Как найти момент инерции проволоки

Определить момент инерции J проволочного равностороннего треугольника со стороной а=10 см относительно: 1) оси, лежащей в плоскости

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,287
  • гуманитарные 33,620
  • юридические 17,900
  • школьный раздел 607,113
  • разное 16,829

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Момент инерции сечения

Меня часто спрашивают: «…а что такое моменты инерции в сопротивлении материалов и зачем они вообще?» Об этом в сегодняшней теме

Моменты инерции сечения из простых фигур

Начнем с моментов инерции простых фигур и на их примере выясним для сложных фигур и составных сечений из стандартных профилей.

Начать объяснение о том, что такое моменты инерции нужно с того, что спросить, а что такое площадь?

Обычная площадь квартиры, огорода сечения стержня? Зачем она и почему?

Так вот площадь это характеристика которую придумали и вывели для разных фигур, чтобы была возможность сравнивать земельные наделы. Не всегда они были прямоугольные или квадратные. А сравнить кто сколько получил в надел было нужно. Вот и вывели такую закономерность для прямоугольника, что если перемножить стороны — получим величину, которую можно будет сравнить с перемноженной высотой на основание деленное пополам для треугольника или для круга Пи умножить на эр в квадрате )). Т.е. площади простых фигур

Что касается моментов инерции в сопротивлении материалов, то тут они появились, когда стало понятно, что есть какая то геометрически измеримая величина для разных форм сечения, которая позволит сравнить сопротивляемость этих сечений изгибу.

Проще говоря бревно, которое выполняет роль балки и изгибается может иметь форму прямоугольника, квадрата или круга, а нам нужно сравнить их сопротивляемость изгибу. Вот для этих целей выводили формулу напряжений и оказалось, что в числителе оказался изгибающий момент, а в знаменателе момент инерции:

на балке изображены главные центральные оси z y

прогибы для таких балок будут разными относительно осей z и y, т.к. моменты инерции будут разные.

Вывод моментов инерции для простых фигур

Так вот ниже я приведу видео уроки, плейлист, в котором один за одним выведены моменты инерции для простых фигур, а именно для прямоугольника, треугольника и круга. А затем приводится стандартный расчет моментов инерции для более сложной фигуры, которая состоит из нескольких простых. Всегда сложную фигуру можно разбить на несколько простых. Исходя из этого расчет и ведется.

Моменты инерции измеряются в единицах длины в 4 степени, т.е. см⁴ или м⁴. Чаще всего используется см⁴, т.к. такие единицы измерения приведены в сортаменте прокатной стали.

Момент инерции, это величина, которая показывает сопротивляемость сечения изгибу. На примере линейки хорошо понятно что изгиб в одной плоскости и изгиб в другой плоскости будут сильно отличаться, хотя площадь сечения не меняется. Вот это и было выведено в формуле для напряжений и для прогибов. Что величина, которая сопротивляется изгибающему моменту есть интеграл до координаты центра тяжести площадки в квадрате на площадь элементарной площадки.

Центральными осями называют оси, которые проходят через центр тяжести сечения

Главные оси располагаются в сечении таким образом, что центробежный момент относительно них равен нулю. Т.е. это максимальный и минимальный осевые моменты инерции

Оси, которые проходят через центр тяжести сечения и центробежный момент инерции относительно них равен нулю. При этом данные осевые моменты инерции являются экстремальными, т.е. имеют максимальное и минимальное значение. Именно относительно этих осей ведут расчет и к ним приводят нагрузки. Т.е. если какое нибудь внешнее усилие проходит в стороне от главных центральных осей. Это усилие переносят соблюдая правила переноса к главным центральным осям. Только после этого рассматривают действие сил и находят внутренние усилия относительно главных центральных осей инерции.

При вычислении моментов инерции осевых, при переходе от одних осей к другим появляется центробежный момент инерции, как составляющая пары осевых моментов инерции. И только для главных осей центробежные моменты инерции равны нулю. Именно эти оси мы и отыскиваем в наших расчетах. Поэтому мы ищем величину центробежного момента инерции для не главных осей и из свойства, что главные центральные оси это такие оси, относительно которых центробежный момент инерции равен нулю, находим положение главных центральных осей.

Моменты инерции для прямоугольника

#Сопромат, Моменты инерции. Прямоугольник. Вывод моментов инерции для прямоугольника.

Сопротивление материалов и Моменты инерции для прямоугольника. Понятие моментов инерции, формулы и вывод для прямоугольника. Осевые центробежный моменты инерции. для треугольника вывод моментов инерции в этом видео: https://www.youtube.com/embed/_pixohVoc-4?vq=hd720 Тема моментов инерции возникла в связи стем, что для определения напряжений при изгибе понадобилась геометрическая характеристика, которая сопротивляется внутреннему усилию (изгибающему моменту). В результате вывода формулы напряжений и появилась эта формула, выраженная через интеграл от квадрата координаты помноженной на площадь элементарной площадки. Эту геометрическую характеристику и назвали моментом инерции. пройти полный курс обучения сопромату и строймеху онлайн, по скайпу. Задать вопросы можно: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: zabolotnyiAN@gmail.com — комменты к видео — Телеграм https://t.me/AleksanderCrafts Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-tsena-onlayn-obucheniya-sopromat-i-stroymeh Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

