Как найти момент инерции для квадрата

Осевые моменты инерции простых сечений (фигур)

На этой странице указаны формулы для расчёта моментов инерции простых сечений (фигур). Данные формулы используются при проведении прочностных расчётов при изгибе и расчётов на жёсткость. А также для расчёта геометрических характеристик более сложных сечений.

Формулы для расчёта осевых моментов инерции

Традиционно, моменты инерции обозначаются буквойI. Также в литературе, часто используют букву – J.

На сайте – ssopromat.ru, ты также можешь найти другую справочную информацию.

Момент инерции
{displaystyle J=int limits _{(m)}r^{2}mathrm {d} m}
Размерность L2M
Единицы измерения
СИ кг·м²
СГС г·см²

Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения (т.е. прямую), но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от типа базового множества до которого отсчитываются расстояния от элементарных масс.

Осевой момент инерции[править | править код]

Осевые моменты инерции некоторых тел

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси[1]:

{displaystyle J_{a}=sum _{i=1}^{n}m_{i}r_{i}^{2},}

где:

  • mi — масса i-й точки,
  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

dm = ρ dV — масса малого элемента объёма тела dV,
ρ — плотность,
r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

{displaystyle J_{a}=rho int limits _{(V)}r^{2}dV.}

Теорема Гюйгенса — Штейнера[править | править код]

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Гюйгенса — Штейнера, момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями[1]:

{displaystyle J=J_{c}+md^{2},}

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

{displaystyle J=J_{c}+md^{2}={frac {1}{12}}ml^{2}+mleft({frac {l}{2}}right)^{2}={frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел[править | править код]

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело Описание Положение оси a Момент инерции Ja
Traegheit a punktmasse.png Материальная точка массы m На расстоянии r от точки, неподвижная mr^{2}
Traegheit b zylindermantel.png Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра mr^{2}
Traegheit c vollzylinder.png Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра {frac {1}{2}}mr^{2}
Traegheit d hohlzylinder2.png Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра m{frac {r_{2}^{2}+r_{1}^{2}}{2}}[Комм 1]
Traegheit e vollzylinder 2.png Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна образующей цилиндра и проходит через его центр масс {1 over 4}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit f zylindermantel 2.png Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс {1 over 2}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit g stab1.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс {frac {1}{12}}ml^{2}
Traegheit h stab2.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец {frac {1}{3}}ml^{2}
Traegheit i kugel1.png Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы {frac {2}{3}}mr^{2}
Traegheit j kugel1.png Шар радиуса r и массы m Ось проходит через центр шара {frac {2}{5}}mr^{2}
Cone (geometry).svg Конус радиуса r и массы m Ось конуса {frac {3}{10}}mr^{2}
Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину (при высоте) {frac {1}{24}}m(a^{2}+12h^{2})
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс {frac {1}{12}}ma^{2}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс {frac {1}{6}}ma^{2}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс {frac {1}{12}}m(a^{2}+b^{2})
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс {displaystyle {frac {mr^{2}}{6}}left[1+2cos(pi /n)^{2}right]}
Torus 3d.png Тор (полый) с радиусом направляющей окружности R, радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс {displaystyle I=mleft({frac {3}{4}},r^{2}+R^{2}right)}

Вывод формул[править | править код]

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

{displaystyle J=sum dJ_{i}=sum R_{i}^{2}dm.qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J=sum R^{2}dm=R^{2}sum dm=mR^{2}.

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

dm=rho dV=rho cdot 2pi rhdr;qquad dJ=r^{2}dm=2pi rho hr^{3}dr.

Момент инерции толстого кольца найдём как интеграл

J=int _{R_{1}}^{R}dJ=2pi rho hint _{R_{1}}^{R}r^{3}dr=
{displaystyle =2pi rho hleft.{frac {r^{4}}{4}}right|_{R_{1}}^{R}={frac {1}{2}}pi rho hleft(R^{4}-R_{1}^{4}right)={frac {1}{2}}pi rho hleft(R^{2}-R_{1}^{2}right)left(R^{2}+R_{1}^{2}right).}

Поскольку объём и масса кольца равны

V=pi left(R^{2}-R_{1}^{2}right)h;qquad m=rho V=pi rho left(R^{2}-R_{1}^{2}right)h,

получаем окончательную формулу для момента инерции кольца

J={frac {1}{2}}mleft(R^{2}+R_{1}^{2}right).

