Как найти молярную концентрацию газа

Печатать книгуПечатать книгу

Сайт: Профильное обучение
Курс: Химия. 11 класс
Книга: § 6.1. Молярная концентрация газа
Напечатано:: Гость
Дата: Среда, 17 Май 2023, 13:49

Газообразные вещества, в отличие от твёрдых и жидких, занимают весь предоставленный им объём. Поэтому в одном и том же сосуде может находиться разное количество газа. От этого количества будет зависеть давление в системе.

Определение количества газа и его доли в газовой смеси важно для разных практических целей. Например, следует выяснить, опасен ли для жизни уровень содержания метана или угарного газа в воздухе, пригоден ли для дыхания воздух в помещении с большим количеством углекислого газа или воздух на высоте 10 км, взрывоопасна ли данная смесь воздуха с водородом, в каком соотношении пары бензина должны смешиваться с воздухом в двигателе внутреннего сгорания.

Для решения подобных задач в качестве количественной характеристики используют молярную концентрацию газообразного вещества, которая показывает количество данного газообразного вещества в единице объёма.

Молярная концентрация газообразного вещества — величина, равная отношению его количества к объёму, который этот газ занимает:

bold italic c bold left parenthesis bold X bold right parenthesis bold equals fraction numerator bold italic n bold left parenthesis bold X bold right parenthesis over denominator bold italic V bold left parenthesis bold X bold right parenthesis end fraction.

Молярная концентрация газов измеряется в моль/дм3.

Например, молярная концентрация СО2 при нормальных условиях составляет:

c left parenthesis CO subscript 2 right parenthesis equals fraction numerator n left parenthesis CO subscript 2 right parenthesis over denominator V left parenthesis CO subscript 2 right parenthesis end fraction equals fraction numerator 1 space моль over denominator 22 comma 4 space дм cubed end fraction almost equal to 0 comma 0446 space моль divided by дм cubed.

Из приведённой выше формулы следует, что количество газообразного вещества в сосуде есть произведение молярной концентрации газа на объём сосуда, так как газ заполняет весь объём:

n left parenthesis straight X right parenthesis equals c left parenthesis straight X right parenthesis times V left parenthesis сосуда right parenthesis.

Понятие молярной концентрации газообразного вещества сходно с понятием молярной концентрации растворённого вещества, с которым вы ознакомились в курсе химии 8-го класса:

c left parenthesis straight X right parenthesis equals fraction numerator n left parenthesis straight X right parenthesis over denominator V left parenthesis straight р minus ра right parenthesis end fraction.

Причиной сходства является то, что растворённое вещество равномерно распределяется во всём объёме раствора, как и газообразное — во всём объёме сосуда.

Пример 1. Определите молярную концентрацию углекислого газа массой 3 г, находящегося в сосуде объёмом 4 дм3.

Дано:

m(CO2) = 3 г

V(сосуда) = 4 дм3

с(СО2) — ?

Решение

c left parenthesis straight X right parenthesis equals fraction numerator n left parenthesis straight X right parenthesis over denominator V left parenthesis сосуда right parenthesis end fraction

М left parenthesis СО subscript 2 right parenthesis equals 44 space straight г divided by моль.

n left parenthesis СО subscript 2 right parenthesis equals fraction numerator m left parenthesis CO subscript 2 right parenthesis over denominator M left parenthesis CO subscript 2 right parenthesis end fraction equals fraction numerator 3 space straight г over denominator 44 space straight г divided by моль end fraction almost equal to 0 comma 068 space моль.

c left parenthesis CO subscript 2 right parenthesis equals fraction numerator n left parenthesis CO subscript 2 right parenthesis over denominator V left parenthesis сосуда right parenthesis end fraction equals fraction numerator 0 comma 068 space моль over denominator 4 space дм cubed end fraction equals 0 comma 017 space моль divided by дм cubed.

Ответ: с(СО2) = 0,017 моль/дм3.