2018-04-09

моменты инерции для прямоугольника для главных центральных осей равны, формула

моменты инерции для прямоугольника для осей проходящих через основные размеры равны, формула

Моменты инерции для треугольника

Сопротивление материалов, Моменты инерции для треугольника. Сопромат вывод моментов инерции

Сопротивление материалов и Моменты инерции для треугольника. Сопромат вывод моментов инерции для простых фигур. Моменты инерции для треугольника. Моменты инерции для осей в треугольнике, которые проходят через основные размеры. Вывод и пояснение к этой теме сопротивления материалов. для прямоугольника вывод моментов инерции в этом видео: https://www.youtube.com/watch?v=v1TE1UW_sRE&feature=youtu.be‎ Тема моментов инерции возникла в связи стем, что для определения напряжений при изгибе понадобилась геометрическая характеристика, которая сопротивляется внутреннему усилию (изгибающему моменту). В результате вывода формулы напряжений и появилась эта формула, выраженная через интеграл от квадрата координаты помноженной на площадь элементарной площадки. Эту геометрическую характеристику и назвали моментом инерции. пройти полный курс обучения сопромату и строймеху онлайн, по скайпу Задать вопросы можно: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: zabolotnyiAN@gmail.com — комменты к видео — Телеграм https://t.me/AleksanderCrafts Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-tsena-onlayn-obucheniya-sopromat-i-stroymeh Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

2018-04-09

Моменты инерции треугольника относительно произвольых осей

Момент инерции круга. Моменты инерции простых фигур. #сопромат

Вывод моментов инерции для круга. Видео урок из темы «Моменты инерции простых фигур». В видео приведен вывод момента инерции полярного, в полярной системе координат Ip Затем выведены моменты инерции осевые Iz, Iy. Задать вопросы можно: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: zabolotnyiAN@gmail.com — комменты к видео — Телеграм https://t.me/AleksanderCrafts Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-tsena-onlayn-obucheniya-sopromat-i-stroymeh Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

2019-09-14

Моменты инерции. Оси центральные и главные. Что это и где. #сопромат

Центральные оси — любая пара взаимно перпендикулярных осей, которые проходят через центр тяжести фигуры Главные оси — оси для которых центробежный момент инерции равен нулю, а осевые моменты имеют максимум и минимум. Об этом и многом другом в видео уроке по моментам инерции в сопротивлении материалов Задать вопросы можно: — через сайт: https://stroymex.online — skype: zabolotnyiAN — email: zabolotnyiAN@gmail.com — комменты к видео — Телеграм https://t.me/AleksanderCrafts Телеграм канал: https://t.me/sroymexOnline Не тратьте время зря, задавайте вопросы. Узнайте стоимость обучения: https://stroymex.online/usloviya-i-tsena-onlayn-obucheniya-sopromat-i-stroymeh Получите первую консультацию бесплатно! Facebook: https://www.facebook.com/SopromatOnline

2019-09-14

Примеры расчетов моментов инерции для сечений

Ниже приводятся примеры расчетов моментов инерции относительно главных центральных осей, объяснение, что такое центробежный момент инерции и почему оси называются главными центральными для примеров:

  • простейшие фигуры — прямоугольник, треугольник
  • составные сечения из простейших треугольника и прямоугольника
  • составные из прокатных профилей

Пример расчета моментов инерции относительно главных центральных осей для простейших фигур

Подробно объясняется как найти центробежный момент инерции, как найти осевые моменты инерции, как относительно центральных и как относительно главных осей для простых фигур.

Пример расчета моментов инерции для сечения состоящего из прямоугольника и треугольника

Сечения балок может быть составным, т.е. таким, которое складывается из нескольких фигур. В примере, в видеоуроке ниже рассказыватся как найти моменты инерции относительно главных центральных осей для такого сечения балки

Расчет моментов инерции сечения составного из стандартных прокатных профилей

В видеоуроке ниже разбирается порядок расчета моментов инерции относительно главных центральных осей для сечения составленого из трех прокатных профилей уголков

Расчет моментов инерции онлайн

При выполнении расчетов часто приходится вычислять моменты инерции сложных сечений относительно различных осей, лежащих в плоскости фигуры. Для стандартных поперечных сечений стержней моменты инерции даны в таблицах ГОСТ 8509-93, ГОСТ 8510-86, ГОСТ 57837-2017, ГОСТ 8240-97. В остальных случаях, для выполнения онлайн расчета момента инерции круга, кольца, треугольника, прямоугольного контура, нестандартных сварных швеллера, уголка и двутавра можно воспользоваться данной страницей нашего сайта.

Момент инерции треугольника

МОМЕНТ ИНЕРЦИИ ТРЕУГОЛЬНИКА

Момент инерции Ix0, м 4

Момент инерции Ix1, м 4

Момент инерции Ix2, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Момент инерции треугольника относительно центральной оси, параллельной одной из его сторон вычисляется по формуле:
Ix0 = b×h 3 / 36;
Момент инерции треугольника относительно оси, совпадающей с одной из его сторон:
Ix1 = b×h 3 / 12;
Момент инерции треугольника относительно оси, параллельной одной из его сторон и проходящей через противоположную вершину:
Ix2 = b×h 3 / 4.