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

J={frac {1}{2}}mR^{2}.

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh, перпендикулярные оси конуса. Радиус такого диска равен

r={frac {Rh}{H}},

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска.
Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left({frac {Rh}{H}}right)^{4}dh;

Интегрируя, получим

{begin{aligned}J=int _{0}^{H}dJ={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}int _{0}^{H}h^{4}dh={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}left.{frac {h^{5}}{5}}right|_{0}^{H}=={frac {1}{10}}pi rho R^{4}H=left(rho cdot {frac {1}{3}}pi R^{2}Hright){frac {3}{10}}R^{2}={frac {3}{10}}mR^{2}.end{aligned}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r={sqrt {R^{2}-h^{2}}}.

Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left(R^{2}-h^{2}right)^{2}dh={frac {1}{2}}pi rho left(R^{4}-2R^{2}h^{2}+h^{4}right)dh.

Момент инерции шара найдём интегрированием:

{begin{aligned}J&=int _{-R}^{R}dJ=2int _{0}^{R}dJ=pi rho int _{0}^{R}left(R^{4}-2R^{2}h^{2}+h^{4}right)dh=\&=pi rho left.left(R^{4}h-{frac {2}{3}}R^{2}h^{3}+{frac {1}{5}}h^{5}right)right|_{0}^{R}=pi rho left(R^{5}-{frac {2}{3}}R^{5}+{frac {1}{5}}R^{5}right)={frac {8}{15}}pi rho R^{5}=\&=left({frac {4}{3}}pi R^{3}rho right)cdot {frac {2}{5}}R^{2}={frac {2}{5}}mR^{2}.end{aligned}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

J_{0}={frac {2}{5}}MR^{2}={frac {8}{15}}pi rho R^{5}.

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

{displaystyle {begin{aligned}J&={frac {dJ_{0}}{dR}}dR={frac {d}{dR}}left({frac {8}{15}}pi rho R^{5}right)dR=\&={frac {8}{3}}pi rho R^{4}dR=left(rho cdot 4pi R^{2}dRright){frac {2}{3}}R^{2}={frac {2}{3}}mR^{2}.end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

dm={frac {mdr}{l}};qquad dJ=r^{2}dm={frac {mr^{2}dr}{l}}.

Интегрируя, получим

J=int _{-l/2}^{l/2}dJ=2int _{0}^{l/2}dJ={frac {2m}{l}}int _{0}^{l/2}r^{2}dr={frac {2m}{l}}left.{frac {r^{3}}{3}}right|_{0}^{l/2}={frac {2m}{l}}{frac {l^{3}}{24}}={frac {1}{12}}ml^{2}.

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l2. По теореме Штейнера новый момент инерции будет равен

J=J_{0}+mr^{2}=J_{0}+mleft({frac {l}{2}}right)^{2}={frac {1}{12}}ml^{2}+{frac {1}{4}}ml^{2}={frac {1}{3}}ml^{2}.

Безразмерные моменты инерции планет и их спутников[2][3][4]

Безразмерные моменты инерции планет и спутников[править | править код]

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра[5][6].

Центробежный момент инерции[править | править код]

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины[1][7]:

{displaystyle J_{xy}=int limits _{(m)}xydm=int limits _{(V)}xyrho dV,}
{displaystyle J_{xz}=int limits _{(m)}xzdm=int limits _{(V)}xzrho dV,}
{displaystyle J_{yz}=int limits _{(m)}yzdm=int limits _{(V)}yzrho dV,}

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела[7].

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции[7].

Геометрические моменты инерции[править | править код]

Геометрический момент инерции объёма относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Va}=int limits _{(V)}r^{2}dV,}

где, как и ранее r — расстояние от элемента dV до оси a.

Размерность JVa — длина в пятой степени (mathrm {dim} J_{Va}=mathrm {L^{5}} ), соответственно единица измерения СИ — м5.

Геометрический момент инерции площади относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Sa}=int limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S, а dS — элемент этой поверхности.

Размерность JSa — длина в четвёртой степени (mathrm {dim} J_{Sa}=mathrm {L^{4}} ), соответственно единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см4.

