Как найти момент на валу асинхронного двигателя

Понятие момента в теории асинхронных двигателей

В этом разделе мы разместили подборку статей посвященных такому важному в теории асинхронного привода понятию как момент. Здесь читатели найдут материалы раскрывающие значения отдельных терминов так или иначе связанных с понятием момента. Дополнительно мы организовали подборку статей с формулами по которым можно рассчитать конкретные значения моментов или построить их зависимости. Для большей наглядности сдесь же можно найти примеры иллюстирующие использование формул для рассчета того или иного показателя.


Асинхронные двигатели – теория –


Понятие момента
26.10.2012 21:59

Формула для расчета номинального момента по мощности на валу и оборотамКак мы выясняли ранее под номинальным моментом понимают такой момент на валу электродвигателя, величина которого постоянна при постоянной номинальной частоте вращения вала.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента
25.10.2012 19:16

Пример вычисления пускового момента асинхронного двигателяРанее мы рассмотрели подробно что представляет собой пусковой момент асинхронного электрического двигателя и по каким формулам можно посчитать значение пускового момента (новая статья). В этой статье мы приведем пример расчета значение пускового момента для линейки асинхронных электродвигателей. Для расчета мы будем использовать данные которые можно получить из паспорта двигателя: номинальный момент и кратность пускового момента по отношению к номинальному. Расчет будет выполнен по формуле:

Мпуск = Мн*Кпуск
где Мпуск – пусковой момент,
Мн – номинальный момент,
Кпуск – кратность пускового момента.
Исходные данные и результаты расчета сведены в виде таблицы. В первом столбце таблицы указаны маркировки двигателей, для которых был выполнен расчет. Второй столбец содержит данные о величине номинального момента. Третий столбец содержит данные о кратности пускового момента. В четвертом столбце приведены результаты расчета пускового момента.
Таблица Результаты расчета пускового момента асинхронных двигателей с использованием паспортных данных

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента
25.10.2012 19:13

Как рассчитать пусковой момент асинхронникаПрежде чем изложить и проанализировать формулы для вычисления пускового момента вспомним что это такое. Под пусковым моментом понимают момент на валу двигателя при определенных условиях. Ключевыми условиями являются равенство нулю скорости вращения ротора, установившееся значение тока и номинальное напряжение на обмотках двигателя.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента
24.10.2012 21:40

Для начала вспомнить что в теории электродвигателей понимают под критическим моментом. Момент критический – это максимально возможный момент на валу электродвигателя при достижении которого электродвигатель останавливается.
Подробнее про критический момент асинхронного двигателя.
Для определения численного значения критического момента можно использовать формулу:
Мкр = Мн*П

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента
17.10.2012 23:14

В некоторых механизмах на начальном этапе запуска привода необходимо обеспечить максимальный пусковой момент. Для решения этой задачи хорошо подходит асинхронный двигатель с фазным ротором. Кратко опишем, что он собой представляет. Асинхронный электродвигатель с фазным ротором имеет ротор, в пазы которого уложена обмотка. Тип соединения обмотки ротора “звезда”. Концы фаз обмотки ротора подключают к специальным контактным кольцам. Кольца вращаются вместе с валом двигателя. В цель обмоток ротора может быть включен реостат для пуска и регулирования. Подключение реостата выполняется с помощью щеточного контакта скользящего по кольцам. Данный реостат является добавочным активным сопротивлением. Это сопротивление одинаково для каждой из фаз обмотки.
Благодаря возможности включения реостата в обмотку ротора в данных двигателях имеется возможность обеспечивать максимальное значение пускового момента уже на этапе запуска двигателя. При этом удается снизить пусковые токи. Эти двигатели используют для приводов механизмов с высокими требованиями к уровню пускового момента (например, пуск под нагрузкой).
Дополнительная информация о пусковом моменте асинхронного двигателя

 


Асинхронные двигатели – теория –


Понятие момента
16.10.2012 01:29

В ряде задач связанных с применением частотно-регулируемого электропривода возникает задача по измерению крутящего момента на валу электродвигателя. В настоящее время для этой задачи используют специализированные вращающиеся датчики крутящего момента.
Вал, нагруженный аксиальным крутящим моментом, скручивается на угол. Величина угла пропорциональная величине крутящего момента. Для измерения величины угла используют углоизмерительные системы. В 1945 году были впервые предложены вращающие датчики крутящего момента, реализующие на практике такой метод измерения. В них была использована индуктивная измерительная система.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента
16.10.2012 01:23

Важным понятием в области физики твердого тела является понятие крутящего момента. Особое значение имеет это понятия в области электропривода. В этой статье мы разберем базовые понятия, связанные с крутящим моментом.
Для начала заметим, что крутящий момент часто называют так же моментом силы, вращательным моментов, вертящим моментом и вращающим моментом. Все эти термины являются синонимами. Хотя в некоторых практических приложениях их следует различать. Например, в технических задачах под “вращающим моментом” понимают внешнее усилие, прикладываемое к объекту, а под “крутящим моментом” понимают внутренние усилия, которые возникают в объекте под действием приложенных нагрузок. В нашей статье мы будем использовать термин крутящий момент.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Момент нагрузки – момент, создаваемый вращающейся механической системой присоединенной к валу асинхронного двигателя. В качестве синонимов в литературе встречается термин момент сопротивления. Момент нагрузки зависит от геометрических и физических параметров тел входящих в кинематическую цепь, присоединенную к валу двигателя. Как правило, при расчете момент сопротивления принято приводить к валу двигателя.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Тормозной момент – момент, развиваемый асинхронной машиной, в режиме торможения. В литературе встречается термин синоним: тормозящий момент. В рамках теории асинхронных электродвигателей рассматривают 3 режима торможения: генераторное, динамическое и торможение противовключением.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Что понимают под критическим моментом асинхронного электродвигателяКритический момент асинхронного двигателя – наибольшее значение момента развиваемое электродвигателем. Этого значения момент достигает при критическом скольжении. Если момент нагрузки на валу двигателя будет больше критического момента, то двигатель остановится.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Определение и отличительные особенности номинального момента Номинальный момент асинхронного двигателя – момент, возникающий на валу двигателя при номинальной мощности и номинальных оборотах. Под номинальными данными понимают данные, которые определяются при работе двигателя в режиме, для которого он был спроектирован и изготовлен.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Что такое пусковой момент. Как он определяется. От чего зависит величина пускового момента

Пусковой момент на валу асинхронника – вращающий момент, который развивает на валу электрический асинхронный двигателя при следующих условиях: скорость вращения равна нулю (ротор неподвижен), ток имеет установившееся значение, к обмоткам электродвигателя подведено номинальное по частоте и напряжению питание, соединение обмоток соответствует номинальному режиму работы электродвигателя.

