Как найти момент инерции по графику

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Момент инерции
{displaystyle J=int limits _{(m)}r^{2}mathrm {d} m}
Размерность L2M
Единицы измерения
СИ кг·м²
СГС г·см²

Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения (т.е. прямую), но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от типа базового множества до которого отсчитываются расстояния от элементарных масс.

Осевой момент инерции[править | править код]

Осевые моменты инерции некоторых тел

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси[1]:

{displaystyle J_{a}=sum _{i=1}^{n}m_{i}r_{i}^{2},}

где:

  • mi — масса i-й точки,
  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

dm = ρ dV — масса малого элемента объёма тела dV,
ρ — плотность,
r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

{displaystyle J_{a}=rho int limits _{(V)}r^{2}dV.}

Теорема Гюйгенса — Штейнера[править | править код]

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Гюйгенса — Штейнера, момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями[1]:

{displaystyle J=J_{c}+md^{2},}

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

{displaystyle J=J_{c}+md^{2}={frac {1}{12}}ml^{2}+mleft({frac {l}{2}}right)^{2}={frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел[править | править код]

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело Описание Положение оси a Момент инерции Ja
Traegheit a punktmasse.png Материальная точка массы m На расстоянии r от точки, неподвижная mr^{2}
Traegheit b zylindermantel.png Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра mr^{2}
Traegheit c vollzylinder.png Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра {frac {1}{2}}mr^{2}
Traegheit d hohlzylinder2.png Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра m{frac {r_{2}^{2}+r_{1}^{2}}{2}}[Комм 1]
Traegheit e vollzylinder 2.png Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна образующей цилиндра и проходит через его центр масс {1 over 4}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit f zylindermantel 2.png Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс {1 over 2}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit g stab1.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс {frac {1}{12}}ml^{2}
Traegheit h stab2.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец {frac {1}{3}}ml^{2}
Traegheit i kugel1.png Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы {frac {2}{3}}mr^{2}
Traegheit j kugel1.png Шар радиуса r и массы m Ось проходит через центр шара {frac {2}{5}}mr^{2}
Cone (geometry).svg Конус радиуса r и массы m Ось конуса {frac {3}{10}}mr^{2}
Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину (при высоте) {frac {1}{24}}m(a^{2}+12h^{2})
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс {frac {1}{12}}ma^{2}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс {frac {1}{6}}ma^{2}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс {frac {1}{12}}m(a^{2}+b^{2})
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс {displaystyle {frac {mr^{2}}{6}}left[1+2cos(pi /n)^{2}right]}
Torus 3d.png Тор (полый) с радиусом направляющей окружности R, радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс {displaystyle I=mleft({frac {3}{4}},r^{2}+R^{2}right)}

Вывод формул[править | править код]

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

{displaystyle J=sum dJ_{i}=sum R_{i}^{2}dm.qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J=sum R^{2}dm=R^{2}sum dm=mR^{2}.

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

dm=rho dV=rho cdot 2pi rhdr;qquad dJ=r^{2}dm=2pi rho hr^{3}dr.

Момент инерции толстого кольца найдём как интеграл

J=int _{R_{1}}^{R}dJ=2pi rho hint _{R_{1}}^{R}r^{3}dr=
{displaystyle =2pi rho hleft.{frac {r^{4}}{4}}right|_{R_{1}}^{R}={frac {1}{2}}pi rho hleft(R^{4}-R_{1}^{4}right)={frac {1}{2}}pi rho hleft(R^{2}-R_{1}^{2}right)left(R^{2}+R_{1}^{2}right).}

Поскольку объём и масса кольца равны

V=pi left(R^{2}-R_{1}^{2}right)h;qquad m=rho V=pi rho left(R^{2}-R_{1}^{2}right)h,

получаем окончательную формулу для момента инерции кольца

J={frac {1}{2}}mleft(R^{2}+R_{1}^{2}right).

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

J={frac {1}{2}}mR^{2}.