Молярная концентрация газообразного вещества — величина, равная отношению его количества к объёму, который этот газ занимает:

bold italic c bold left parenthesis bold X bold right parenthesis bold equals fraction numerator bold italic n bold left parenthesis bold X bold right parenthesis over denominator bold italic V bold left parenthesis bold X bold right parenthesis end fraction.

Вопросы, задания, задачи

1. Установите соответствие между величинами.

1. Объём газа.

2. Молярная концентрация газа.

3. Количество вещества.

4. Молярная концентрация вещества в растворе

А. с(NО2) = 0,15 моль/дм3.

Б. с(NaOH) = 0,15 моль/дм3.

В. V(H2S) = 4 дм3.

Г. n(СО2) = 2 моль

2. Определите молярную концентрацию аммиака количеством 0,7 моль в сосуде объёмом 14 дм3.

3. Определите массу сернистого газа в сосуде объёмом 400 см3, если молярная концентрация SO2 равна 0,5 моль/дм3.

4. Определите и сравните молярные концентрации трёх газов — водорода, азота и кислорода, если известно, что они находятся в сосудах объёмом по 5 дм3, а масса каждого из газов равна 7 г.

5. Сосуд объёмом 50 дм3 содержит гелий массой 10 г. В этот сосуд добавили гелий массой 8 г. Во сколько раз изменилась молярная концентрация газа? Как на исходную концентрацию гелия повлияет добавление аргона массой 8 г?

6. При газификации угля образовалась смесь газов, в которой на 1 дм3 СО приходится 4 дм3 Н2, 1 дм3 СН4, 3 дм3 СО2. Рассчитайте молярную концентрацию каждого газа в смеси.

7. Озон относится к веществам класса высокой опасности. Его предельно допустимая концентрация (ПДК) в воздухе рабочей зоны равна 0,1 мг/м3. При этом порог человеческого обоняния приблизительно равен 0,01 мг/м3. Рассчитайте молярную концентрацию озона в воздухе при его содержании 0,01 мг/м3.

8. Рассчитайте молярную концентрацию кислорода в воздухе (объёмная доля кислорода равна 21 %).

9. При действии соляной кислоты на твёрдое вещество выделился газ, относительная плотность которого по воздуху составляет 1,172. Какое из веществ использовал экспериментатор: СаС2, СаСО3, CaS, СаСl2?

10. Определите объём углекислого газа, выделившегося при действии соляной кислоты объёмом 0,5 дм3 на мрамор (карбонат кальция). Молярная концентрация кислоты составляет 2,7 моль/дм3.

Самоконтроль

1. Молярную концентрацию можно рассчитать по формулам:

а) begin mathsize 14px style c left parenthesis straight X right parenthesis equals fraction numerator n left parenthesis straight X right parenthesis over denominator V left parenthesis сосуда right parenthesis end fraction end style;

б) begin mathsize 14px style straight omega left parenthesis straight Э right parenthesis equals A subscript straight r left parenthesis straight Э right parenthesis space times space straight x over M subscript straight r end style;

в) begin mathsize 14px style c left parenthesis straight X right parenthesis equals fraction numerator n left parenthesis straight X right parenthesis over denominator V left parenthesis straight р minus ра right parenthesis end fraction end style;

г) begin mathsize 14px style n left parenthesis straight X right parenthesis equals fraction numerator N left parenthesis straight X right parenthesis over denominator N subscript straight A end fraction end style.

2. Молярная концентрация газообразного вещества имеет размерность:

  • а) дм3/моль;
  • б) моль/дм3;
  • в) г/дм3;
  • г) моль–1.

3. При н. у. объём 22,4 дм3 имеют вещества количеством 1 моль, формулы которых:

  • а) СаС2;
  • б) С2Н6;
  • в) СО2;
  • г) О3.

4. Молярная концентрация азота массой 5,6 г, находящегося в сосуде объёмом 20 дм3, равна (моль/дм3):

  • а) 0,001;
  • б) 0,01;
  • в) 0,02;
  • г) 0,1.