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Общие сведения об электромагнитном моменте асинхронных двигателейЭлектромагнитный момент – момент, возникающий на валу электродвигателя при протекании по его обмоткам электрического тока. В литературе встречаются синонимы этого термина: вращающий момент двигателя или крутящий момент электродвигателя. Так же часто попадаются вариации с более развернутой формулировкой: электромагнитный вращающий момент или электромагнитный крутящий момент.

Это один из ключевых параметров теории, определяющий способность асинхронного двигателя вращать подсоединенную к его валу нагрузку в требуемых статических и динамических режимах. По этой причине при принятии решения об использовании двигателя для решения конкретной задачи важно принимать во внимание характер повидения электромагнитного момента. В самом общем случае электромагнитный момент на валу двигателя определяют по формуле: Мэм = (?Еф х Iф)/?2

Подробнее…

 


Асинхронные двигатели – теория –


Понятие момента

Обзор моментов которые изучают в рамках анализа асинхронных двигателейВ рамках современной теории асинхронных электрических машин применяют ряд терминов связанных с понятием момента. Часть этих терминов относится к моменту создаваемому на валу (на роторе) электродвигателя. Другая группа терминов определяет моменты создаваемые механической нагрузкой подключенной к валу электрического двигателя.

Эти термины определяют как сам момент развиваемый двигателем, так и различный состояния момента на выходном валу двигателя. Под состоянием подразумевается значение момента в кретических точках. Например номинальный момент или пусковой момент.

Подробнее…

 

Главное меню

Теория

Практика

Вращающий момент электродвигателя – это сила вращения его вала. Именно крутящий момент определяет выходную мощность вашего двигателя. Она измеряется в Ньютонах на метр Н*м или килограммах силы на метр кгс*м.

Расчет крутящего момента двигателя

Расчет крутящего момента двигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно крутящий момент определяет выходную мощность вашего двигателя. Она измеряется в Ньютонах на метр Н*м или килограммах силы на метр кгс*м.

Виды крутящего момента:

  • Номинальный – Значение крутящего момента для стандартного режима работы и стандартной номинальной нагрузки двигателя.
  • Крутящий момент при запуске – Является табличным значением. Сила вращения, которую способен развить электродвигатель после запуска. При выборе электродвигателя необходимо следить за тем, чтобы это значение было больше статического момента устройства – насоса, вентилятора и т.д. В противном случае двигатель не сможет запуститься, а обмотка может перегреться и сгореть.
  • Максимальный – это предел, при котором нагрузка выравнивается и останавливает двигатель.

Высокий крутящий момент двигателя обеспечивает автомобилю лучшую динамику разгона даже при низкой частоте вращения коленчатого вала и значительно повышает тяговую способность двигателя и способность к движению по пересеченной местности.

Крутящий момент и мощность

Водители часто спорят между собой о том, какой двигатель мощнее. Но иногда они понятия не имеют, из чего состоит этот параметр. Общепринятый термин “лошадиная сила” был введен изобретателем Джеймсом Уаттом в 18 веке. Он придумал его, наблюдая, как лошадь запрягают для подъема угля из шахты. Он подсчитал, что одна лошадь может поднять 150 кг угля на высоту 30 метров за одну минуту. Одна лошадиная сила эквивалентна 735,5 Вт, поэтому 1 кВт равен 1,36 л.с.

Прежде всего, мощность каждого двигателя указывается в лошадиных силах, и только потом упоминается крутящий момент. Однако эта тяговая характеристика также дает представление о конкретных буксировочных и ходовых возможностях автомобиля. Крутящий момент – это мера производительности двигателя, а мощность – ключевой параметр его работы. Эти показатели тесно связаны между собой. Чем больше лошадиных сил производит двигатель, тем больше потенциал крутящего момента. Этот потенциал реализуется в реальном мире через трансмиссию и оси машины. Сочетание этих элементов вместе определяет, сколько именно мощности может быть преобразовано в крутящий момент.

Самый простой пример – сравнить трактор с гоночным автомобилем. Гоночный автомобиль имеет много лошадиных сил, но ему необходим крутящий момент для увеличения скорости через коробку передач. Такой машине требуется очень мало работы для движения вперед, поскольку большая часть энергии используется для развития скорости.

Что касается трактора, то он может иметь двигатель такого же рабочего объема, который производит такое же количество лошадиных сил. Однако в этом случае мощность используется не для развития скорости, а для создания тяги (см. тяговый класс). Для этого он приводится в движение многоступенчатой трансмиссией. Поэтому трактор не развивает высоких скоростей, но может тянуть большие грузы, пахать и обрабатывать землю и т.д.

В двигателе внутреннего сгорания мощность передается от выхлопных газов к поршню и от поршня к кривошипно-шатунному механизму, а затем к коленчатому валу. А коленчатый вал, через коробку передач и трансмиссию, вращает колеса.

Конечно, крутящий момент двигателя не является постоянным. Она становится сильнее, когда на руку действует большая сила, и слабее, когда сила ослабевает или прекращается. Это означает, что когда водитель нажимает на педаль акселератора, сила, действующая на рычаг, увеличивается, и соответственно увеличивается крутящий момент двигателя.

Крутящий момент и мощность

Эта сила обеспечивает преодоление любых сил, мешающих движению автомобиля. К ним относятся силы трения в двигателе, коробке передач и трансмиссии, аэродинамические силы, силы качения и т.д. Чем больше мощность, тем большую силу сопротивления сможет преодолеть автомобиль и тем больше будет скорость. Однако мощность не является постоянной силой, а зависит от оборотов двигателя. На холостом ходу мощность одинаковая, но на максимальной скорости она совершенно разная. Многие производители автомобилей указывают, при каких оборотах двигателя достигается максимальная мощность.