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh, перпендикулярные оси конуса. Радиус такого диска равен

r={frac {Rh}{H}},

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска.
Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left({frac {Rh}{H}}right)^{4}dh;

Интегрируя, получим

{begin{aligned}J=int _{0}^{H}dJ={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}int _{0}^{H}h^{4}dh={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}left.{frac {h^{5}}{5}}right|_{0}^{H}=={frac {1}{10}}pi rho R^{4}H=left(rho cdot {frac {1}{3}}pi R^{2}Hright){frac {3}{10}}R^{2}={frac {3}{10}}mR^{2}.end{aligned}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r={sqrt {R^{2}-h^{2}}}.

Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left(R^{2}-h^{2}right)^{2}dh={frac {1}{2}}pi rho left(R^{4}-2R^{2}h^{2}+h^{4}right)dh.

Момент инерции шара найдём интегрированием:

{begin{aligned}J&=int _{-R}^{R}dJ=2int _{0}^{R}dJ=pi rho int _{0}^{R}left(R^{4}-2R^{2}h^{2}+h^{4}right)dh=\&=pi rho left.left(R^{4}h-{frac {2}{3}}R^{2}h^{3}+{frac {1}{5}}h^{5}right)right|_{0}^{R}=pi rho left(R^{5}-{frac {2}{3}}R^{5}+{frac {1}{5}}R^{5}right)={frac {8}{15}}pi rho R^{5}=\&=left({frac {4}{3}}pi R^{3}rho right)cdot {frac {2}{5}}R^{2}={frac {2}{5}}mR^{2}.end{aligned}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

J_{0}={frac {2}{5}}MR^{2}={frac {8}{15}}pi rho R^{5}.

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

{displaystyle {begin{aligned}J&={frac {dJ_{0}}{dR}}dR={frac {d}{dR}}left({frac {8}{15}}pi rho R^{5}right)dR=\&={frac {8}{3}}pi rho R^{4}dR=left(rho cdot 4pi R^{2}dRright){frac {2}{3}}R^{2}={frac {2}{3}}mR^{2}.end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

dm={frac {mdr}{l}};qquad dJ=r^{2}dm={frac {mr^{2}dr}{l}}.

Интегрируя, получим

J=int _{-l/2}^{l/2}dJ=2int _{0}^{l/2}dJ={frac {2m}{l}}int _{0}^{l/2}r^{2}dr={frac {2m}{l}}left.{frac {r^{3}}{3}}right|_{0}^{l/2}={frac {2m}{l}}{frac {l^{3}}{24}}={frac {1}{12}}ml^{2}.

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l2. По теореме Штейнера новый момент инерции будет равен

J=J_{0}+mr^{2}=J_{0}+mleft({frac {l}{2}}right)^{2}={frac {1}{12}}ml^{2}+{frac {1}{4}}ml^{2}={frac {1}{3}}ml^{2}.

Безразмерные моменты инерции планет и их спутников[2][3][4]

Безразмерные моменты инерции планет и спутников[править | править код]

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра[5][6].

Центробежный момент инерции[править | править код]

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины[1][7]:

{displaystyle J_{xy}=int limits _{(m)}xydm=int limits _{(V)}xyrho dV,}
{displaystyle J_{xz}=int limits _{(m)}xzdm=int limits _{(V)}xzrho dV,}
{displaystyle J_{yz}=int limits _{(m)}yzdm=int limits _{(V)}yzrho dV,}

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела[7].

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции[7].

Геометрические моменты инерции[править | править код]

Геометрический момент инерции объёма относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Va}=int limits _{(V)}r^{2}dV,}

где, как и ранее r — расстояние от элемента dV до оси a.

Размерность JVa — длина в пятой степени (mathrm {dim} J_{Va}=mathrm {L^{5}} ), соответственно единица измерения СИ — м5.

Геометрический момент инерции площади относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Sa}=int limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S, а dS — элемент этой поверхности.

Размерность JSa — длина в четвёртой степени (mathrm {dim} J_{Sa}=mathrm {L^{4}} ), соответственно единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см4.

