (титриметрического анализа) и т. п.

Формулы перехода от одних выражений концентраций к другим[править | править код]

В зависимости от выбранной формулы погрешность конвертации колеблется от нуля до некоторого знака после запятой.

От молярности к нормальности[править | править код]

{displaystyle {c((1/z)~mathrm {B} )}={c_{mathrm {B} }}cdot {z}},

где:

От молярности к титру[править | править код]

{displaystyle {T}={c_{mathrm {B} }}cdot {M}},

где:

  • {displaystyle {c_{mathrm {B} }}} — молярная концентрация;
  • M — молярная масса растворённого вещества.

Если молярная концентрация выражена в моль/л, а молярная масса — в г/моль, то для выражения ответа в г/мл его следует разделить на 1000 мл/л.

От массовой доли к молярности[править | править код]

{displaystyle c_{mathrm {B} }={frac {rho cdot omega _{mathrm {B} }}{M(mathrm {B} )}}},

где:

Если плотность раствора выражена в г/мл, а молярная масса в г/моль, то для выражения ответа в моль/л выражение следует домножить на 1000 мл/л. Если массовая доля выражена в процентах, то выражение следует также разделить на 100 %.

От массовой доли к титру[править | править код]

{displaystyle {T}={rho }cdot {omega }},

где:

От моляльности к молярности[править | править код]

{displaystyle {c_{mathrm {B} }}=m_{mathrm {B} }{frac {mathrm {m} (A)}{V}}}

где:

  • {displaystyle m_{mathrm {B} }} — моляльность,
  • {displaystyle mathrm {m} (A)} — масса растворителя,
  • V — суммарный объём раствора,

От моляльности к мольной доле[править | править код]

{displaystyle x_{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M(mathrm {A} )}}}}},

где:

  • {displaystyle m_{mathrm {B} }} — моляльность,
  • {displaystyle M(mathrm {A} )} — молярная масса растворителя.

Если моляльность выражена в моль/кг, а молярная масса растворителя в г/моль, то единицу в формуле следует представить как 1000 г/кг, чтобы слагаемые в знаменателе имели одинаковые единицы измерения.

Сводная таблица[править | править код]