5. При нормальных условиях в сосуде объёмом 5 дм3 содержится газ массой 5,6 г. Его молярная концентрация составляет 0,04 моль/дм3. Этим газом может быть:

  • а) С2Н4;
  • б) С2Н6;
  • в) N2;
  • г) CО.

Добавил:

Upload

Опубликованный материал нарушает ваши авторские права? Сообщите нам.

Вуз:

Предмет:

Файл:

Билеты ггд.docx

Скачиваний:

1

Добавлен:

19.09.2019

Размер:

868.23 Кб

Скачать

Идеальный
газ

математическая
модель

газа,
в которой предполагается, что потенциальной
энергией

взаимодействия молекул
можно пренебречь по сравнению с их
кинетической
энергией
.
Между молекулами не действуют силы
притяжения или отталкивания, соударения
частиц между собой и со стенками сосуда
абсолютно
упруги
,
а время взаимодействия между молекулами
пренебрежимо мало по сравнению со
средним временем между столкновениями.

Массовая
концентрация (весовая концентрация,
массовая(весовая) доля):
Массовой
концентрацией i-го
газа, входящего в состав смеси,
называется отношение его массы mi
к массе m
всей смеси:

где
N
– общее число разнородных газов,
образующих смесь.

Мольная
(молярная) доля
вещества
концентрация,
выраженная отношением числа молей
вещества к общему числу молей всех
веществ, имеющихся в растворе.

где



мольная
доля вещества B в растворе


количество
вещества

B, содержащееся в растворе (измеряется
в молях)



сумма количества
вещества

всех компонентов раствора (измеряется
в молях)

Парциальное
давление:

Парциальное
давление i-го
газа в смеси называется давление, под
которым находился бы этот газ, если
бы из смеси были бы удалены все остальные
газы, а объем и температура сохранились
прежними:


.
масса
i-го
компонента газа.

молярная
масса i-го
компонента газа .R-универсальная
газовая постоянная. T-температура
смеси. V-объем
смеси.

Закон
Дальтона:

Давление
смеси идеальных газов равна сумме их
парциальных давлений:

или
p=p1+p2+…+pn

27.
Параметры состояния смеси идеальных
газов.

В
термодинамике идеального газа
макроскопическими параметрами
являются: p, V, T, m-параметры.

Мы
знаем, что

.
Следовательно,

.
Учитывая, что

,
получим:

.

Произведение
постоянных величин есть величина
постоянная, следовательно:


универсальная газовая постоянная
(универсальная, т.к. для всех газов
одинаковая).

Таким
образом, имеем:



уравнение состояния (уравнение
Менделеева – Клапейрона).

Другие
формы записи уравнения состояния
идеального газа.

  1. Уравнение
    для 1 моля вещества.

Если
=1
моль, то, обозначив объем одного моля
Vм,
получим:

.

Для
нормальных условий получим:

2.
Запись уравнения через плотность:


плотность зависит от температуры и
давления!

3.
Уравнение
Клапейрона.

Часто
необходимо исследовать ситуацию,
когда меняется состояние газа при
его неизменном количестве (m=const) и в
отсутствие химических реакций
(M=const). Это означает, что количество
вещества =const.
Тогда:

Эта
запись означает, что для
данной массы данного газа

справедливо равенство:

Для
постоянной массы идеального газа
отношение произве­дения давления
на объем к абсолютной температуре в
данном состоянии есть величина
постоянная:

.

20
билет

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

Large w_{i}=frac{m_{i}}{m}, ;;;;;(1)

где Large w_{i} — массовая доля компонента i в смеси,

Large m_{i} — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть Large m_{i} по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

Large m = m_{п}+m_{с}= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

Large w_{с} = frac{m_{с}}{m} = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно Large m_{1} и Large m_{2}. Массу полученного после смешения раствора обозначим Large m и найдём:

Large m = m_{1} + m_{2} = 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим Large m_{гл. 1} и Large m_{гл. 2}. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