Через геометрический момент инерции площади выражается момент сопротивления сечения:

{displaystyle W={frac {J_{Sa}}{r_{max}}}.}

Здесь rmax — максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h и шириной b: J_{y}={frac {bh^{3}}{12}}

J_{z}={frac {hb^{3}}{12}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H и B, а по внутренним h и b соответственно J_{z}={frac {BH^{3}}{12}}-{frac {bh^{3}}{12}}={frac {1}{12}}(BH^{3}-bh^{3})

J_{y}={frac {HB^{3}}{12}}-{frac {hb^{3}}{12}}={frac {1}{12}}(HB^{3}-hb^{3})

Круга диаметром d J_{y}=J_{z}={frac {pi d^{4}}{64}}

Момент инерции относительно плоскости[править | править код]

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости[9].

Если через произвольную точку O провести координатные оси x,y,z, то моменты инерции относительно координатных плоскостей xOy, yOz и zOx будут выражаться формулами:

{displaystyle J_{xOy}=sum _{i=1}^{n}m_{i}z_{i}^{2} ,}
{displaystyle J_{yOz}=sum _{i=1}^{n}m_{i}x_{i}^{2} ,}
{displaystyle J_{zOx}=sum _{i=1}^{n}m_{i}y_{i}^{2} .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции[править | править код]

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции) {displaystyle J_{O}}  — это величина, определяемая выражением[9]:

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей[9]:

{displaystyle J_{O}={frac {1}{2}}left(J_{x}+J_{y}+J_{z}right),}
{displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции[править | править код]

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором {displaystyle {vec {s}}=leftVert s_{x},s_{y},s_{z}rightVert ^{T},leftvert {vec {s}}rightvert =1}, можно представить в виде квадратичной (билинейной) формы:

{displaystyle I_{s}={vec {s}}^{T}cdot {hat {J}}cdot {vec {s}},qquad } (1)

где {displaystyle {hat {J}}} — тензор инерции. Матрица тензора инерции симметрична, имеет размеры 3times 3 и состоит из компонент центробежных моментов:

{displaystyle {hat {J}}=leftVert {begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\-J_{yx}&J_{yy}&-J_{yz}\-J_{zx}&-J_{zy}&J_{zz}end{array}}rightVert ,}
{displaystyle J_{xy}=J_{yx},quad J_{xz}=J_{zx},quad J_{zy}=J_{yz},quad }{displaystyle J_{xx}=int limits _{(m)}(y^{2}+z^{2})dm,quad J_{yy}=int limits _{(m)}(x^{2}+z^{2})dm,quad J_{zz}=int limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора {displaystyle {hat {J}}}:

{displaystyle {hat {J}}_{d}={hat {Q}}^{T}cdot {hat {J}}cdot {hat {Q}},}
{displaystyle {hat {J}}_{d}=leftVert {begin{array}{ccc}J_{X}&0&0\0&J_{Y}&0\0&0&J_{Z}end{array}}rightVert ,}

где {displaystyle {hat {Q}}} — ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины {displaystyle J_{X},J_{Y},J_{Z}} — главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

{displaystyle I_{s}=J_{X}cdot s_{x}^{2}+J_{Y}cdot s_{y}^{2}+J_{Z}cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на {displaystyle I_{s}}

{displaystyle left({s_{x} over {sqrt {I_{s}}}}right)^{2}cdot J_{X}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}cdot J_{Y}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}cdot J_{Z}=1}

и произведя замены:

{displaystyle xi ={s_{x} over {sqrt {I_{s}}}},eta ={s_{y} over {sqrt {I_{s}}}},zeta ={s_{z} over {sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах {displaystyle xi eta zeta }:

{displaystyle xi ^{2}cdot J_{X}+eta ^{2}cdot J_{Y}+zeta ^{2}cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

{displaystyle r^{2}=xi ^{2}+eta ^{2}+zeta ^{2}=left({s_{x} over {sqrt {I_{s}}}}right)^{2}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}={1 over I_{s}}.}

См. также[править | править код]

  • Кинематика твёрдого тела
  • Метод главных компонент
  • Сопротивление материалов
  • Теорема Штейнера
  • Теорема Кёнига (механика)
  • Механические приложения тройного интеграла
  • Механические приложения двойного интеграла
  • Полярный момент инерции
  • Список моментов инерции
  • Момент силы
  • Момент импульса