Через геометрический момент инерции площади выражается момент сопротивления сечения:

{displaystyle W={frac {J_{Sa}}{r_{max}}}.}

Здесь rmax — максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h и шириной b: J_{y}={frac {bh^{3}}{12}}

J_{z}={frac {hb^{3}}{12}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H и B, а по внутренним h и b соответственно J_{z}={frac {BH^{3}}{12}}-{frac {bh^{3}}{12}}={frac {1}{12}}(BH^{3}-bh^{3})

J_{y}={frac {HB^{3}}{12}}-{frac {hb^{3}}{12}}={frac {1}{12}}(HB^{3}-hb^{3})

Круга диаметром d J_{y}=J_{z}={frac {pi d^{4}}{64}}

Момент инерции относительно плоскости[править | править код]

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости[9].

Если через произвольную точку O провести координатные оси x,y,z, то моменты инерции относительно координатных плоскостей xOy, yOz и zOx будут выражаться формулами:

{displaystyle J_{xOy}=sum _{i=1}^{n}m_{i}z_{i}^{2} ,}
{displaystyle J_{yOz}=sum _{i=1}^{n}m_{i}x_{i}^{2} ,}
{displaystyle J_{zOx}=sum _{i=1}^{n}m_{i}y_{i}^{2} .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции[править | править код]

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции) {displaystyle J_{O}}  — это величина, определяемая выражением[9]:

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей[9]:

{displaystyle J_{O}={frac {1}{2}}left(J_{x}+J_{y}+J_{z}right),}
{displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции[править | править код]

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором {displaystyle {vec {s}}=leftVert s_{x},s_{y},s_{z}rightVert ^{T},leftvert {vec {s}}rightvert =1}, можно представить в виде квадратичной (билинейной) формы:

{displaystyle I_{s}={vec {s}}^{T}cdot {hat {J}}cdot {vec {s}},qquad } (1)

где {displaystyle {hat {J}}} — тензор инерции. Матрица тензора инерции симметрична, имеет размеры 3times 3 и состоит из компонент центробежных моментов:

{displaystyle {hat {J}}=leftVert {begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\-J_{yx}&J_{yy}&-J_{yz}\-J_{zx}&-J_{zy}&J_{zz}end{array}}rightVert ,}
{displaystyle J_{xy}=J_{yx},quad J_{xz}=J_{zx},quad J_{zy}=J_{yz},quad }{displaystyle J_{xx}=int limits _{(m)}(y^{2}+z^{2})dm,quad J_{yy}=int limits _{(m)}(x^{2}+z^{2})dm,quad J_{zz}=int limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора {displaystyle {hat {J}}}:

{displaystyle {hat {J}}_{d}={hat {Q}}^{T}cdot {hat {J}}cdot {hat {Q}},}
{displaystyle {hat {J}}_{d}=leftVert {begin{array}{ccc}J_{X}&0&0\0&J_{Y}&0\0&0&J_{Z}end{array}}rightVert ,}

где {displaystyle {hat {Q}}} — ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины {displaystyle J_{X},J_{Y},J_{Z}} — главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

{displaystyle I_{s}=J_{X}cdot s_{x}^{2}+J_{Y}cdot s_{y}^{2}+J_{Z}cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на {displaystyle I_{s}}

{displaystyle left({s_{x} over {sqrt {I_{s}}}}right)^{2}cdot J_{X}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}cdot J_{Y}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}cdot J_{Z}=1}

и произведя замены:

{displaystyle xi ={s_{x} over {sqrt {I_{s}}}},eta ={s_{y} over {sqrt {I_{s}}}},zeta ={s_{z} over {sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах {displaystyle xi eta zeta }:

{displaystyle xi ^{2}cdot J_{X}+eta ^{2}cdot J_{Y}+zeta ^{2}cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

{displaystyle r^{2}=xi ^{2}+eta ^{2}+zeta ^{2}=left({s_{x} over {sqrt {I_{s}}}}right)^{2}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}={1 over I_{s}}.}

См. также[править | править код]

  • Кинематика твёрдого тела
  • Метод главных компонент
  • Сопротивление материалов
  • Теорема Штейнера
  • Теорема Кёнига (механика)
  • Механические приложения тройного интеграла
  • Механические приложения двойного интеграла
  • Полярный момент инерции
  • Список моментов инерции
  • Момент силы
  • Момент импульса

Комментарии[править | править код]