Large m_{гл. 1} = w_{1}cdot m_{1} = 0.25 cdot 200 г = 50 г

Large m_{гл. 2} = w_{2}cdot m_{2} = 0.1 cdot 300 г = 30 г

Таким образом, общая масса глюкозы Large m_{гл}:

Large m_{гл} = m_{гл. 1} + m_{гл. 2} = 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

Large phi_{B}=frac{V_{B}}{sum{V_{i}}}, ; ;;;; (2)

где Large phi_{B} — объёмная доля компонента B;

Large V_{B} — объём компонента B;

Large sum{V_{i}} — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Large phi_{H_{2}SO_{4}} = frac{V_{ H_{2}SO_{4} }} { V_{ H_{2}SO_{4}} + V_{H_{2}O}} = frac{1 : объём}{1 : объём + 6 : объёмов} = frac{1 : объём}{7 : объёмов} = 0.143, : или : 14.3%

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

Large 100% – 21% – 1% = 78%.

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

Large x_{B} = frac{n_{B}}{sum{n_{i}}}, ;;;;;(3)

где Large x_{B} — мольная доля компонента B;

Large n_{B} — количество компонента B, моль;

Large sum{n_{i}} — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Large n_{N_{2}} = frac{ m_{N_{2}}}{M_{N_{2}}} = frac {3000 : г}{28 : ^г/_{моль}} = 107.14 : моль

Large n_{O_{2}} = frac{ m_{O_{2}}}{M_{O_{2}}} = frac {1000 : г}{32 : ^г/_{моль}} = 31.25 : моль

Large n_{He} = frac{ m_{He}}{M_{He}} = frac {500 : г}{4 : ^г/_{моль}} = 125 : моль

Затем считаем сумму количеств:

Large sum {n} = 107.14 : моль + 31.25 : моль + 125 : моль = 263.39 : моль

И находим мольную долю каждого компонента:

Large y_{N_{2}} = frac {107.14 : моль}{263.39 : моль} = 0.4068, : или : 40.68 %;

Large y_{O_{2}} = frac {31.25 : моль}{263.39 : моль} = 0.1186, : или : 11.86 %;

Large y_{He} = frac {125 : моль}{263.39 : моль} = 0.4746, : или : 47.46 %;

Проверяем:

Large 40.68 % + 11.86 % + 47.46 % = 100%.

И радуемся правильному решению.

Ответ: 40.68%, 11.86% , 47.46%.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na+] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

Large c_{B} = frac{n_{B}}{V} ; ; ;;; (4)

где Large n_{B} — количество вещества компонента B, моль;

Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Large n_{сахарозы} = frac{24 : г}{342 : г/моль} = 0.0702 моль

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Large c_{сахарозы} = frac{0.0702 : моль}{0.568 : л} = 0.1236 моль/л

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

Large c_{N} = z cdot c_{B} = z cdot frac{n_{B}}{V}= frac{1}{f_{eq}} cdot frac {n_{B}}{V} ; ;;;; (5)

где Large n_{B} — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности Large f_{eq} = 1/z ).

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Large n_{KMnO_{4}}=frac{m _{KMnO_{4}}}{M _{KMnO_{4}} } = frac{40 : г}{158 г/моль}= 0.253 моль

Теперь считаем нормальную концентрацию:

Large c_{N_{KMnO_{4}}}= z cdot frac{n_{KMnO_{4}}}{V} = 3 cdot frac{0.253 : моль}{1 : л} = 0.759 моль-экв/л

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

Large m_{B} = frac{n_{B}}{m_{A}}, ;;;;; (6)

где Large n_{B} — количество вещества компонента B, моль;

Large m_{A} — масса растворителя, кг.

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

Large rho_{B}=frac{m_{B}}{V}, ;;;;; (7)

где Large m_{B} — масса растворенного вещества, г;

Large V — общий объём смеси, л.

В системе СИ выражается в кг/м3.

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Large rho_{ KMnO_{4} }=frac{m_{ KMnO_{4} }}{V} =frac{40 : г}{1 : л} = 40 г/л.