Формулы перехода от одних выражений концентраций к другим

ωB φB xB cB CB mB TB
массовая доля г/г ωB {displaystyle omega _{mathrm {B} }={frac {mathrm {m} (B)}{mathrm {m} }}} {displaystyle omega _{mathrm {B} }=phi _{mathrm {B} }{frac {rho (B)}{rho }}} {displaystyle omega _{B}={frac {1}{{frac {M_{mathrm {A} }}{M_{mathrm {B} }}}({frac {1}{x_{mathrm {B} }}}-1)+1}}} {displaystyle omega _{B}={frac {M_{B}cdot c_{mathrm {B} }}{rho }}} {displaystyle omega _{B}={frac {M_{B}cdot c_{mathrm {B} }}{rho cdot N_{A}}}} {displaystyle omega _{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M_{B}}}}}} {displaystyle omega _{B}={frac {T_{B}}{rho }}}
объёмная доля л/л φB {displaystyle phi _{mathrm {B} }={frac {omega _{B}}{rho (B)/rho }}} {displaystyle phi _{mathrm {B} }={frac {V_{mathrm {B} }}{V}}}
мольная доля моль/моль xB {displaystyle x_{mathrm {B} }={frac {1}{{frac {M_{mathrm {B} }}{M_{mathrm {A} }}}({frac {1}{omega _{B}}}-1)+1}}} {displaystyle x_{mathrm {B} }={frac {n_{mathrm {B} }}{n}}} {displaystyle x_{mathrm {B} }={frac {c_{mathrm {B} }cdot V}{n}}} {displaystyle x_{mathrm {B} }={frac {m_{mathrm {B} }}{m_{mathrm {B} }+{frac {1}{M_{A}}}}}}
молярность моль/л cB {displaystyle c_{mathrm {B} }={frac {rho cdot omega _{B}}{M_{B}}}} {displaystyle c_{mathrm {B} }={frac {x_{mathrm {B} }cdot n}{V}}} {displaystyle {c_{mathrm {B} }}={frac {n_{mathrm {B} }}{V}}} {displaystyle {c_{mathrm {B} }}=m_{mathrm {B} }{frac {mathrm {m} (A)}{V}}}
нормальность моль-экв/л c((1/z) B) {displaystyle c((1/z)~mathrm {B} )={frac {rho cdot omega _{B}}{M_{B}}}cdot z} {displaystyle {c((1/z)~mathrm {B} )}={c_{mathrm {B} }}cdot {z}}
концентрация частиц 1/л CB {displaystyle C_{mathrm {B} }={frac {rho cdot omega _{B}}{M_{B}}}cdot N_{A}} {displaystyle C_{mathrm {B} }=c_{mathrm {B} }cdot N_{mathrm {A} }} {displaystyle C_{mathrm {B} }={frac {N_{mathrm {B} }}{V}}}
моляльность моль/кгр-ля mB {displaystyle m_{mathrm {B} }={frac {omega _{B}}{M_{B}(1-omega _{B})}}} {displaystyle {m_{mathrm {B} }}={frac {n_{mathrm {B} }}{mathrm {m} (A)}}}
титр г/мл TB {displaystyle {T_{B}}={rho }cdot {omega _{B}}} {displaystyle {T_{B}}={c_{mathrm {B} }}cdot {M}} {displaystyle T_{mathrm {B} }={frac {mathrm {m} (B)}{V}}}
  • {displaystyle m_{mathrm {B} }} — моляльность вещества B,
  • {displaystyle mathrm {m} (B)} — масса вещества B,
  • {displaystyle mathrm {m} (A)} — масса растворителя,
  • {displaystyle mathrm {m} } — масса раствора,
  • T_{B} — титр (массовая концентрация) B,
  • {displaystyle rho (B)} — плотность вещества B,
  • rho — плотность раствора,
  • V — суммарный объём раствора,
  • {displaystyle N_{mathrm {A} }} — постоянная Авогадро,
  • {displaystyle N_{mathrm {B} }} — количество частиц вещества В,
  • {displaystyle n_{mathrm {B} }} — количество вещества В,
  • n — количество раствора,
  • M — молярная масса,

Примечания[править | править код]

  1. International Union of Pure and Applied Chemistry. concentration (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.C01222. Архивировано 20 июля 2018 года.
  2. International Union of Pure and Applied Chemistry. fraction (англ.) // IUPAC Compendium of Chemical Terminology. — Research Triagle Park, NC: IUPAC. — ISBN 0967855098. — doi:10.1351/goldbook.F02494. Архивировано 20 августа 2018 года.
  3. IUPAC Gold Book internet edition: «concentration».
  4. International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass fraction, w (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 13 декабря 2018 года.
  5. 1 2 3 Z. Sobecka, W. Choiński, P. Majorek. Dictionary of Chemistry and Chemical Technology: In Six Languages: English / German / Spanish / French / Polish / Russian. — Elsevier, 2013-09-24. — С. 641. — 1334 с. — ISBN 9781483284439.
  6. International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount concentration, c (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 21 декабря 2018 года.
  7. International Union of Pure and Applied Chemistry. IUPAC Gold Book – amount fraction, x ( y for gaseous mixtures) (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
  8. International Union of Pure and Applied Chemistry. IUPAC Gold Book – mass concentration, γ, ρ (англ.). goldbook.iupac.org. Дата обращения: 16 декабря 2018. Архивировано 7 декабря 2018 года.
  9. International Union of Pure and Applied Chemistry. IUPAC Gold Book – number concentration, C,n (англ.). goldbook.iupac.org. Дата обращения: 11 декабря 2018. Архивировано 22 декабря 2018 года.
  10. Способы приготовления растворов на МедКурс. Ru. Дата обращения: 24 апреля 2012. Архивировано 29 октября 2012 года.
  11. Бернштейн И. Я., Каминский Ю. Л. Спектрофотометрический анализ в органической химии. — 2-е изд. — Ленинград: Химия, 1986. — с. 5
  12. The International System of Units (SI). www.bipm.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 14 августа 2017 года.
  13. Quantities, Units and Symbols in Physical Chemistry. www.iupac.org. Дата обращения: 23 декабря 2018. Архивировано из оригинала 20 декабря 2016 года.

Добавить комментарий