  1. При получении этой формулы путём вычитания момента инерции сплошного цилиндра радиусом r1 из цилиндра радиусом r2 необходимо обратить внимание, что их массы при этом не будут одинаковыми или равны m. При этом должно выполняться условие {displaystyle m_{2}-m_{1}=m}. Из формулы для массы соответствующего цилиндра можно определить, что в этом случае {displaystyle m_{1}=m{frac {r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}}}} и {displaystyle m_{2}=m{frac {r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}}}. В правильности использования знака «+» в этой формуле также можно убедиться, если сравнить моменты инерции полого толстостенного и сплошного цилиндров с одинаковыми массами. Действительно, у первого из этих цилиндров масса в среднем сосредоточена дальше от оси, чем у второго, поэтому и момент инерции этого цилиндра должен быть больше, чем у сплошного. Именно такое соотношение моментов инерции и обеспечивает знак «+». С другой стороны, в пределе при стремлении r1 к r2 формула для полого толстостенного цилиндра должна приобрести тот же вид, что и формула для полого тонкостенного цилиндра. Очевидно, что такой переход происходит только при использовании формулы со знаком «+».

Примечания[править | править код]

  1. 1 2 3 Тарг С. М. Момент инерции // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 206—207. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Planetary Fact Sheet. Дата обращения: 31 августа 2010. Архивировано 14 марта 2016 года.
  3. Showman, Adam P.; Malhotra, Renu. The Galilean Satellites (англ.) // Science. — 1999. — Vol. 286, no. 5437. — P. 77—84. — doi:10.1126/science.286.5437.77. — PMID 10506564.
  4. Margot, Jean-Luc; et al. Mercury’s moment of inertia from spin and gravity data (англ.) // Journal of Geophysical Research  (англ.) (рус. : journal. — 2012. — Vol. 117. — doi:10.1029/2012JE004161.
  5. Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.
  6. Пантелеев В. Л. Физика Земли и планет. Гл. 3.4 — Гравитационное поле планеты. Дата обращения: 31 августа 2010. Архивировано 3 октября 2013 года.
  7. 1 2 3 Тарг С. М. Краткий курс теоретической механики. — М.: «Высшая школа», 1995. — С. 269—271. — 416 с. — ISBN 5-06-003117-9.
  8. 1 2 Бухгольц Н. Н. Основной курс теоретической механики. — 4-е изд. — М.: «Наука», 1966. — Т. 2. — С. 131.
  9. 1 2 3 Яблонский А. А. Динамика // Курс теоретической механики. — 3-е изд. — М.: «Высшая школа», 1966. — Т. II. — С. 102—103. — 411 с.

Литература[править | править код]

  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Архивная копия от 7 января 2014 на Wayback Machine Издательство Физического факультета МГУ, 1997.
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560 с.
  • Беляев Н. М. Сопротивление материалов. Главная редакция физико-математической литературы изд-ва «Наука», 1976. — 608 с.

Ссылки[править | править код]

  • Определение момента инерции тел простой формы.

В прошлый раз мы поговорили о такой величине, как статические моменты. Теперь можем двигаться дальше: сегодня на повестке моменты инерции. 

Внимательный читатель уже может возмутиться:
 “И зачем мы изучаем эти моменты? Какой в этом прок?
Причём же тут инерция, если сопромат — по сути статика?»

На первый вопрос у меня есть два ответа — краткий и не очень. Пока ограничусь кратким:

Статические моменты и моменты инерции  широко используются для определения нормальных и касательных напряжений, определении прогибов и деформаций конструкций. Читая о том, как все это вычислить,  вы будете сталкиваться с геометрическими характеристиками постоянно. Поэтому лучше сразу понимать, о чем идёт речь, а, при необходимости, подсматривать тут.

В изгибаемом элементе от момента сил возникают напряжения, для определения которых нам и нужен момент инерции (хотя и опосредованно. Впрочем, если вы читали статью про моменты, то это уже знаете). При этом сам элемент деформируется, и величина этих деформаций (прогибов) также определяется с помощью момента инерции. 

Для ответа на второй вопрос перейдем уже к моментам инерции.

Что такое момент инерции

поперечное сечение стержень сопротивление материалов

Рисунок 1. Поперечное сечение стержня. Где-то я его уже видел…

Суть и смысл моментов инерции в общем случае походит на статические моменты, однако корни нужно искать в описании вращения тела. Для вращательного движения одного только значения массы тела недостаточно, требуется еще знать распределение этой массы в теле. Рассмотрим вращающееся тело, как совокупность точек с предельно малыми размером и массой, которые находятся на расстояниях Ri (от нуля до R):

вращательное движение энергия

Где:
T — кинетическая энергия;
J — момент инерции;
m — масса;
v — скорость;
w — угловая скорость;
R — радиус;

Тут видно, что также, как в формуле кинетической энергии при линейном движении мера инертности — масса, при вращательном движении мера инертности — момент инерции. Впрочем, я немного забегаю вперёд.