Комментарии[править | править код]

  1. При получении этой формулы путём вычитания момента инерции сплошного цилиндра радиусом r1 из цилиндра радиусом r2 необходимо обратить внимание, что их массы при этом не будут одинаковыми или равны m. При этом должно выполняться условие {displaystyle m_{2}-m_{1}=m}. Из формулы для массы соответствующего цилиндра можно определить, что в этом случае {displaystyle m_{1}=m{frac {r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}}}} и {displaystyle m_{2}=m{frac {r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}}}. В правильности использования знака «+» в этой формуле также можно убедиться, если сравнить моменты инерции полого толстостенного и сплошного цилиндров с одинаковыми массами. Действительно, у первого из этих цилиндров масса в среднем сосредоточена дальше от оси, чем у второго, поэтому и момент инерции этого цилиндра должен быть больше, чем у сплошного. Именно такое соотношение моментов инерции и обеспечивает знак «+». С другой стороны, в пределе при стремлении r1 к r2 формула для полого толстостенного цилиндра должна приобрести тот же вид, что и формула для полого тонкостенного цилиндра. Очевидно, что такой переход происходит только при использовании формулы со знаком «+».

Примечания[править | править код]

  1. 1 2 3 Тарг С. М. Момент инерции // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 206—207. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Planetary Fact Sheet. Дата обращения: 31 августа 2010. Архивировано 14 марта 2016 года.
  3. Showman, Adam P.; Malhotra, Renu. The Galilean Satellites (англ.) // Science. — 1999. — Vol. 286, no. 5437. — P. 77—84. — doi:10.1126/science.286.5437.77. — PMID 10506564.
  4. Margot, Jean-Luc; et al. Mercury’s moment of inertia from spin and gravity data (англ.) // Journal of Geophysical Research  (англ.) (рус. : journal. — 2012. — Vol. 117. — doi:10.1029/2012JE004161.
  5. Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.
  6. Пантелеев В. Л. Физика Земли и планет. Гл. 3.4 — Гравитационное поле планеты. Дата обращения: 31 августа 2010. Архивировано 3 октября 2013 года.
  7. 1 2 3 Тарг С. М. Краткий курс теоретической механики. — М.: «Высшая школа», 1995. — С. 269—271. — 416 с. — ISBN 5-06-003117-9.
  8. 1 2 Бухгольц Н. Н. Основной курс теоретической механики. — 4-е изд. — М.: «Наука», 1966. — Т. 2. — С. 131.
  9. 1 2 3 Яблонский А. А. Динамика // Курс теоретической механики. — 3-е изд. — М.: «Высшая школа», 1966. — Т. II. — С. 102—103. — 411 с.

Литература[править | править код]

  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Архивная копия от 7 января 2014 на Wayback Machine Издательство Физического факультета МГУ, 1997.
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560 с.
  • Беляев Н. М. Сопротивление материалов. Главная редакция физико-математической литературы изд-ва «Наука», 1976. — 608 с.

Ссылки[править | править код]

  • Определение момента инерции тел простой формы.

Графическое представление моментов инерции

Графическое представление моментов инерции

Графическое представление моментов инерции

Графическое представление моментов инерции

Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.png

Графическое представление моментов инерции

  • Графическое отображение момента инерции Расчет момента инерции по формулам (2.45) или (2.43), (2.44) можно заменить простой графической структурой. В этом случае возникают прямые и обратные проблемы. Первый заключается в определении момента инерции для любой центральной оси z, y в известном направлении главной оси и величины главного центрального момента

инерции[формула (2.45) J. Известным моментом инерции J#JZy является уравнение (2.43), (2.44) и (2.38) 1 относительно любой системы с прямоугольной центральной осью. P R I m a I s a d A h a. необходимо определить моменты инерции J z для осей z, y, Jyy Jzy (рис. 31, А)

известны направление и величина направления главной

Людмила Фирмаль

оси J u, Jv. Конечно, мы предполагаем, что Ju>Jv. Аналитическое решение дано по формуле (2.45). Графическое построение осуществляется следующим образом. Рассмотрим»геометрическую плоскость» и обратимся к ней во введении 27 прямоугольная система координат. На горизонтальной оси откладываем момент инерции оси (Ju, Jv, Jz, Jy и др.).Центробежный / CB (Jzy и др.), и вертикальная