Момент инерции кольца

МОМЕНТ ИНЕРЦИИ КОЛЬЦА

Момент инерции Ix, м 4

Полярный момент инерции Ip, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Момент инерции кольца относительно главной центральной оси:
Ix = π×D 4 /64 – π×d 4 /64;
Полярный момент инерции кольца:
Ip = π×D 4 /32 – π×d 4 /32.

Момент инерции прямоугольника

МОМЕНТ ИНЕРЦИИ ПРЯМОУГОЛЬНИКА

Момент инерции Ix, м 4

Момент инерции Iy, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Момент инерции прямоугольника относительно главных центральных осей:
Ix = (b×h 3 – b1×h1 3 )/12;
Iy = (h×b 3 – h1×b1 3 )/12.

Момент инерции двутавра

МОМЕНТ ИНЕРЦИИ ДВУТАВРА

Толщина полки t, мм

Толщина стенки s, мм

Момент инерции Ix, м 4

Момент инерции Iy, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Моменты инерции двутавра относительно главных центральных осей:
Ix = (B×H 3 – (B – s)×(H – 2t) 3 ) / 12;
Iy = (2t×B 3 + (H – 2t)×s 3 ) / 12.

Момент инерции уголка

МОМЕНТ ИНЕРЦИИ УГОЛКА

Момент инерции Ix, м 4

Момент инерции Iy, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Моменты инерции уголка относительно центральных осей:
Ix = (d×(H – y) 3 + B×y 3 – (B – d)×(y – d) 3 ) / 3;
Iy = (d×(B – x) 3 + H×x 3 – (H – d)×(x – d) 3 ) / 3,
где x и y – расстояния от наружных сторон уголка до центральных осей Y и X соответственно.

Момент инерции швеллера

МОМЕНТ ИНЕРЦИИ ШВЕЛЛЕРА

Толщина полки d, мм

Толщина стенки s, мм

Момент инерции Ix, м 4

Момент инерции Iy, м 4

Площадь сечения F, м 2

©Copyright Кайтек 2020

Моменты инерции швеллера относительно главных центральных осей:
Ix = (B×H 3 – (B – s)×(H-2d) 3 ) / 12;
Iy = (H×x 3 – (H – 2d)×(x – s) 3 + d×(B – x) 3 )/3,
где x – расстояния от наружной сторон швеллера до центральной оси Y.

Расчеты моментов инерции по умолчанию выполнены относительно центральных и главных центральных осей сечения. Моменты инерции относительно осей, параллельных главным центральным осям можно вычислить, прибавив к полученному результату произведение квадрата расстояния между соответствующими осями на площадь сечения.

[spoiler title=”источники:”]

http://stroymex.online/sopromat/momenty-inercii-secheniy/all-about-moments-of-inertia

http://caetec.ru/calconline/moment-inerczii.html

[/spoiler]

Сообщения без ответов | Активные темы | Избранное

Правила форума

В этом разделе нельзя создавать новые темы.

 

Момент инерции согнутой проволоки

Сообщение27.12.2009, 20:55 


27/12/09
3

Ребят, помогите пожалуйста, никак не могу понять как это решить…

проволоку массой 0,5 кг и длиной 1 м согнули. радиус 30 см.

как рассчитать момент инерции??

Профиль  

meduza 

Re: Момент инерции согнутой проволоки

Сообщение27.12.2009, 21:37 

Заслуженный участник
Аватара пользователя


03/06/09
1497

как рассчитать момент инерции??

Судя по (некорректному) вопросу для начала стоит узнать, что такое момент инерции. А заодно и как он считается.

Профиль  

snake 

Re: Момент инерции согнутой проволоки

Сообщение27.12.2009, 21:44 


27/12/09
3

Момент инерции это сумма произведений масс всех материальных точек системы на квадраты их расстояний до оси.

основная теорема – Штейнера $I = I _{0} + mr ^2$

я думал что можно эту формулу как-то связать с , например, с формулой момента инерции для тонкостенного кольца, т.е. $I = mr ^2$
но тогда зачем нам дана в условии длина проволоки?

Профиль  

meduza 

Re: Момент инерции согнутой проволоки

Сообщение27.12.2009, 21:46 

Заслуженный участник
Аватара пользователя


03/06/09
1497

Профиль  

snake 

Re: Момент инерции согнутой проволоки

Сообщение27.12.2009, 21:52 


27/12/09
3

виноват. забыл это указать.

ось в центре круга, который образует согнутая проволока

Профиль  

meduza 

Re: Момент инерции согнутой проволоки

Сообщение27.12.2009, 22:07 

Заслуженный участник
Аватара пользователя


03/06/09
1497

ось в центре круга, который образует согнутая проволока

Через центр круга ось может проходить бесконечным числом способов и моменты инерции будут разными в каждом. Было бы хорошо, если бы вы привели задачу слово в слово, с рисуном или подробным объяснением что куда и, разумеется, попытки решения — самое главное, что нужно для решения задачи вы уже привели:

Момент инерции это сумма произведений масс всех материальных точек системы на квадраты их расстояний до оси.