Водители часто сталкиваются с ситуациями, когда им необходимо значительно ускорить свой автомобиль, чтобы выполнить необходимый маневр. Когда он нажимает акселератор до пола, он чувствует, что автомобиль разгоняется плохо. Быстрый разгон требует большого крутящего момента. Именно это характеризует быстрый разгон автомобиля.

Основная сила в двигателе внутреннего сгорания создается в камере сгорания, где происходит воспламенение топливно-воздушной смеси. Именно это приводит в движение кривошипно-шатунный механизм, а через него – коленчатый вал. Шатун – это длина кривошипа, а значит, если длина больше, то и крутящий момент увеличится.

Однако увеличить шатун до бесконечности невозможно. Если да, то ход поршня придется увеличить, а вместе с ним и размер двигателя. Также необходимо снизить обороты двигателя. Двигатели с большим коленчатым рычагом можно использовать только на больших лодках. Однако в легковых автомобилях небольшие размеры коленчатого вала не позволяют проводить какие-либо эксперименты.

Например, мы часто получаем запросы: “Нам нужно измерить двигатель мощностью 200 л.с.” или “Какой гидравлический тормоз вы бы порекомендовали для 140 кВт?”.

Что это означает на практике?

Если отойти от теории, то графики мощности и крутящего момента являются основными характеристиками двигателя. Когда вы ведете автомобиль в гору и пытаетесь сохранить прежнюю скорость, вам приходится сильнее нажимать на акселератор. Многие люди думают, что мощность останется прежней, потому что скорость не изменится. Но это не так!

При движении в гору двигатель получает больше мощности при тех же оборотах.
(В той же передаче). Вы можете легко проверить это, посмотрев на текущий расход топлива.

Это также объясняет, почему двигателю нужна коробка передач, поскольку нам необходимо поддерживать обороты в пределах максимального диапазона мощности двигателя, чтобы эффективно ускоряться и преодолевать подъемы в гору.

С другой стороны, электромобили обходятся без него. Кривая крутящего момента и мощности электродвигателя гораздо более линейна, и электродвигатель производит гораздо больше мощности на низких скоростях.

Обе эти единицы измерения мощности (лошадиные силы и ватты, причем термин киловатт обычно используется для увеличения числовых значений последней единицы) были изобретены Дж. Уаттом, но именно крутящий момент, измеряемый в ньютон-метрах, приводит в движение автомобиль. Почему не мощность двигателя определяет способность автомобиля двигаться?

Крутящий момент, его соотношение с мощностью

Дж. Уатт изобрел обе вышеупомянутые единицы измерения мощности (лошадиные силы и ватты, причем термин киловатт обычно используется для увеличения показателей последнего), но именно крутящий момент, выраженный в ньютон-метрах, приводит автомобиль в движение. Почему не мощность двигателя автомобиля определяет его способность двигаться?

Мощность и крутящий момент тесно связаны: мощность, измеряемая в ваттах, является примером крутящего момента, умноженного на 0,1047 и число оборотов в минуту.

Другими словами, мощность указывает на количество работы, выполненной за определенный период времени. Крутящий момент – это показатель способности двигателя выполнять работу.

Например, если автомобиль застрял в болоте и перестал двигаться, лошадиная сила двигателя равна нулю, потому что работа не выполняется, в то время как крутящий момент присутствует, хотя его величина минимальна, недостаточна для начала движения. Таким образом, крутящий момент возникает без мощности, но не наоборот.

На практике мощность напрямую влияет на скорость автомобиля: чем она выше, тем быстрее автомобиль может ехать. Крутящий момент (также называемый “крутящий момент”) – это мера силы, действующей на коленчатый вал, и его способность сопротивляться вращению. Высокий крутящий момент двигателя наиболее заметен при разгоне или при движении в сложных условиях, когда двигатель подвергается критическим нагрузкам.

Другим важным показателем возможностей двигателя является диапазон скоростей, в котором он достигает наибольшей тяги. Не менее важна гибкость двигателя, т.е. его способность достигать высоких оборотов при большой нагрузке. Это соотношение между количеством оборотов для получения наибольшей мощности и максимально возможного крутящего момента.

Это влияет на управление скоростью с помощью педалей акселератора и тормоза без использования коробки передач, а также на возможность движения на низкой скорости на высших передачах.

Например, благодаря хорошей эластичности двигателя автомобиль разгонится с 75-80 км/ч до 120 км/ч на 5-й передаче, и это произойдет тем быстрее, чем более эластичен силовой агрегат. Если у вас есть выбор между двумя двигателями одинакового рабочего объема и мощности, лучше выбрать более гибкий, так как он экономичнее, работает тише и имеет больший срок службы.

Чтобы решить эту дилемму, необходимо понять несколько фактов:

Мощность или крутящий момент – что важнее?

Чтобы решить эту дилемму, важно понять несколько фактов:

  • Мощность линейно связана с частотой вращения коленчатого вала: более высокие обороты равны более высокой производительности;
  • Мощность является производной от hp;
  • До определенного значения мощность зависит от числа оборотов в минуту: более высокие обороты соответствуют большему километражу. Но после пика она снижается.

Из этого можно сделать вывод, что крутящий момент является приоритетным параметром, характеризующим возможности двигателя. В то же время нельзя пренебрегать мощностью: это означает, что производители автомобилей должны адаптировать характеристики машины таким образом, чтобы поддерживать баланс между этими величинами.

Момент нагрузки – это вращающий момент, создаваемый вращающейся механической системой, соединенной с валом асинхронного двигателя. В качестве синонима в литературе можно встретить термин “момент сопротивления”. Момент нагрузки зависит от геометрических и физических параметров тела в кинематической системе, соединенной с валом двигателя. Как правило, при расчетах предполагается, что момент сопротивления приложен к валу двигателя.