Угловая скорость вращающегося тела — угол поворота, пройденный за единицу времени

угловая скорость формула расчет

Тут начальный угол поворота φ0 может быть равен нулю, если мы рассматриваем начало движения. 

Линейная скорость тела:

линейная скорость вращение расчет
где r — расстояние от рассматриваемой точки до оси вращения

Ускорение вращающегося тела (а нас интересует нормальное) тогда:

ускорение вращение формула расчет

Я не буду затрагивать динамику вращающегося тела, и расскажу только о жизненно необходимом.

Сила (которая по второму закону Ньютона — произведение массы на ускорение):

сила вращение формула расчет

и момент:

момент силы расчет формула вращение

И вот тут вспомним уже третий закон Ньютона — действию всегда есть равное и противоположное противодействие, а значит действию найденного нами момента будет сопротивляться — момент инерции.

Вспомним также, что, как и со статическими моментами, на разные точки тела, удаленные от оси вращения на разные расстояния будет действовать разный момент, а общий момент можно получить их просуммировав:

сумма моментов вращение формула

При этом значения вращающего момента и момента инерции будут равны, а сами моменты направлены в противоположные стороны. При постоянной угловой скорости вращения, например w = 1, основными величинами, характеризующими вращающий момент или момент инерции будут масса материальных точек, составляющих тело, и расстояния от этих точек до оси вращения. Но, как я уже показал, рассказывая про статические моменты, массу точек для изотропных (в данном случае имеющих одинаковую плотность) объектов можно выносить за скобки и рассматривать исключительно геометрию. Формула момента инерции примет следующий вид:

Момент инерции расчет формула интеграл

Почему Iр? Потому что мы с вами оперировали радиусом и углом поворота (в формуле угловой скорости) — т.е. использовали полярную систему отсчета (что и демонстрирует индекс p).

Таким образом момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении.

Как найти момент инерции

Чтобы немного упростить себе операции со всеми этими величинами перейдем к родной и понятной  системе отсчета: перпендикулярным осям X и Y. Возьмем случайное сечение стержня и рассмотрим интегралы, как мы уже делали со статическими моментами:

Момент инерции интеграл формула

Первые два интеграла называются осевыми моментами инерции относительно осей x и y, а третий — центробежным моментом инерции сечения относительно осей x, y. Теперь рассмотрим случай параллельного переноса осей , не вдаваясь глубоко в вычисление интегралов.

Для осей  x1=x+a, y1=y+b моменты инерции будут равны: 

Параллельный перенос расчет интеграл формула момент инерции

Если вы, как и часть прочитавших эту статью перед публикацией, не имеете черного пояса и седьмого дана в интегральных преобразованиях, то:

интеграл формула момент инерции интеграл формула момент инерции

т.к. 

квадрат суммы формула расчет бином ньютона

и 

интеграл формула момент инерции

Тут первый интеграл — Ix1, второй интеграл — Sx1, а третий раскрывается в площадь при нулевом свободном члене.

Надеюсь, понятно, что при параллельном переносе по y изменяется только ось (буква). 

В последнем случае мы рассматриваем перенос по обеим осям сразу.

Где:
Ix — очевидно, момент инерции относительно оси x
Sx — статический момент сечения относительно оси y
F — площадь сечения

А теперь предположим, что некие оси x1 и y1  являются центральными, тогда и выражения упрощаются и принимают вид:

моменты инерции формула параллельный перенос

Немного проясню обозначение осей:

Центральными называются оси, проходящие через центр тяжести фигуры, т. е. статические моменты относительно этих осей равны нулю.

Главными называются оси, в которых центробежный момент инерции (Ixy) равен нулю. Если фигура имеет хотя бы одну ось симметрии, то эта ось является главной осью.

Оси, относительно которых центробежный момент инерции равен нулю, а осевые моменты инерции принимают экстремальные значения называются главными осями. Если эти оси являются также и центральными, то они называются главными центральными осями. Осевые моменты инерции относительно главных осей называются главными моментами инерции.

 И теперь можно уже коснуться практики: речь о моментах инерции простых сечений.