ось. да что с тобой такое? При правильном масштабе мы откладываем начало координат от начала координат вдоль оси абсцисс (рис. 31, б) отрезок примерно A и S равен основному моменту инерции. Отрезок AB DETA пополам, в результате чего радиус SA и BC= = SA = точки описывают окружность, называемую кругом инерции. Для определения момента инерции относительно оси g его проводят под углом а к главной оси, а от центра окружности под углом 2А выполняют луч CDZ (положительный угол-против часовой стрелки). Покажем, что она равна оси Jzy>для момента инерции для

  • данной оси z и центробежного момента для горизонтальной оси. DZKZ=CDZ sin2A= — и-J°sin2A. (2.46) формула (2.46), ОКГ=О В+против+СКГ-Л+4″(4-СП)+ +4-с°s2a по=4-4<1+С О s2a по)+4″и в<1-С О s2a по>= Иногда эту точку называют главной точкой или фокусом инерционного круга на 1, Двадцать восемь. =JTI cos2a — / — Jv sin2a. основываясь на Формуле (2.47) Ha (2.45), мы видим OKZ=J2. Так,

в соответствующем масштабе абсцисса точки инерционного круга дает значение осевого момента инерции и вертикальной оси центробежного момента. Для того чтобы получить значение момента инерции для оси Y9, которая перпендикулярна оси, положительный угол p-a+удерживается на главной оси h, а горизонтальная координата задней точки Dy (отрезка oku) от центра круговой балки ccy при определенном угле 2P=2 равна вертикальной оси этой точки ktydy дает нам значение момента инерции, которое имеет о

братный знак (—Jzy), соответствующий повороту оси на 90 градусов. Заметим,

Людмила Фирмаль

что две взаимно перпендикулярные оси соответствуют двум точкам окружности(Dz. Dy) лежа на одном диаметре. Проведите прямую линию от точки Dz (пунктирная линия на рисунке. 31, Б) параллельно оси d, которой она соответствует. Точка M на пересечении с окружностью называется полюсом окружности с инерцией 1. Легко заметить, что линия, соединяющая полюс с любой точкой окружности, указывает направление соответствующей оси с этой точкой окружности. Укажем, например, что линии Ма дают направление главной оси И. Угол между осью и углом DZMA, как

вписано для построения угла ACDZ и равный полуцентровому углу ACDZ на основе той же дуги AD2, равен складке угла между осью и углом DZMA, т. е. Поэтому линия m, составляющая направление оси Z, является углом и параллельна оси I. О б р а т н а я с а д а н а. будем знать момент инерции J2, JI, J2y, поперечного сечения балки против нескольких систем Вертикальная ось z, y(рис. 32, а). Необходимо определить главный момент инерции и положение главной оси. Для определенности конструкции, Jz>Jy, J? г>0. Это позволяет: 32, б) построить точки Dz и Dy, соответствующие моменту

инерции осей z и Y. OKG—J z, oku=Jy, координаты-центробежный момент инерции, KZDZ-Jgo, KyDy-LSU. Так как обе точки принадлежат к одному диаметру, соединяя их, мы получаем центр инерциальной окружности. Из центра C нарисуйте окружность поперек абсциссы с радиусом CDZ=ccy=(2.48) точка a N B. действительно.: __ ОА = Оку+кус+с=дя+ + | / 4 = =4Il+а)+ 29ОБ = OKU4-to us-SV-Jy+ — | / +Jly= — 4-КА+А) — К (А) 2+4 / У Чтобы определить направление главной оси, постройте фокус инерционного круга. Для этого нарисуйте линию

из точки D z (Dy Сфокусируйте лелоу ось z (y) на пересечении с окружностью фокуса M, сфокусируйте точку соединения A, окружность B, получите направление и главную ось v(рис. 32). Графическое решение обратной задачи, соответственно, будет описано в четырех случаях, показанных на рисунке. 29. 33.