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Массовая доля, large omega, % Мольная доля, large x , % Объёмная доля, large phi, % Молярная концентрация, large c, моль/л Нормальная концентрация, large c_{N} , моль-экв/л Моляльная концентрация, large m, моль/кг Массовая концентрация, large rho, г/л
Массовая доля, large omega, % = large omega_{B}=LARGE frac{x_{B} cdot M(B)}{sum x_{i} cdot M_{i}} Для газов:
omega = LARGE frac{phi_{A} cdot M(A)}{sum (M_{i} cdot phi_{i})}
large omega_{B}= LARGE frac{c_{B} cdot M(B)}{rho} large omega_{B}=LARGE frac{c_{N} cdot M(B)}{rho cdot z} large omega_{B}= LARGE frac{gamma_{B}}{rho}
Мольная доля, large x , % large x_{B}=LARGE frac{frac{omega_{B}}{M(B)}}{sum frac{omega_{i}}{M_{i}}} = large x_{B}=LARGE frac{m_{B}}{m_{B}+frac{1}{M(A)}}
Объёмная доля, large phi, % Для газов:
large phi_{A}=LARGE frac{frac{omega_{A}}{M(A)}}{sum frac{omega_{i}}{M_{i}}}
=
Молярная концентрация, large c, моль/л large c_{B}=LARGE frac{rho cdot omega_{B}}{M(B)} = large c_{B}=Large frac{c_{N}}{z}
Нормальная концентрация, large c_{N} , моль-экв/л large c_{N}=LARGE frac{rho cdot omega_{B} cdot z}{M(B)} large c_{N}=c_{B} cdot z =
Моляльная концентрация, large m, моль/кг large m_{B}=Large frac{x_{B}}{M(A)(1-x_{B})} =
Массовая концентрация, large gamma, г/л large gamma_{B}=rho cdot omega_{B} =

Таблица будет пополняться.

Газ обладает высокой реакционной способностью по сравнению с жидкими и твердыми телами ввиду большой площади его активной поверхности и высокой кинетической энергии образующих систему частиц. При этом химическая активность газа, его давление и некоторые другие параметры зависят от концентрации молекул. Рассмотрим в данной статье, что это за величина и как ее можно вычислить.

О каком газе пойдет речь?

В данной статье будут рассмотрены так называемые идеальные газы. В них пренебрегают размерами частиц и взаимодействием между ними. Единственным процессом, который происходит в идеальных газах, являются упругие столкновения между частицами и стенками сосуда. Результатом этих столкновений является возникновение абсолютного давления.

Любой реальный газ приближается по своим свойствам к идеальному, если уменьшать его давление или плотность и увеличивать абсолютную температуру. Тем не менее существуют химические вещества, которые даже при низких плотностях и высоких температурах далеки от идеального газа. Ярким и всем известным примером такого вещества является водяной пар. Дело в том, что его молекулы (H2O) являются сильно полярными (кислород оттягивает на себя электронную плотность от атомов водорода). Полярность приводит к появлению существенного электростатического взаимодействия между ними, что является грубым нарушением концепции идеального газа.

Водяной пар

Универсальный закон Клапейрона-Менделеева

Чтобы уметь рассчитывать концентрацию молекул идеального газа, следует познакомиться с законом, который описывает состояние любой идеальной газовой системы независимо от ее химического состава. Этот закон носит фамилии француза Эмиля Клапейрона и русского ученого Дмитрия Менделеева. Соответствующее уравнение имеет вид:

P*V = n*R*T.

Равенство говорит о том, что произведение давления P на объем V всегда для идеального газа должно быть прямо пропорционально произведению температуры абсолютной T на количество вещества n. Здесь R – это коэффициент пропорциональности, который получил название универсальной газовой постоянной. Она показывает величину работы, которую 1 моль газа выполняет в результате расширения, если его на 1 К нагреть (R=8,314 Дж/(моль*К)).