Момент инерции прямоугольника

Определим осевые моменты инерции прямоугольника со сторонами b и h относительно осей x и y, проходящих через его центр тяжести. В качестве элементарной площадки dA возьмем полоску шириной b и высотой . Тогда будем иметь:

моменты инерции формула прямоугольник

Не прибегая к вычислениям, замечу, что для момента инерции относительно оси Y изменится только положение сторон b и h. Следовательно:

моменты инерции формула прямоугольник расчет

Момент инерции квадрата

Прямоугольник со сторонами b=h=a. Следовательно:

моменты инерции формула квадрат расчет

Момент инерции круга

моменты инерции формула круг расчет

Тут воспользуемся полярным моментом инерции относительно центра круга. Определим его, как сумму колец с толщиной dp:

Сопромат. Геометрические характеристики сечения. Моменты инерции

Момент инерции кольца

А здесь – явная аналогия с моментом инерции круга:

моменты инерции формула кольцо расчет

Как мы видим, момент инерции кольца это разность моментов инерции большего и меньшего кругов.

Пример нахождения момента инерции тавра

Найдём осевые моменты инерции тавра (рисунок 5), приведенного на рисунке, относительно центральных осей xc и yc.

Пример расчет тавр сечение стержень моменты инерции

Рисунок 8. Тавр, положение осей

Так как оси x1 и x2 являются центральными осями для простых фигур в виде прямоугольников, для определения момента инерции фигуры относительно оси xc воспользуемся формулой.

моменты инерции формула расчет пример

Момент инерции относительно оси yc получим путем сложения моментов инерции простых фигур относительно этой же оси, так как ось yc является общей центральной осью для простых фигур и для всей фигуры.

моменты инерции формула расчет пример

Центробежный момент инерции относительно осей xc и yc равен нулю, так как ось инерции yc является главной осью (осью симметрии фигуры).

Обобщение и подведение итогов

Момент инерции является мерой инертности тела при вращательном движении, подобно тому как масса является мерой инертности тела при поступательном прямолинейном движении. В статике момент инерции применяется в определении прогибов, расчетах конструкций на касательные и нормальные напряжения. Момент инерции также, как и статические моменты, характеризует положение осей относительно сечения элемента. Так у нас появляются:

Центральные оси, проходящие через центр тяжести фигуры, т. е. статические моменты относительно этих осей равны нулю.

Главные оси, в которых центробежный момент инерции (Ixy) равен нулю, а осевые моменты инерции — максимальны. Если фигура имеет хотя бы одну ось симметрии, то эта ось является главной осью.

При этом главные и центральные оси могут совпадать!

Список использованных источников

  1. Александров А.В. Сопротивление материалов: Учеб. для ВУЗов/ А.В. Александров, В.Д. Потапов, Б.П. Державин; под ред. А.В. Александрова – 3-е изд. испр. – М.: Высш. шк., 2003. – 560 с.: ил. ISBN 5-06-003732-0
  2. Дарков А.В., Шпиро Г.С. Сопротивление материалов – Учеб. для техн. вузов – 5-е изд. перераб. и дополн. – М.: Высш. шк., 1989 – 624 с. ил.
  3. Г.И. Беликов. Геометрические характеристики поперечных сечений стержней. Учебно-практическое пособие. — Волгоград: ВолгГАСУ, 2015. — 56 с. — ISBN 978-5-98276-752-3

Автор: Марк Ершов
Редактор, факт-чекер: К.А.Овчинников

5 331

Осевым моментом инерции
сечения относительно данной оси
называется сумма произведений элементарных
площадей dA
на квадрат их расстояний до данной оси
(например, x
или y),
которая распространяется на всю площадь
сечения A.


Полярным моментом
инерции сечения относительно данной
точки (полюс О) называется сумма
произведений элементарных площадей dA
на квадраты их расстояний до этой точки,
которая распространяется на всю площадь
сечения А.

Осевые и полярный
моменты инерции всегда положительны и
выражаются в м4
или в см4

Центробежным моментом
инерции сечения относительно осей
координат (например, осей x
или y)
называется сумма произведений элементарных
площадей dA
на их расстояния до этих осей, которая
распространяется на всю площадь сечения
А

3) Определение моментов инерции относительно параллельных и повёрнутых координатных осей.

4) Главные оси инерции.
Главные моменты инерции.

Главными осями инерции
называют такие оси, относительно которых
центробежный момент инерции равен 0.

Моменты инерции
относительно главных осей инерции
сечения называются главными моментами
инерции.