Смотрите также:

  • Сопромат — задачи с решениями и примерами
  • Помощь по сопромату и решение задач на заказ

Момент инерции тела относительно оси

Пусть
имеется твердое тело. Выберем некоторую
прямую ОО (рис.6.1), которую будем называть
осью (прямая OO может быть и вне тела).
Разобьем тело на элементарные участки
(материальные точки) массами
,
находящиеся от оси на расстоянии
соответственно.

Моментом
инерции материальной точки относительно
оси (OO) называется произведение массы
материальной точки на квадрат ее
расстояния до этой оси:

. (6.1)

Моментом
инерции (МИ) тела относительно оси (OO)
называется сумма произведений масс
элементарных участков
тела
на квадрат их расстояния до оси:

. (6.2)

Как
видно момент инерции тела есть величина
аддитивная – момент инерции всего тела
относительно некоторой оси равен сумме
моментов инерции отдельных его частей
относительно той же оси.

В
данном случае

.

Измеряется
момент инерции в кгм2.
Так как

, (6.3)

где


плотность вещества,
– объемi
– го участка, то

,

или,
переходя к бесконечно малым элементам,

. (6.4)

Формулу
(6.4) удобно использовать для вычисления
МИ однородных тел правильной формы
относительно оси симметрии, проходящей
через центр масс тела. Например, для МИ
цилиндра относительно оси, проходящей
через центр масс параллельно образующей,
эта формула дает

,

где
т
– масса; R
– радиус цилиндра.

Большую
помощь при вычислении МИ тел относительно
некоторых осей оказывает теорема
Штейнера: МИ тела I
относительно любой оси равен сумме МИ
этого тела Ic
относительно оси, проходящей через
центр масс тела и параллельной данной,
и произведения массы тела на квадрат
расстояния d
между указанными осями:

. (6.5)

Момент силы относительно оси

Пусть
на тело действует сила F.
Примем для простоты, что сила F
лежит в плоскости, перпендикулярной
некоторой прямой ОО (рис.6.2,а),
которую назовем осью (например, это ось
вращения тела). На рис. 6.2,а
А
– точка приложения силы F,
– точка пересечения оси с плоскостью, в
которой лежит сила;r
радиус-вектор, определяющий положение
точки А
относительно точки О‘;
OB
= b
плечо
силы. Плечом силы относительно оси
называется наименьшее расстояние от
оси до прямой, на которой лежит вектор
силы F
(длина перпендикуляра, проведенного из
точки
к
этой прямой).

Моментом
силы относительно оси называется
векторная величина, определяемая
равенством

. (6.6)

Модуль
этого вектора
.
Иногда, поэтому говорят, что момент силы
относительно оси – это произведение
силы на ее плечо.

Если
сила F
направлена произвольно, то ее можно
разложить на две составляющие;
и(рис.6.2,б),
т.е.
+,
где
составляющая, направленная параллельно
оси ОО, алежит в плоскости, перпендикулярной
оси. В этом случае под моментом силыF
относительно оси OO понимают вектор

. (6.7)

В
соответствии с выражениями (6.6) и (6.7)
вектор М
направлен вдоль оси (см. рис.6.2, а,б).

Момент импульса тела относительно оси вращения

Пусть
тело вращается вокруг некоторой оси ОО
с угловой скоростью.
Разобьем это тело мысленно на элементарные
участки с массами
,
которые находятся от оси соответственно
на расстояниях
и вращаются по окружностям, имея линейные
скоростиИзвестно, что величина равная– есть импульсi-участка.
Моментом импульса i-участка
(материальной точки) относительно оси
вращения называется вектор (точнее
псевдовектор)

, (6.8)

где
ri

радиус-вектор, определяющий положение
i
– участка относительно оси.

Моментом
импульса всего тела относительно оси
вращения называют вектор

(6.9)

модуль
которого
.

В
соответствии с выражениями (6.8) и (6.9)
векторы

инаправлены
по оси вращения (рис.6.3). Легко показать,
что момент импульса тела L
относительно оси вращения и момент
инерции I
этого тела относительно той же оси
связаны соотношением

. (6.10)

Добавить комментарий