Как определить крутящий момент двигателя

Преобразователи частоты />Теория АЭД />Торки

В этом разделе мы собрали подборку статей о понятии крутящего момента, которое так важно в теории асинхронного привода. Здесь вы найдете материал, раскрывающий значение некоторых терминов, связанных с понятием крутящего момента. Кроме того, мы включили подборку статей с формулами, которые можно использовать для расчета конкретных значений крутящего момента или построения графиков их зависимости. Для наглядности здесь также приведены примеры, иллюстрирующие, как формулы могут быть использованы для расчета того или иного значения.

Пример расчета номинального крутящего момента для асинхронных двигателей

Асинхронные двигатели – теория – понятие крутящего момента
26.10.2012 22:10

Из теории мы знаем, что номинальный крутящий момент двигателя – это крутящий момент, развиваемый при номинальной мощности и номинальных оборотах в минуту.

Формула для расчета номинального крутящего момента в зависимости от мощности вала и оборотов в минуту

Как мы объясняли ранее, номинальный крутящий момент – это крутящий момент на валу двигателя, значение которого постоянно при постоянной номинальной скорости вращения вала.

Пример расчета пускового момента асинхронного двигателя

Ранее мы подробно рассмотрели, что такое пусковой момент асинхронного электродвигателя и какие формулы используются для расчета пускового момента (новая статья). В этой статье мы приведем пример расчета пускового момента для различных асинхронных двигателей. Для расчета мы будем использовать данные, имеющиеся в техническом паспорте двигателя: номинальный крутящий момент и пусковой момент, умноженный на номинальный крутящий момент. Расчет будет произведен в соответствии с формулой:

М старт = Мн*К старт
где Мн – пусковой момент,
Мн – номинальный крутящий момент,
K release – коэффициент умножения пускового момента.
Исходные данные и результаты расчетов представлены в таблице. Первая колонка таблицы содержит обозначение двигателей, для которых проводились расчеты. Вторая колонка содержит данные о номинальном значении крутящего момента. Третий столбец содержит коэффициент умножения начального крутящего момента. В четвертой колонке приведены результаты расчетов пускового момента.
Таблица Результаты расчетов пускового момента для асинхронных двигателей на основе технических паспортов

Как рассчитать пусковой момент асинхронного двигателя?

Прежде чем разрабатывать и анализировать формулы для расчета пускового момента, важно напомнить, что такое пусковой момент. Пусковой момент – это крутящий момент на валу двигателя при определенных условиях. Ключевыми условиями являются нулевая скорость вращения ротора, установившийся ток и номинальное напряжение на обмотках двигателя.

Для начала вспомним, что означает термин “критический момент” в теории двигателей. Критический момент – это максимально возможный крутящий момент на валу двигателя при его остановке.
Подробнее о критическом моменте асинхронных двигателей..
Эта формула может быть использована для определения численного значения критического момента:
Mcr = Mn*P

В некоторых машинах необходимо обеспечить максимальный пусковой момент на начальном этапе запуска привода. Для этой задачи хорошо подходит двигатель с фазированным асинхронным ротором. Давайте вкратце опишем, что это такое. Асинхронный двигатель с фазным ротором имеет ротор с пазовыми обмотками. Обмотка ротора соединена в звезду. Фазные концы обмотки ротора соединены со специальными контактными кольцами. Кольца вращаются вместе с валом двигателя. Для запуска и регулировки обмотки ротора можно включить реостат. Реостат подключается с помощью щеточного контакта, который скользит по кольцам. Этот реостат является дополнительным активным резистором. Это сопротивление одинаково для каждой фазы обмотки.
Благодаря возможности интегрировать реостат в обмотку ротора в этих двигателях, можно максимизировать пусковой момент уже на этапе запуска двигателя. Таким образом, можно уменьшить пусковые токи. Эти двигатели используются для привода приложений с высокими требованиями к пусковому моменту (например, пуск под нагрузкой).
Дополнительная информация о пусковом моменте асинхронного двигателя

Важным понятием в области физики твердого тела является крутящий момент. Эта концепция имеет особое значение в области электроприводов. В этой статье мы обсудим основные понятия, связанные с крутящим моментом.
Для начала следует отметить, что крутящий момент часто также называют моментом силы, крутящим моментом, крутящим моментом и моментом кручения. Все эти термины являются синонимами. Хотя в некоторых практических приложениях их необходимо различать. Например, в технических приложениях “крутящий момент” относится к внешней силе, приложенной к объекту, а “вращающий момент” относится к внутренним силам, которые возникают в объекте из-за приложенных нагрузок. В нашей статье мы будем использовать понятие крутящего момента.

Момент нагрузки – это вращающий момент, создаваемый вращающейся механической системой, соединенной с валом асинхронного двигателя. Термин “момент сопротивления” встречается в литературе как синоним. Нагрузочный момент зависит от геометрических и физических параметров тел в кинематической цепи, соединенной с валом двигателя. Как правило, при расчете момента нагрузки на валу двигателя принято использовать момент сопротивления.

Тормозной момент – момент, развиваемый асинхронной машиной при торможении. В литературе можно найти синоним тормозного момента. В теории асинхронных двигателей рассматриваются три режима торможения: рекуперативное торможение, динамическое торможение и антиконденсатное торможение.

Каков критический момент для асинхронного двигателя

Критический момент для асинхронных двигателей – Максимальное значение крутящего момента, развиваемого двигателем. Крутящий момент достигает этого значения при критическом скольжении. Если момент нагрузки на валу двигателя превышает критический момент, двигатель останавливается.

Определение и отличительные особенности номинального крутящего момента

Номинальный крутящий момент асинхронного двигателя – Крутящий момент, возникающий на валу двигателя при номинальной мощности и номинальной скорости. Номинальные данные относятся к данным, которые определяются при работе двигателя в режиме, для которого он был разработан и изготовлен.

Каков начальный крутящий момент. Как она определяется. Каково значение пускового момента?

Пусковой момент на валу асинхронного двигателя – это момент, действующий на вал асинхронного двигателя при следующих условиях: скорость вращения ротора равна нулю (ротор неподвижен), ток установившийся, в обмотки двигателя подается ток номинальной частоты и напряжения, а соединение обмоток соответствует номинальному режиму работы двигателя.