(Эта сумма считается через интеграл (если ось проходит так, как я предполагаю, то интегральчик там совсем простой). Теорема Штейнера тут не нужна).

Профиль  

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Часто мы слышим выражения: «он инертный», «двигаться по инерции», «момент инерции». В переносном значении слово «инерция» может трактоваться как отсутствие инициативы и действий. Нас же интересует прямое значение.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Что такое инерция

Согласно определению инерция в физике – это способность тел сохранять состояние покоя или движения в отсутствие действия внешних сил.

Если с самим понятием инерции все понятно на интуитивном уровне, то момент инерции – отдельный вопрос. Согласитесь, сложно представить в уме, что это такое. В этой статье Вы научитесь решать базовые задачи на тему «Момент инерции».

Определение момента инерции

Из школьного курса известно, что масса – мера инертности тела. Если мы толкнем две тележки разной массы, то остановить сложнее будет ту, которая тяжелее. То есть чем больше масса, тем большее внешнее воздействие необходимо, чтобы изменить движение тела. Рассмотренное относится к поступательному движению, когда тележка из примера движется по прямой.

Масса - мера инертности тела

 

По аналогии с массой и поступательным движением момент инерции – это мера инертности тела при вращательном движении вокруг оси.

Момент инерции – скалярная физическая величина, мера инертности тела при вращении вокруг оси. Обозначается буквой J и в системе СИ измеряется в килограммах, умноженных на квадратный метр.

Как посчитать момент инерции? Есть общая формула, по которой в физике вычисляется момент инерции любого тела. Если тело разбить на бесконечно малые кусочки массой dm, то момент инерции будет равен сумме произведений этих элементарных масс на квадрат расстояния до оси вращения.

физика инерция формулы

Это общая формула для момента инерции в физике. Для материальной точки массы m, вращающейся вокруг оси на расстоянии r от нее, данная формула принимает вид:

определение момента инерции

Теорема Штейнера

От чего зависит момент инерции? От массы, положения оси вращения, формы и размеров тела.

Теорема Гюйгенса-Штейнера – очень важная теорема, которую часто используют при решении задач.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Теорема Гюйгенса-Штейнера гласит:

Момент инерции тела относительно произвольной оси равняется сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

момент инерции для чайников

Для тех, кто не хочет постоянно интегрировать при решении задач на нахождение момента инерции, приведем рисунок с указанием моментов инерции некоторых однородных тел, которые часто встречаются в задачах:

Формулы для момента инерции

 

Пример решения задачи на нахождение момента инерции

Рассмотрим два примера. Первая задача – на нахождение момента инерции. Вторая задача – на использование теоремы Гюйгенса-Штейнера.

Задача 1. Найти момент инерции однородного диска массы m и радиуса R. Ось вращения проходит через центр диска.

Решение:

Разобьем диск на бесконечно тонкие кольца, радиус которых меняется от 0 до R и рассмотрим одно такое кольцо. Пусть его радиус – r, а масса – dm. Тогда момент инерции кольца:

определение момента инерции тела

Массу кольца можно представить в виде:

инерция тела физика

Здесь dz – высота кольца. Подставим массу в формулу для момента инерции и проинтегрируем:

момент инерции формула физика

В итоге получилась формула для момента инерции абсолютного тонкого диска или цилиндра.

Задача 2. Пусть опять есть диск массы m и радиуса R. Теперь нужно найти момент инерции диска относительно оси, проходящей через середину одного из его радиусов.

Решение:

Момент инерции диска относительно оси, проходящей через центр масс, известен из предыдущей задачи. Применим теорему Штейнера и найдем:

Пример решения задачи на нахождение момента инерции

Кстати, в нашем блоге Вы можете найти и другие полезные материалы по физике и решению задач.

Надеемся, что Вы найдете в статье что-то полезное для себя. Если в процессе расчета тензора инерции возникают трудности, не забывайте о студенческом сервисе. Наши специалисты проконсультируют по любому вопросу и помогут решить задачу в считанные минуты.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

3.11. Определить момент инерции J проволочного
равностороннего треугольника со стороной а = 10 см относительно: 1) оси, лежащей в плоскости треугольника и проходящей через его вершину параллельно
стороне, противоположной этой вершине (см. рис. ниже, а); 2) оси, совпадающей с
одной из сторон треугольника (см. рис. ниже, б). Масса т треугольника
равна 12 г и равномерно распределена по длине проволоки.

Дано:                                 Решение:

а = 0,1 м

т = 0,012 кг

J – ?

Ответ: 5×10-5
кг×м2 ; 2×10-5 кг×м2

3.12. На концах тонкого однородного стержня длиной l и массой
3
m прикреплены маленькие шарики массами m и 2m.
Определить момент инерции
J такой системы относительно оси, перпендикулярной стержню и
проходящей через точку О, лежащую на оси стержня. Вычисления выполнить для
случаев а, б, в, г, д, изображенных на рис ниже. При расчетах принять
l = 1 м, m = 0,1 кг. Шарики рассматривать как материальные точки.