5) Вычисление моментов
инерции сложных профилей.

Момент инерции сложной
фигуры равен сумме моментов инерции её
составных частей

4.
НАПРЯЖЕННОЕ И ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ
В ТОЧКЕ

1. Понятие о напряженном
состоянии в точке. Главные площадки,
главные напряжения. Виды напряженных
состояний. Закон парности касательных
напряжений.

Для исследования
напряженного состояния в какой-либо
точке в окрестностях этой точки вырезают
параллелепипед со сторонами dx,dy,dz.
Площадки по которым действуют только
нормальные напряжения называются
главными, а соответствующие им нормальные
напряжения главными напряжениями.
Различают линейное, плоское и объёмное
напряженные состояния.

Всегда должно
соблюдаться правило:
σ1
> σ
2
> σ
3

Линейное -только одно
из главных напряжений не равно 0;

Плоское – главные
напряжения σ1
и σ2 не
равны 0,а σ3=0;

Объёмное – все 3 напр.
не равны 0.

2. Плоское напряжённое
состояние. Напряжения по наклонной
площадке.

Вырежем
из пластинки элементарный параллелепипед
в окрестностях произвольной точки K. В
общем случае на выделенный элемент
будут действовать нормальные и касательные
напряжения.

Первый
индекс у касательного напряжения,
например τyz
, показывает, что вектор касательного
напряжения параллелен оси y.
Второй индекс показывает, что данное
касательное напряжение действует на
площадке с нормалью, совпадающей с осью
z.
У нормального напряжения оба эти индекса
совпадают, и показывается лишь один

Примем следующие
правила знаков для напряжений. Нормальное
напряжение будем считать положительным
при растяжении и отрицательным при
сжатии. Касательное напряжение будем
считать положительным, если оно стремится
повернуть бесконечно малый элемент по
ходу часовой стрелки, и наоборот.

Напряжения по наклонным площадкам


;

;

3.
Плоское
напряжённое состояние. Определение
главных напряжений и их направлений.
Величина наибольших касательных
напряжений

;

±

;

4. Круг Мора для
напряжений и определение по нему величины
и направления напряжений на любых
площадках.

Зависимости
напряжений σα
и τα
от угла α
имеют наглядную геометрическую
интерпретацию в виде круговой диаграммы,
предложенной немецким ученым О. Мором.

Введем
обозначения:

;


; Тогда:

;

;

5.
ИЗГИБ

1. Виды балок, опоры
и опорные реакции.

Простая двухопорная
балка, расстояние между опорами называется
пролётом балки;

Консоль – балка с одним
жёстко заделанным и другим свободным
концами;

Консольная балка –
двухопорная балка, имеющая одну или две
консоли (часть балки продолжающаяся за
опору);

Балка с промежуточным
шарниром;

Многопролетная
неразрезная балка;

Шарнирно-подвижная
опора – возникает только Ra,
направленная перпендикулярно возможному
перемещению;

Шарнирно-неподвижная
– опорная реакция раскладывается на
вертикальную RA
и горизонтальную НА;

Жёсткая заделка – RA
HA
и опорный момент заделки МА.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

malykh89 писал(а):

А при раскрытии внутреннего интеграла у берется за константу?

Да. Вычисляете первообразную по $z$, подставляете пределы интегрирования. После этого остаётся интеграл по $y$.

malykh89 писал(а):

А потом z?

А никакого $z$ в этот момент уже не будет.

malykh89 писал(а):

Просто на первом курсе не изучаются кратные интегралы.

malykh89 писал(а):

Я читал, что квадрат разбивают на мн-во бесконечно малых стержней, однако я не понял как считают их моменты инерции относительно центра масс квадрата.

Внутренний интеграл (по $z$) фактически и даёт этот самый момент инерции “бесконечно тонкого” стержня относительно центра квадрата. Точнее, этот момент равен

$$frac m{a^2}dyintlimits_{-frac a2}^{frac a2}(y^2+z^2)dztext{.}$$

То есть, мы как бы разбиваем квадрат на “бесконечно узкие” полоски, параллельные стороне квадрата. Момент инерции каждой полоски относительно центра квадрата вычисляется интегрированием или по готовой формуле для стержня. А затем суммируем (интегрируем) моменты инерции этих полосок и получаем момент инерции квадрата.

P.S. Что-то Вы неожиданно вспомнили эту задачу через 7 месяцев…

Добавить комментарий