Общая информация об электромагнитном моменте асинхронных двигателей

Электромагнитный крутящий момент – крутящий момент, приложенный к валу двигателя при протекании тока через обмотки. В литературе можно найти синонимы этого термина: крутящий момент двигателя или крутящий момент мотора. Также часто встречаются варианты с более конкретной формулировкой: электромагнитный момент или электромагнитный момент.

Обзор значений крутящего момента, которые исследуются при анализе асинхронного двигателя

В современной теории асинхронных электрических машин используется множество терминов, связанных с понятием крутящего момента. Некоторые из этих терминов относятся к крутящему моменту, возникающему на валу (роторе) электродвигателя. Другая группа терминов относится к крутящему моменту, создаваемому механической нагрузкой, подключенной к валу электродвигателя.

Эти термины определяют как крутящий момент, развиваемый самим двигателем, так и различные состояния крутящего момента на выходном валу двигателя. Под состоянием понимается значение крутящего момента в критических точках. Например, номинальный крутящий момент или пусковой момент.

  • Шаговые двигатели: свойства и практические схемы управления. Часть 2.
  • Рабочие характеристики асинхронного двигателя; Школа для электриков: электротехника и электроника.
  • Векторное и скалярное управление преобразователями частоты – принцип работы, система управления.
  • Асинхронный электродвигатель – конструкция, принцип работы, типы асинхронных двигателей.
  • Как найти начало и конец обмотки электродвигателя – ООО “СЗЭМО Электродвигатель”.
  • Векторное управление вентильным двигателем в безредукторном сервоприводе – темы научных работ по электротехнике, электронике, информатике читайте бесплатно тексты научных работ в электронной библиотеке КиберЛенинка.
  • Мягкие пускатели (устройства плавного пуска). Типы и функции.

Расчет крутящего момента электродвигателя

Расчет крутящего момента электродвигателя

Крутящий момент электродвигателя – это сила вращения его вала. Именно момент вращения определяет мощность Вашего двигателя. Измеряется в ньютонах на метр Н*м или в килограмм-силах на метр кгс*м.

Виды крутящих моментов:

  • Номинальный – значение момента при стандартном режиме работы и стандартной номинальной нагрузке на двигатель.
  • Пусковой – это табличное значение. Сила вращения, которую в состоянии развивать электродвигатель при пуске. При подборе электродвигателя убедитесь, что данный параметр выше, чем статический момент Вашего оборудования – насоса, либо вентилятора и т.д. В противном случае электродвигатель не сможет запуститься, что чревато перегревом и перегоранием обмотки.
  • Максимальный – предельное значение, по достижении которого нагрузка уравновесит двигатель и остановит его.

Таблица крутящих моментов электродвигателей

В данной таблице собраны крутящие моменты наиболее распространенных в Украине электродвигателей АИР, а также требуемый при пуске – пусковой, максимально допустимый для данного типа электродвигателя – максимальный крутящий момент и момент инерции двигателей АИР (усилие важное при подборе электромагнитного тормоза, например)

Мощности асинхронных электродвигателей:

Двигатель кВт/об Мном, Нм Мпуск, Нм Ммакс, Нм Минн, Нм
АИР56А2 0,18/2730 0,630 1,385 1,385 1,133
АИР56В2 0,25/2700 0,884 1,945 1,945 1,592
АИР56А4 0,12/1350 0,849 1,868 1,868 1,528
АИР56В4 0,18/1350 1,273 2,801 2,801 2,292
АИР63А2 0,37/2730 1,294 2,848 2,848 2,330
АИР63В2 0,55/2730 1,924 4,233 4,233 3,463
АИР63А4 0,25/1320 1,809 3,979 3,979 3,256
АИР63В4 0,37/1320 2,677 5,889 5,889 4,818
АИР63А6 0,18/860 1,999 4,397 4,397 3,198
АИР63В6 0,25/860 2,776 6,108 6,108 4,442
АИР71А2 0,75/2820 2,540 6,604 6,858 4,064
АИР71В2 1,1/2800 3,752 8,254 9,004 6,003
АИР71А4 0,55/1360 3,862 8,883 9,269 6,952
АИР71В4 0,75/1350 5,306 13,264 13,794 12,733
АИР71А6 0,37/900 3,926 8,245 8,637 6,282
АИР71В6 0,55/920 5,709 10,848 12,560 9,135
АИР71В8 0,25/680 3,511 5,618 6,671 4,915
АИР80А2 1,5/2880 4,974 10,943 12,932 8,953
АИР80В2 2,2/2860 7,346 15,427 19,100 13,223
АИР80А4 1,1/1420 7,398 16,275 17,755 12,576
АИР80В4 1,5/1410 10,160 22,351 24,383 17,271
АИР80А6 0,75/920 7,785 16,349 17,128 12,457
АИР80В6 1,1/920 11,418 25,121 26,263 20,553
АИР80А8 0,37/680 5,196 10,393 11,952 7,275
АИР80В8 0,55/680 7,724 15,449 16,221 10,814
АИР90L2 3/2860 10,017 23,040 26,045 17,030
АИР90L4 2,2/1430 14,692 29,385 35,262 29,385
АИР90L6 1,5/940 15,239 30,479 35,051 28,955
АИР90LА8 0,75/700 10,232 15,348 20,464 15,348
АИР90LВ8 1,1/710 14,796 22,194 32,551 22,194
АИР100S2 4/2850 13,404 26,807 32,168 21,446
АИР100L2 5,5/2850 18,430 38,703 44,232 29,488
АИР100S4 3/1410 20,319 40,638 44,702 32,511
АИР100L4 4/1410 27,092 56,894 65,021 43,348
АИР100L6 2,2/940 22,351 42,467 49,172 35,762
АИР100L8 1,5/710 20,176 32,282 40,352 30,264
АИР112М2 7,5/2900 24,698 49,397 54,336 39,517
АИР112М4 5,5/1430 36,731 73,462 91,827 58,769
АИР112МА6 3/950 30,158 60,316 66,347 48,253
АИР112МВ6 4/950 40,211 80,421 88,463 64,337
АИР112МА8 2,2/700 30,014 54,026 66,031 42,020
АИР112МВ8 3/700 40,929 73,671 90,043 57,300
АИР132М2 11/2910 36,100 57,759 79,419 43,320
АИР132S4 7,5/1440 49,740 99,479 124,349 79,583
АИР132М4 11/1450 72,448 173,876 210,100 159,386
АИР132S6 5,5/960 54,714 109,427 120,370 87,542
АИР132М6 7,5/950 75,395 150,789 165,868 120,632
АИР132S8 4/700 54,571 98,229 120,057 76,400
АИР132М8 5,5/700 75,036 135,064 165,079 105,050
АИР160S2 15/2940 48,724 97,449 155,918 2,046
АИР160М2 18,5/2940 60,094 120,187 192,299 2,884
АИР180S2 22/2940 71,463 150,071 250,119 4,288
АИР180М2 30/2940 97,449 214,388 341,071 6,821
АИР200М2 37/2950 119,780 275,493 383,295 16,769
АИР200L2 45/2940 146,173 380,051 584,694 19,003
АИР225М2 55/2955 177,750 408,824 710,998 35,550
АИР250S2 75/2965 241,568 628,078 966,273 84,549
АИР250М2 90/2960 290,372 784,003 1161,486 116,149
АИР280S2 110/2960 354,899 887,247 1171,166 212,939
АИР280М2 132/2964 425,304 1233,381 1488,563 297,713
АИР315S2 160/2977 513,268 1231,844 1693,786 590,259
АИР315М2 200/2978 641,370 1603,425 2116,521 962,055
АИР355SMA2 250/2980 801,174 1281,879 2403,523 2163,171
АИР160S4 15/1460 98,116 186,421 284,538 7,457
АИР160М4 18,5/1460 121,010 229,920 350,930 11,375
АИР180S4 22/1460 143,904 302,199 402,932 15,110
АИР180М2 30/1460 196,233 470,959 588,699 27,276
АИР200М4 37/1460 242,021 532,445 847,072 46,952
АИР200L4 45/1460 294,349 647,568 941,918 66,229
АИР225М4 55/1475 356,102 997,085 1317,576 145,289
АИР250S4 75/1470 487,245 1218,112 1559,184 301,605
АИР250М4 90/1470 584,694 1461,735 1871,020 467,755
АИР280S4 110/1470 714,626 2072,415 2429,728 578,847
АИР280М4 132/1485 848,889 1697,778 2886,222 1612,889
АИР315S4 160/1487 1027,572 2568,931 3802,017 2363,416
АИР315М4 200/1484 1287,062 3217,655 4247,305 3603,774
АИР355SMA4 250/1488 1604,503 3690,356 4492,608 8985,215
АИР355SMВ4 315/1488 2021,673 5054,183 5862,853 12534,375
АИР355SMС4 355/1488 2278,394 5012,466 6151,663 15493,078
АИР160S6 11/970 108,299 205,768 314,067 12,021
АИР160М6 15/970 147,680 339,665 443,041 20,675
АИР180М6 18,5/970 182,139 400,706 546,418 29,324
АИР200М6 22/975 215,487 517,169 711,108 50,209
АИР200L6 30/975 293,846 617,077 881,538 102,846
АИР225М6 37/980 360,561 721,122 1081,684 186,050
АИР250S6 45/986 435,852 784,533 1307,556 440,210
АИР250М6 55/986 532,708 1012,145 1811,207 633,922
АИР280S6 75/985 727,157 1454,315 2326,904 1090,736
АИР280М6 90/985 872,589 1745,178 2792,284 1657,919
АИР315S6 110/987 1064,336 1809,372 2873,708 4044,478
АИР315М6 132/989 1274,621 2166,855 3696,400 5735,794
АИР355МА6 160/993 1538,771 2923,666 3539,174 11848,540
АИР355МВ6 200/993 1923,464 3654,582 4423,968 17118,832
АИР355MLA6 250/993 2404,330 4568,228 5529,960 25485,901
AИР355MLB6 315/992 3032,510 6065,020 7278,024 40029,133
АИР160S8 7,5/730 98,116 156,986 235,479 13,246
АИР160М8 11/730 1007,329 1712,459 2417,589 181,319
АИР180М8 15/730 196,233 333,596 529,829 41,994
АИР200М8 18,5/728 242,685 509,639 606,714 67,952
АИР200L8 22/725 289,793 579,586 724,483 88,966
АИР225М8 30/735 389,796 701,633 1052,449 214,388
АИР250S8 37/738 478,794 861,829 1196,985 481,188
АИР250М8 45/735 584,694 1052,449 1520,204 695,786
АИР280S8 55/735 714,626 1357,789 2143,878 1071,939
АИР280М8 75/735 974,490 1754,082 2728,571 1851,531
АИР315S8 90/740 1161,486 1509,932 2671,419 4413,649
АИР315М8 110/742 1415,768 2265,229 3964,151 6370,957
АИР355SMA8 132/743 1696,635 2714,616 3902,261 12215,774
AИР355SMB8 160/743 2056,528 3496,097 4935,666 18097,443
AИР355MLA8 200/743 2570,659 4627,187 6940,781 26991,925
AИР355MLB8 250/743 4498,654 7647,712 10796,770 58032,638

Расчет крутящего момента – формула

Габариты электродвигателей АИР:

Примечание: при расчете стоит учесть коэффициент проскальзывания асинхронного двигателя. Номинальное количество оборотов двигателя не совпадает с реальным. Точное количество оборотов вы сможете найти, зная маркировку, в таблице выше.

Формула расчета крутящего момента

Где, Р – мощность электродвигателя в киловаттах (кВт). N – количество оборотов вала в минуту.


Как рассчитать момент на валу асинхронного двигателя

В этом разделе мы разместили подборку статей посвященных такому важному в теории асинхронного привода понятию как момент. Здесь читатели найдут материалы раскрывающие значения отдельных терминов так или иначе связанных с понятием момента. Дополнительно мы организовали подборку статей с формулами по которым можно рассчитать конкретные значения моментов или построить их зависимости. Для большей наглядности сдесь же можно найти примеры иллюстирующие использование формул для рассчета того или иного показателя.