Концентрация молекул и ее вычисление

Двухатомный идеальный газ

Согласно определению под концентрацией атомов или молекул понимают количество частиц в системе, которое приходится на единицу объема. Математически можно записать:

cN = N/V.

Где N – общее число частиц в системе.

Прежде чем записать формулу для определения концентрации молекул газа, вспомним определение количества вещества n и выражение, которое связывает величину R с постоянной Больцмана kB:

n = N/NA;

kB = R/NA.

Используя эти равенства, выразим отношение N/V из универсального уравнения состояния:

P*V = n*R*T =>

P*V = N/NA*R*T = N*kB*T =>

cN = N/V = P/(kB*T).

Таким образом мы получили формулу для определения концентрации частиц в газе. Как видно, она прямо пропорционально зависит от давления в системе и обратно пропорционально от абсолютной температуры.

Поскольку количество частиц в системе велико, то концентрацией cN пользоваться неудобно при выполнении практических расчетов. Вместо нее чаще используют молярную концентрацию cn. Она для идеального газа определяется так:

cn = n/V = P/(R *T).

Пример задачи

Необходимо рассчитать молярную концентрацию молекул кислорода в воздухе при нормальных условиях.

Химическая формула молекулы кислорода

Для решения этой задачи вспомним, что в воздухе находится 21 % кислорода. В соответствии с законом Дальтона кислород создает парциальное давление 0,21*P0, где P0 = 101325 Па (одна атмосфера). Нормальные условия также предполагают температуру 0 oC (273,15 К).

Мы знаем все необходимые параметры для вычисления молярной концентрации кислорода в воздухе. Получаем:

cn(O2) = P/(R *T) = 0,21*101325/(8,314*273,15) = 9,37 моль/м3.

Если эту концентрацию привести к объему 1 литр, то мы получим значение 0,009 моль/л.

Чтобы понять, сколько молекул O2 содержится в 1 литре воздуха, следует умножить рассчитанную концентрацию на число NA. Выполнив эту процедуру, получим огромное значение: N(O2) = 5,64*1021 молекул.

Молярная концентрация (молярность), Сm – это характеристика раствора, способ выражения концентрации растворенного вещества в растворе. Молярная концентрация равна отношению количества растворенного вещества к объему раствора:

где  νр.в. – количество растворенного вещества, моль

        Vр-ра – объем раствора, л

Иногда молярную концентрацию вещества А обозначают так: [A].

Молярная концентрация измеряется в моль/л или М.

Несколько задач на молярную концентрацию.

1. Определите молярную концентрацию раствора азотной кислоты, если в 500 мл раствора содержится 6,3г азотной кислоты. Ответ: 0,2М

Решение: молярная концентрация — это отношение количества растворенного вещества к объему раствора в литрах. Количество азотной кислоты:

ν(HNO3) = m/M(HNO3) = 6,3 г/ 63 г/моль = 0,1 моль

С(HNO3) = ν(HNO3)/Vр-ра = 0,1 моль/ 0,5 л = 0,2 моль/л

2. Определить молярную концентрацию раствора серной кислоты, если в 2л раствора содержится 0,98г кислоты. Ответ: 0,005М

3. Какую массу хлорида натрия надо растворить в воде, чтобы получить 1л раствора с молярной концентрацией соли 0,02моль/л? Ответ: 1,17г

4. Какое количество вещества (в моль) гидроксида калия содержится в 200мл раствора, если молярная концентрация щёлочи равна 0,9моль/л? Ответ: 0,18моль

5. Какая масса хлороводорода содержится в 250мл раствора соляной кислоты с молярной концентрацией 1 моль/л? Ответ: 9,125г
6. В каком объёме раствора серной кислоты с концентрацией 1 моль/л содержится 4,9г серной кислоты? Ответ: 50мл

7. Смешали 400мл раствора хлорида натрия с молярной концентрацией 1 моль/л и 600мл раствора хлорида натрия с концентрацией соли 2 моль/л. Определить количество вещества хлорида натрия в получившемся растворе и молярную концентрацию этого раствора. Ответ: 1,6М

Добавить комментарий