Дано:                                 Решение:

l
=
3m

m

2m

l
=
1 м

m = 0,1 кг

J – ?

г)д)

                               Ответ: 0,3 кг×м2 ;0,0833 кг×м2

3.13. Найти момент инерции J тонкого однородного кольца радиусом R = 20 см и массой m = 100 г относительно оси, лежащей в плоскости кольца и проходящей через его центр.

Дано:                     Решение:

R = 0,20 м

m = 0,1 кг

J – ?

Ответ: 0,002 кг×м2

3.14. Определить момент инерции J кольца массой т =
50 г и радиусом
R= 10 см относительно оси, касательной к кольцу.

Дано:                                 Решение:

т = 0,05 кг

R= 0,1 м

J – ?

                               Ответ:

3.15. Диаметр диска d = 20 см, масса т = 800 г. Определить момент инерции J диска относительно оси, проходящей через середину одного
из радиусов перпендикулярно плоскости диска.

Дано:                                 Решение:

d
=
0,2
м

т = 0,8 кг

J – ?

                               Ответ: 6×10-3
кг/м2

Момент инерции
{displaystyle J=int limits _{(m)}r^{2}mathrm {d} m}
Размерность L2M
Единицы измерения
СИ кг·м²
СГС г·см²

Моме́нт ине́рции — тензорная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле. Момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества, которое, формально, может представлять собой не обязательно ось вращения (т.е. прямую), но и точку или плоскость. В последних случаях говорят о моменте инерции относительно точки или плоскости, а возникать такие величины могут в формальных вычислениях, например, при расчете тензора инерции.

Единица измерения в Международной системе единиц (СИ): кг·м².

Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от типа базового множества до которого отсчитываются расстояния от элементарных масс.

Осевой момент инерции[править | править код]

Осевые моменты инерции некоторых тел

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси[1]:

{displaystyle J_{a}=sum _{i=1}^{n}m_{i}r_{i}^{2},}

где:

  • mi — масса i-й точки,
  • ri — расстояние от i-й точки до оси.

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

dm = ρ dV — масса малого элемента объёма тела dV,
ρ — плотность,
r — расстояние от элемента dV до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

{displaystyle J_{a}=rho int limits _{(V)}r^{2}dV.}

Теорема Гюйгенса — Штейнера[править | править код]

Момент инерции твёрдого тела относительно какой-либо оси зависит от массы, формы и размеров тела, а также и от положения тела по отношению к этой оси. Согласно теореме Гюйгенса — Штейнера, момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями[1]:

{displaystyle J=J_{c}+md^{2},}

где m — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

{displaystyle J=J_{c}+md^{2}={frac {1}{12}}ml^{2}+mleft({frac {l}{2}}right)^{2}={frac {1}{3}}ml^{2}.}

Осевые моменты инерции некоторых тел[править | править код]

Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения

Тело Описание Положение оси a Момент инерции Ja
Traegheit a punktmasse.png Материальная точка массы m На расстоянии r от точки, неподвижная mr^{2}
Traegheit b zylindermantel.png Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра mr^{2}
Traegheit c vollzylinder.png Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра {frac {1}{2}}mr^{2}
Traegheit d hohlzylinder2.png Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра m{frac {r_{2}^{2}+r_{1}^{2}}{2}}[Комм 1]
Traegheit e vollzylinder 2.png Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна образующей цилиндра и проходит через его центр масс {1 over 4}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit f zylindermantel 2.png Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс {1 over 2}mcdot r^{2}+{1 over 12}mcdot l^{2}
Traegheit g stab1.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс {frac {1}{12}}ml^{2}
Traegheit h stab2.png Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец {frac {1}{3}}ml^{2}
Traegheit i kugel1.png Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы {frac {2}{3}}mr^{2}
Traegheit j kugel1.png Шар радиуса r и массы m Ось проходит через центр шара {frac {2}{5}}mr^{2}
Cone (geometry).svg Конус радиуса r и массы m Ось конуса {frac {3}{10}}mr^{2}
Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину (при высоте) {frac {1}{24}}m(a^{2}+12h^{2})
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс {frac {1}{12}}ma^{2}
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс {frac {1}{6}}ma^{2}
Прямоугольник со сторонами a и b и массой m Ось перпендикулярна плоскости прямоугольника и проходит через центр масс {frac {1}{12}}m(a^{2}+b^{2})
Правильный n-угольник радиуса r и массой m Ось перпендикулярна плоскости и проходит через центр масс {displaystyle {frac {mr^{2}}{6}}left[1+2cos(pi /n)^{2}right]}
Torus 3d.png Тор (полый) с радиусом направляющей окружности R, радиусом образующей окружности r и массой m Ось перпендикулярна плоскости направляющей окружности тора и проходит через центр масс {displaystyle I=mleft({frac {3}{4}},r^{2}+R^{2}right)}

Вывод формул[править | править код]

Тонкостенный цилиндр (кольцо, обруч)

Вывод формулы

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобьём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

{displaystyle J=sum dJ_{i}=sum R_{i}^{2}dm.qquad (1).}

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

J=sum R^{2}dm=R^{2}sum dm=mR^{2}.

Толстостенный цилиндр (кольцо, обруч)

Вывод формулы

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

dm=rho dV=rho cdot 2pi rhdr;qquad dJ=r^{2}dm=2pi rho hr^{3}dr.

Момент инерции толстого кольца найдём как интеграл

J=int _{R_{1}}^{R}dJ=2pi rho hint _{R_{1}}^{R}r^{3}dr=
{displaystyle =2pi rho hleft.{frac {r^{4}}{4}}right|_{R_{1}}^{R}={frac {1}{2}}pi rho hleft(R^{4}-R_{1}^{4}right)={frac {1}{2}}pi rho hleft(R^{2}-R_{1}^{2}right)left(R^{2}+R_{1}^{2}right).}

Поскольку объём и масса кольца равны

V=pi left(R^{2}-R_{1}^{2}right)h;qquad m=rho V=pi rho left(R^{2}-R_{1}^{2}right)h,

получаем окончательную формулу для момента инерции кольца

J={frac {1}{2}}mleft(R^{2}+R_{1}^{2}right).

Однородный диск (сплошной цилиндр)

Вывод формулы

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

J={frac {1}{2}}mR^{2}.

Сплошной конус

Вывод формулы

Разобьём конус на тонкие диски толщиной dh, перпендикулярные оси конуса. Радиус такого диска равен

r={frac {Rh}{H}},

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска.
Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left({frac {Rh}{H}}right)^{4}dh;

Интегрируя, получим

{begin{aligned}J=int _{0}^{H}dJ={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}int _{0}^{H}h^{4}dh={frac {1}{2}}pi rho left({frac {R}{H}}right)^{4}left.{frac {h^{5}}{5}}right|_{0}^{H}=={frac {1}{10}}pi rho R^{4}H=left(rho cdot {frac {1}{3}}pi R^{2}Hright){frac {3}{10}}R^{2}={frac {3}{10}}mR^{2}.end{aligned}}

Сплошной однородный шар

Вывод формулы

Разобьём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

r={sqrt {R^{2}-h^{2}}}.

Масса и момент инерции такого диска составят

dm=rho dV=rho cdot pi r^{2}dh;
dJ={frac {1}{2}}r^{2}dm={frac {1}{2}}pi rho r^{4}dh={frac {1}{2}}pi rho left(R^{2}-h^{2}right)^{2}dh={frac {1}{2}}pi rho left(R^{4}-2R^{2}h^{2}+h^{4}right)dh.

Момент инерции шара найдём интегрированием:

{begin{aligned}J&=int _{-R}^{R}dJ=2int _{0}^{R}dJ=pi rho int _{0}^{R}left(R^{4}-2R^{2}h^{2}+h^{4}right)dh=\&=pi rho left.left(R^{4}h-{frac {2}{3}}R^{2}h^{3}+{frac {1}{5}}h^{5}right)right|_{0}^{R}=pi rho left(R^{5}-{frac {2}{3}}R^{5}+{frac {1}{5}}R^{5}right)={frac {8}{15}}pi rho R^{5}=\&=left({frac {4}{3}}pi R^{3}rho right)cdot {frac {2}{5}}R^{2}={frac {2}{5}}mR^{2}.end{aligned}}

Тонкостенная сфера

Вывод формулы

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

J_{0}={frac {2}{5}}MR^{2}={frac {8}{15}}pi rho R^{5}.

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

{displaystyle {begin{aligned}J&={frac {dJ_{0}}{dR}}dR={frac {d}{dR}}left({frac {8}{15}}pi rho R^{5}right)dR=\&={frac {8}{3}}pi rho R^{4}dR=left(rho cdot 4pi R^{2}dRright){frac {2}{3}}R^{2}={frac {2}{3}}mR^{2}.end{aligned}}}

Тонкий стержень (ось проходит через центр)

Вывод формулы

Разобьём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

dm={frac {mdr}{l}};qquad dJ=r^{2}dm={frac {mr^{2}dr}{l}}.

Интегрируя, получим

J=int _{-l/2}^{l/2}dJ=2int _{0}^{l/2}dJ={frac {2m}{l}}int _{0}^{l/2}r^{2}dr={frac {2m}{l}}left.{frac {r^{3}}{3}}right|_{0}^{l/2}={frac {2m}{l}}{frac {l^{3}}{24}}={frac {1}{12}}ml^{2}.

Тонкий стержень (ось проходит через конец)

Вывод формулы

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l2. По теореме Штейнера новый момент инерции будет равен

J=J_{0}+mr^{2}=J_{0}+mleft({frac {l}{2}}right)^{2}={frac {1}{12}}ml^{2}+{frac {1}{4}}ml^{2}={frac {1}{3}}ml^{2}.

Безразмерные моменты инерции планет и их спутников[2][3][4]

Безразмерные моменты инерции планет и спутников[править | править код]

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr2). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение доплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (~0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра[5][6].

Центробежный момент инерции[править | править код]

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины[1][7]:

{displaystyle J_{xy}=int limits _{(m)}xydm=int limits _{(V)}xyrho dV,}
{displaystyle J_{xz}=int limits _{(m)}xzdm=int limits _{(V)}xzrho dV,}
{displaystyle J_{yz}=int limits _{(m)}yzdm=int limits _{(V)}yzrho dV,}

где x, y и z — координаты малого элемента тела объёмом dV, плотностью ρ и массой dm.

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции данного тела[7].

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции[7].

Геометрические моменты инерции[править | править код]

Геометрический момент инерции объёма относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Va}=int limits _{(V)}r^{2}dV,}

где, как и ранее r — расстояние от элемента dV до оси a.

Размерность JVa — длина в пятой степени (mathrm {dim} J_{Va}=mathrm {L^{5}} ), соответственно единица измерения СИ — м5.

Геометрический момент инерции площади относительно оси — геометрическая характеристика тела, выражаемая формулой[8]:

{displaystyle J_{Sa}=int limits _{(S)}r^{2}dS,}

где интегрирование выполняется по поверхности S, а dS — элемент этой поверхности.

Размерность JSa — длина в четвёртой степени (mathrm {dim} J_{Sa}=mathrm {L^{4}} ), соответственно единица измерения СИ — м4. В строительных расчетах, литературе и сортаментах металлопроката часто указывается в см4.

Через геометрический момент инерции площади выражается момент сопротивления сечения:

{displaystyle W={frac {J_{Sa}}{r_{max}}}.}

Здесь rmax — максимальное расстояние от поверхности до оси.

Геометрические моменты инерции площади некоторых фигур
Прямоугольника высотой h и шириной b: J_{y}={frac {bh^{3}}{12}}

J_{z}={frac {hb^{3}}{12}}

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам H и B, а по внутренним h и b соответственно J_{z}={frac {BH^{3}}{12}}-{frac {bh^{3}}{12}}={frac {1}{12}}(BH^{3}-bh^{3})

J_{y}={frac {HB^{3}}{12}}-{frac {hb^{3}}{12}}={frac {1}{12}}(HB^{3}-hb^{3})

Круга диаметром d J_{y}=J_{z}={frac {pi d^{4}}{64}}

Момент инерции относительно плоскости[править | править код]

Моментом инерции твёрдого тела относительно некоторой плоскости называют скалярную величину, равную сумме произведений массы каждой точки тела на квадрат расстояния от этой точки до рассматриваемой плоскости[9].

Если через произвольную точку O провести координатные оси x,y,z, то моменты инерции относительно координатных плоскостей xOy, yOz и zOx будут выражаться формулами:

{displaystyle J_{xOy}=sum _{i=1}^{n}m_{i}z_{i}^{2} ,}
{displaystyle J_{yOz}=sum _{i=1}^{n}m_{i}x_{i}^{2} ,}
{displaystyle J_{zOx}=sum _{i=1}^{n}m_{i}y_{i}^{2} .}

В случае сплошного тела суммирование заменяется интегрированием.

Центральный момент инерции[править | править код]

Центральный момент инерции (момент инерции относительно точки O, момент инерции относительно полюса, полярный момент инерции) {displaystyle J_{O}}  — это величина, определяемая выражением[9]:

{displaystyle J_{a}=int limits _{(m)}r^{2}dm=int limits _{(V)}rho r^{2}dV,}

где:

Центральный момент инерции можно выразить через главные осевые моменты инерции, а также через моменты инерции относительно плоскостей[9]:

{displaystyle J_{O}={frac {1}{2}}left(J_{x}+J_{y}+J_{z}right),}
{displaystyle J_{O}=J_{xOy}+J_{yOz}+J_{xOz}.}

Тензор инерции и эллипсоид инерции[править | править код]

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором {displaystyle {vec {s}}=leftVert s_{x},s_{y},s_{z}rightVert ^{T},leftvert {vec {s}}rightvert =1}, можно представить в виде квадратичной (билинейной) формы:

{displaystyle I_{s}={vec {s}}^{T}cdot {hat {J}}cdot {vec {s}},qquad } (1)

где {displaystyle {hat {J}}} — тензор инерции. Матрица тензора инерции симметрична, имеет размеры 3times 3 и состоит из компонент центробежных моментов:

{displaystyle {hat {J}}=leftVert {begin{array}{ccc}J_{xx}&-J_{xy}&-J_{xz}\-J_{yx}&J_{yy}&-J_{yz}\-J_{zx}&-J_{zy}&J_{zz}end{array}}rightVert ,}
{displaystyle J_{xy}=J_{yx},quad J_{xz}=J_{zx},quad J_{zy}=J_{yz},quad }{displaystyle J_{xx}=int limits _{(m)}(y^{2}+z^{2})dm,quad J_{yy}=int limits _{(m)}(x^{2}+z^{2})dm,quad J_{zz}=int limits _{(m)}(x^{2}+y^{2})dm.}

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора {displaystyle {hat {J}}}:

{displaystyle {hat {J}}_{d}={hat {Q}}^{T}cdot {hat {J}}cdot {hat {Q}},}
{displaystyle {hat {J}}_{d}=leftVert {begin{array}{ccc}J_{X}&0&0\0&J_{Y}&0\0&0&J_{Z}end{array}}rightVert ,}

где {displaystyle {hat {Q}}} — ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины {displaystyle J_{X},J_{Y},J_{Z}} — главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

{displaystyle I_{s}=J_{X}cdot s_{x}^{2}+J_{Y}cdot s_{y}^{2}+J_{Z}cdot s_{z}^{2},}

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на {displaystyle I_{s}}

{displaystyle left({s_{x} over {sqrt {I_{s}}}}right)^{2}cdot J_{X}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}cdot J_{Y}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}cdot J_{Z}=1}

и произведя замены:

{displaystyle xi ={s_{x} over {sqrt {I_{s}}}},eta ={s_{y} over {sqrt {I_{s}}}},zeta ={s_{z} over {sqrt {I_{s}}}},}

получаем канонический вид уравнения эллипсоида в координатах {displaystyle xi eta zeta }:

{displaystyle xi ^{2}cdot J_{X}+eta ^{2}cdot J_{Y}+zeta ^{2}cdot J_{Z}=1.}

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

{displaystyle r^{2}=xi ^{2}+eta ^{2}+zeta ^{2}=left({s_{x} over {sqrt {I_{s}}}}right)^{2}+left({s_{y} over {sqrt {I_{s}}}}right)^{2}+left({s_{z} over {sqrt {I_{s}}}}right)^{2}={1 over I_{s}}.}

См. также[править | править код]

  • Кинематика твёрдого тела
  • Метод главных компонент
  • Сопротивление материалов
  • Теорема Штейнера
  • Теорема Кёнига (механика)
  • Механические приложения тройного интеграла
  • Механические приложения двойного интеграла
  • Полярный момент инерции
  • Список моментов инерции
  • Момент силы
  • Момент импульса

Комментарии[править | править код]

  1. При получении этой формулы путём вычитания момента инерции сплошного цилиндра радиусом r1 из цилиндра радиусом r2 необходимо обратить внимание, что их массы при этом не будут одинаковыми или равны m. При этом должно выполняться условие {displaystyle m_{2}-m_{1}=m}. Из формулы для массы соответствующего цилиндра можно определить, что в этом случае {displaystyle m_{1}=m{frac {r_{1}^{2}}{r_{2}^{2}-r_{1}^{2}}}} и {displaystyle m_{2}=m{frac {r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}}}. В правильности использования знака «+» в этой формуле также можно убедиться, если сравнить моменты инерции полого толстостенного и сплошного цилиндров с одинаковыми массами. Действительно, у первого из этих цилиндров масса в среднем сосредоточена дальше от оси, чем у второго, поэтому и момент инерции этого цилиндра должен быть больше, чем у сплошного. Именно такое соотношение моментов инерции и обеспечивает знак «+». С другой стороны, в пределе при стремлении r1 к r2 формула для полого толстостенного цилиндра должна приобрести тот же вид, что и формула для полого тонкостенного цилиндра. Очевидно, что такой переход происходит только при использовании формулы со знаком «+».

Примечания[править | править код]

  1. 1 2 3 Тарг С. М. Момент инерции // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 206—207. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  2. Planetary Fact Sheet. Дата обращения: 31 августа 2010. Архивировано 14 марта 2016 года.
  3. Showman, Adam P.; Malhotra, Renu. The Galilean Satellites (англ.) // Science. — 1999. — Vol. 286, no. 5437. — P. 77—84. — doi:10.1126/science.286.5437.77. — PMID 10506564.
  4. Margot, Jean-Luc; et al. Mercury’s moment of inertia from spin and gravity data (англ.) // Journal of Geophysical Research  (англ.) (рус. : journal. — 2012. — Vol. 117. — doi:10.1029/2012JE004161.
  5. Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.
  6. Пантелеев В. Л. Физика Земли и планет. Гл. 3.4 — Гравитационное поле планеты. Дата обращения: 31 августа 2010. Архивировано 3 октября 2013 года.
  7. 1 2 3 Тарг С. М. Краткий курс теоретической механики. — М.: «Высшая школа», 1995. — С. 269—271. — 416 с. — ISBN 5-06-003117-9.
  8. 1 2 Бухгольц Н. Н. Основной курс теоретической механики. — 4-е изд. — М.: «Наука», 1966. — Т. 2. — С. 131.
  9. 1 2 3 Яблонский А. А. Динамика // Курс теоретической механики. — 3-е изд. — М.: «Высшая школа», 1966. — Т. II. — С. 102—103. — 411 с.

Литература[править | править код]

  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Архивная копия от 7 января 2014 на Wayback Machine Издательство Физического факультета МГУ, 1997.
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560 с.
  • Беляев Н. М. Сопротивление материалов. Главная редакция физико-математической литературы изд-ва «Наука», 1976. — 608 с.

Ссылки[править | править код]

  • Определение момента инерции тел простой формы.

Добавить комментарий