Из теории мы знаем что номинальный момент двигателя это момент на валу развиваемый при номинальной мощности и номинальных оборотах вала двигателя.

Как мы выясняли ранее под номинальным моментом понимают такой момент на валу электродвигателя, величина которого постоянна при постоянной номинальной частоте вращения вала.

Ранее мы рассмотрели подробно что представляет собой пусковой момент асинхронного электрического двигателя и по каким формулам можно посчитать значение пускового момента (новая статья). В этой статье мы приведем пример расчета значение пускового момента для линейки асинхронных электродвигателей. Для расчета мы будем использовать данные которые можно получить из паспорта двигателя: номинальный момент и кратность пускового момента по отношению к номинальному. Расчет будет выполнен по формуле:

Мпуск = Мн*Кпуск
где Мпуск — пусковой момент,
Мн — номинальный момент,
Кпуск — кратность пускового момента.
Исходные данные и результаты расчета сведены в виде таблицы. В первом столбце таблицы указаны маркировки двигателей, для которых был выполнен расчет. Второй столбец содержит данные о величине номинального момента. Третий столбец содержит данные о кратности пускового момента. В четвертом столбце приведены результаты расчета пускового момента.
Таблица Результаты расчета пускового момента асинхронных двигателей с использованием паспортных данных

Прежде чем изложить и проанализировать формулы для вычисления пускового момента вспомним что это такое. Под пусковым моментом понимают момент на валу двигателя при определенных условиях. Ключевыми условиями являются равенство нулю скорости вращения ротора, установившееся значение тока и номинальное напряжение на обмотках двигателя.

Для начала вспомнить что в теории электродвигателей понимают под критическим моментом. Момент критический — это максимально возможный момент на валу электродвигателя при достижении которого электродвигатель останавливается.
Подробнее про критический момент асинхронного двигателя.
Для определения численного значения критического момента можно использовать формулу:
Мкр = Мн*П

В некоторых механизмах на начальном этапе запуска привода необходимо обеспечить максимальный пусковой момент. Для решения этой задачи хорошо подходит асинхронный двигатель с фазным ротором. Кратко опишем, что он собой представляет. Асинхронный электродвигатель с фазным ротором имеет ротор, в пазы которого уложена обмотка. Тип соединения обмотки ротора «звезда». Концы фаз обмотки ротора подключают к специальным контактным кольцам. Кольца вращаются вместе с валом двигателя. В цель обмоток ротора может быть включен реостат для пуска и регулирования. Подключение реостата выполняется с помощью щеточного контакта скользящего по кольцам. Данный реостат является добавочным активным сопротивлением. Это сопротивление одинаково для каждой из фаз обмотки.
Благодаря возможности включения реостата в обмотку ротора в данных двигателях имеется возможность обеспечивать максимальное значение пускового момента уже на этапе запуска двигателя. При этом удается снизить пусковые токи. Эти двигатели используют для приводов механизмов с высокими требованиями к уровню пускового момента (например, пуск под нагрузкой).
Дополнительная информация о пусковом моменте асинхронного двигателя

В ряде задач связанных с применением частотно-регулируемого электропривода возникает задача по измерению крутящего момента на валу электродвигателя. В настоящее время для этой задачи используют специализированные вращающиеся датчики крутящего момента.
Вал, нагруженный аксиальным крутящим моментом, скручивается на угол. Величина угла пропорциональная величине крутящего момента. Для измерения величины угла используют углоизмерительные системы. В 1945 году были впервые предложены вращающие датчики крутящего момента, реализующие на практике такой метод измерения. В них была использована индуктивная измерительная система. Подробнее.

Общие сведения о крутящем моменте

Важным понятием в области физики твердого тела является понятие крутящего момента. Особое значение имеет это понятия в области электропривода. В этой статье мы разберем базовые понятия, связанные с крутящим моментом.
Для начала заметим, что крутящий момент часто называют так же моментом силы, вращательным моментов, вертящим моментом и вращающим моментом. Все эти термины являются синонимами. Хотя в некоторых практических приложениях их следует различать. Например, в технических задачах под «вращающим моментом» понимают внешнее усилие, прикладываемое к объекту, а под «крутящим моментом» понимают внутренние усилия, которые возникают в объекте под действием приложенных нагрузок. В нашей статье мы будем использовать термин крутящий момент.

Момент нагрузки – момент, создаваемый вращающейся механической системой присоединенной к валу асинхронного двигателя. В качестве синонимов в литературе встречается термин момент сопротивления. Момент нагрузки зависит от геометрических и физических параметров тел входящих в кинематическую цепь, присоединенную к валу двигателя. Как правило, при расчете момент сопротивления принято приводить к валу двигателя.

Тормозной момент – момент, развиваемый асинхронной машиной, в режиме торможения. В литературе встречается термин синоним: тормозящий момент. В рамках теории асинхронных электродвигателей рассматривают 3 режима торможения: генераторное, динамическое и торможение противовключением.

Критический момент асинхронного двигателя – наибольшее значение момента развиваемое электродвигателем. Этого значения момент достигает при критическом скольжении. Если момент нагрузки на валу двигателя будет больше критического момента, то двигатель остановится.

Номинальный момент асинхронного двигателя – момент, возникающий на валу двигателя при номинальной мощности и номинальных оборотах. Под номинальными данными понимают данные, которые определяются при работе двигателя в режиме, для которого он был спроектирован и изготовлен.

Пусковой момент на валу асинхронника – вращающий момент, который развивает на валу электрический асинхронный двигателя при следующих условиях: скорость вращения равна нулю (ротор неподвижен), ток имеет установившееся значение, к обмоткам электродвигателя подведено номинальное по частоте и напряжению питание, соединение обмоток соответствует номинальному режиму работы электродвигателя.

Электромагнитный момент – момент, возникающий на валу электродвигателя при протекании по его обмоткам электрического тока. В литературе встречаются синонимы этого термина: вращающий момент двигателя или крутящий момент электродвигателя. Так же часто попадаются вариации с более развернутой формулировкой: электромагнитный вращающий момент или электромагнитный крутящий момент.

Это один из ключевых параметров теории, определяющий способность асинхронного двигателя вращать подсоединенную к его валу нагрузку в требуемых статических и динамических режимах. По этой причине при принятии решения об использовании двигателя для решения конкретной задачи важно принимать во внимание характер повидения электромагнитного момента. В самом общем случае электромагнитный момент на валу двигателя определяют по формуле: Мэм = (?Еф х Iф)/?2

Асинхронные двигатели — теория — Понятие момента
16.10.2012 01:23
Подробнее.

Какие моменты бывают у асинхронного электродвигателя?

В рамках современной теории асинхронных электрических машин применяют ряд терминов связанных с понятием момента. Часть этих терминов относится к моменту создаваемому на валу (на роторе) электродвигателя. Другая группа терминов определяет моменты создаваемые механической нагрузкой подключенной к валу электрического двигателя.

Эти термины определяют как сам момент развиваемый двигателем, так и различный состояния момента на выходном валу двигателя. Под состоянием подразумевается значение момента в кретических точках. Например номинальный момент или пусковой момент.

Источник

Пусковой момент асинхронного двигателя

Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.

Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.

Численное значение пускового момента

Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.

Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.

Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:

Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.

Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:

Асинхронные двигатели — теория — Понятие момента
Тип двигателя Номинальный момент, Нм Отношение пускового момента к номинальному моменту Пусковой момент, Нм
АИРМ132М2 36 2,5 90
АИР180 S2 72 2 144
АИР180М2 97 2,4 232,8

Роль пускового момента асинхронного электродвигателя (пусковой ток)

Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.

Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.

Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.

Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».

Пути ограничения пускового тока

Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.

В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).

Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.

Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).

Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством частотного преобразователя. Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.

Источник

23

Для определения
пригодности электродвигателя для работы
в качестве привода различных механизмов
необходимо знать вращающий момент этого
двигателя и характер его изменения.

Вращающий момент
электродвигателя возникает в результате
взаимодействия токов протекающих по
обмотке ротора с вращающимся магнитным
полем статора.

Вращающий момент
асинхронного электродвигателя
определяется следующей формулой:

M = kФIротcos
рот

где M – вращающий
момент (Нм);

Ф – вращающийся
магнитный поток (Вб);

Iрот
– ток в обмотке ротора;

k – константа,
зависящая от конструкции электродвигателя;

cos рот
– косинус угла сдвига фаз между током и
э.д.с. в обмотке ротора.

Таким образом,
вращающий момент асинхронного двигателя
пропорционален величине вращающегося
магнитного потока, пронизывающего
ротор, и активной составляющей тока
ротора.

Магнитный поток
двигателя величиной постоянной для
данного двигателя.

Переменной
величиной является ток ротора, зависящий
в свою очередь от скольжения.

Вращающий момент
асинхронного двигателя приближенно
может быть выражен формулой:

M =
2Mкр/(s/sкр
+ sкр/s),

где s – скольжение
электродвигателя;

Mкр
-максимальный момент электродвигателя,
называемый критическим;

sкр
– критическое скольжение электродвигателя,
соответствующее критическому моменту.

Эта формула следует
из анализа схемы замещения асинхронного
электродвигателя.

Критическое
скольжение можно определить по
приближенной формуле:

sкр
= Rрот/(xст
+ xрот),

где Rрот
– активное сопротивление обмотки ротора;

xст
и xрот
– реактивные сопротивления обмоток
статора и ротора.

Зависимости
вращающего момента от скольжения
соответствует такая кривая:

Кривую можно
условно разделить на два участка: ОА и
АВ. Участок ОА соответствует устойчивым
режимам работы асинхронного двигателя:
с увеличением момента нагрузки скорость
вращения двигателя замедляется,
скольжение увеличивается, и как видно
из графика, возростает вращающий момент.

Новое положение
равновесия достигается. когда вращающий
момент становится равным тормозному.

При этом двигатель
устойчиво вращается с уменьшенной
скоростью.

Участок АВ
соответствует неустойчивым режимам
работы двигателя.

С увеличением
момента нагрузки скольжение увеличивается,
вращающий момент уменьшается, скольжение
возрастает еще больше.

Двигатель
останавливается и начинает быстро
нагреваться, так как при s = 1 его пусковой
ток в 6 – 7 раз превышает номинальное
значение.

Максимальный
момент двигателя называется опрокидывающим.

Двигатель может
работать только на устойчивой части
характеристики.

Для практических
целей вращающий момент электродвигателя
определяют исходя из его мощности и
скорости вращения.

Для этого служит
следующее соотношение:

M = 9550P/n
(Нм)

где P – мощность
двигателя в кВт; n – скорость вращения в
об/мин.

Механическая характеристика асинхронного двигателя

Зависимость
скорости вращения двигателя от момента
на валу при постоянных напряжении
питания и частоте сети называют
механической характеристикой.

Механическая
характеристика асинхронного двигателя
имеет вид:

Механическая
характеристика снимается экспериментально
или

На этом графике
можно отметить максимальный критический
момент; пусковой момент (при пуске
двигателя, то есть при n2
= 0); номинальный момент, соответствующий
номинальному режиму.

Номинальные
технические параметры расчитываются
из условия допустимой температуры
нагрева двигателя и электрической
прочности, ограничиваемых стойкостью
изоляции проводников обмоток.

строится на
основании графика M(s).

С увеличением
момента нагрузки скорость вращения
двигателя уменьшается незначительно.
Если момент нагрузки превысит максимальный,
то скорость вращения двигателя
лавинообразно уменьшиться до нуля.

Скорость вращения
асинхронного двигателя зависит от
напряжения питания. Вращающий момент
пропорционален квадрату напряжения
питания. Поэтому даже небольшие колебания
напряжения питания приводят к заметному
изменению вращающего момента и скорости
вращения двигателя.

При увеличении
вращательного момента от нуля до
максимального значения скорость
двигателя уменьшается незначительно.

Такая механическая
характеристика называется жесткой.

При перегрузке
свыше мсаксимального момента двигатель
работает в области неустойчивого режима
и может остановиться, если тормозящий
момент превышает вращающий момент
создаваемый двигателем.

Механическая
характеристика, относящаяся к нормальным
рабочим условиям работы двигателя,
называется естественной механической
характеристикой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий