Как найти момент силы рычага равен

Момент силы. Условия равновесия рычага

  1. Устройство и виды рычагов
  2. Момент силы
  3. Правило моментов для двух сил
  4. Правило моментов для нескольких сил
  5. Применение рычагов в быту и технике
  6. Задачи
  7. Лабораторная работа №9. Проверка условия равновесия рычага

п.1. Устройство и виды рычагов

Устройство и виды рычагов Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

Рычаг состоит из перекладины и опоры.
Точка опоры делит перекладину рычага на два плеча рычага.

Назначение рычага – получить выигрыш в силе или расстоянии.
Если к плечу рычага достаточно приложить меньшую силу, то переместить конец рычага придётся на бóльшее расстояние: выигрыш в силе оборачивается проигрышем в расстоянии.
И наоборот, если удаётся сократить перемещение конца рычага, придётся приложить бóльшую силу: выигрыш в расстоянии оборачивается проигрышем в силе.

В зависимости от взаимного расположения точки опоры и нагрузки различают три вида рычагов.

п.2. Момент силы

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы

На рисунке (l_1) – плечо силы (F_1, l_2) – плечо силы (F_2).

Силы вращают рычаг вокруг точки опоры – по часовой или против часовой стрелки.

Ось вращения проходит через точку опоры перпендикулярно плоскости вращения.

На рисунке сила (F_1) вращает рычаг против часовой стрелки, а сила (F_2) – по часовой стрелке.

Момент силы – это произведение силы, вращающей тело, на её плечо. $$ M=Fl $$ В системе СИ единица измерения момента силы – Н·м.

Момент силы определяется не для всего тела, а для некоторой его точки, удалённой от центра (оси) вращения. Эта величина имеет смысл только для вращающихся тел.

п.3. Правило моментов для двух сил

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил $$ F_1l_1=F_2l_2 $$

п.4. Правило моментов для нескольких сил

Правило моментов для нескольких сил
Рычаг находится в равновесии, если сумма моментов всех сил, вращающих его по ходу часовой стрелки, равен сумме моментов всех сил, вращающих его против хода часовой стрелки.

Например:

Правило моментов для нескольких сил Силы (F_1, F_2, F_3) вращают рычаг против часовой стрелки, а сила (F_4) – по часовой стрелке. Поэтому: $$ F_1l_1+F_2l_2+F_3l_3=F_4l_4 $$

п.5. Применение рычагов в быту и технике

Рычаги первого рода

Весы
Весы
Предмет, вес которого нужно измерить, — это нагрузка, а гиря создает усилие. Они равны, так как находятся на одном расстоянии от точки опоры.
Рычажные весы
Рычажные весы
Точка опоры смещена относительно центра. Грузило передвигается по основанию, пока не уравновесит взвешиваемый объект.
Гвоздодёр
Гвоздодёр
Усилие ручки увеличивается плечом и вытаскивает гвоздь. Нагрузкой здесь является сопротивление гвоздя.
Ручная тележка
Ручная тележка
Небольшое усилие, прикладываемое к ручкам тележки, позволяет поднимать тяжелый груз.
Плоскогубцы
Плоскогубцы
Составной рычаг, пара простых рычагов, соединенных в точке опоры. Нагрузка — сопротивление предмета захвату инструментом.
Ножницы
Ножницы
Составной рычаг первого рода, развивают мощное режущее действие очень близко к месту крепления. Нагрузка — сопротивление материала лезвиям.

Рычаги второго рода

Рычаги третьего рода

п.6. Задачи

Задача 1. Для каждого положения тела укажите плечо силы.
Задача 1
При необходимости достраиваем линию действия силы и опускаем на неё перпендикуляр из точки опоры. Этот перпендикуляр и есть искомое плечо.

Задача 2. Грузы уравновешены на рычаге. Отношение плеч рычага 1:5. Масса большего груза 2,5 кг. Найдите массу меньшего груза.

Дано:
(frac{l_1}{l_2}=frac 15)
(m_1=2,5 text{кг})
__________________
(m_2-?)

Задача 2
По правилу моментов begin{gather*} F_1l_1=F_2l_2 end{gather*} На обоих концах рычага действуют силы тяжести: $$ F_1=m_1g, F_2=m_2g $$ Получаем: begin{gather*} m_1gl_1=m_2gl_2\[7pt] m_2=frac{m_1l_1}{l_2} end{gather*} Подставляем: $$ m_2=2,5cdot frac 15=0,5 (text{кг}) $$ Ответ: 0,5 кг

Задача 3. На концах рычага действуют силы 15 Н и 60 Н, направленные вниз. Рычаг находится в равновесии. Расстояние между точками приложения сил 1 м. Где расположена точка опоры?

Дано:
(F_1=15 text{Н})
(F_2=60 text{Н})
(l_1+l_2=1 text{м})
__________________
(l_1, l_2-?)

Задача 3
По правилу моментов begin{gather*} F_1l_1=F_2l_2. end{gather*} Получаем систему уравнений begin{gather*} left{ begin{array}{l l} 15l_1=60l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 4l_2+l_2=1 end{array} right. Rightarrow \[7pt] Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 5l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=0,8 \ l_2=0,2 end{array} right. end{gather*} Ответ: 0,8 м от точки приложения первой силы и 0,2 м от точки приложения второй силы.

Задача 4*. К балке, расположенной на двух опорах А и В подвешен груз массой 500 кг. Расстояние от точки подвеса груза к одному из концов балки в 4 раза больше, чем к другому. С какой силой балка давит на каждую из опор? Примите (gapprox 10 text{м/с}^2). Ответ запишите в килоньютонах.

Дано:
(m=500 text{кг})
(gapprox 10 text{м/с}^2)
(OB=4OA)
__________________
(F_A, F_B-?)

Задача 4*
Сила тяжести (F_{text{т}}=mg), направленная вниз, уравновешивается силами реакции опор (F_A) и (F_B), направленными вверх. begin{gather*} F_A+F_B=mg end{gather*} По правилу моментов при равновесии begin{gather*} F_Acdot OA=F_Bcdot OB=F_Bcdot 4OARightarrow F_A=4F_B \[7pt] F_A+F_B=5F_B=mgRightarrow F_B=frac{mg}{5} end{gather*} Получаем: begin{gather*} F_B=frac{500cdot 10}{5}=1000 text{Н}=1 text{кН}, F_A=4cdot 100=4000 text{Н}=4 text{кН} end{gather*} Ответ: 4 кН и 1 кН

п.7. Лабораторная работа №9. Проверка условия равновесия рычага

Цель работы
Исследовать условия равновесия рычага под действием двух параллельных сил.

Теоретические сведения

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В работе используется рычаг 1-го рода, в котором опора располагается между точками приложения сил.

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг. Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы – это произведение силы, вращающей тело, на её плечо: (M=Fl).

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил begin{gather*} M_1=M_2\[7pt] F_1l_1=F_2l_2 end{gather*}

В работе используется лабораторный рычаг с отверстиями диаметром 4 мм, находящимися на расстоянии 5 см друг от друга. Отверстий нечетное количество; центральное отверстие (центр тяжести) используется для подвеса рычага на штативе в положении равновесия. Абсолютную погрешность определения плеча на данном рычаге принимаем равной половине диаметра отверстия $$ Delta l=frac D2=2 text{мм} $$

Для измерения веса груза используется динамометр с ценой деления $$ d=0,1 text{Н}. $$

Абсолютная погрешность определения веса $$ Delta_F=frac d2=0,05 text{Н}. $$

Относительные погрешности измерений: $$ delta_l=frac{Delta_l}{l}, delta_F=frac{Delta_F}{F}, delta_M=delta_l+delta_F $$

Абсолютная погрешность определения момента силы $$ Delta_M=Mcdot delta_M $$

Погрешности определения отношений сил и плечей: begin{gather*} r_F=frac{F_1}{F_2}, delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}, Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}\[7pt] r_l=frac{l_2}{l_1}, delta_{rF}=delta_{rl}frac{Delta_l}{l_1}+frac{Delta_l}{l_2}, Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl} end{gather*}

Приборы и материалы
Лабораторный рычаг, штатив, стержень, динамометр, набор грузов.

Ход работы

1. Закрепите стержень в штативе, наденьте на него рычаг. Если стержень проходит через центральное отверстие рычага, он находится в равновесии.
2. Подвесьте три груза на динамометре, запишите их вес (F_1).
3. Подвесьте грузы слева от оси вращения рычага на расстоянии 5 см.
4. С помощью динамометра определите, какую силу нужно приложить на расстоянии 15 см справа от оси вращения, чтобы удерживать рычаг в равновесии.
5. Как направлены в этом случае силы, действующие на рычаг? Запишите длину плеч этих сил.
6. Найдите моменты сил (M_1) и (M_2), их относительные и абсолютные погрешности.
7. Вычислите отношение сил (frac{F_1}{F_2}) и плеч (frac{l_2}{l_1}) для этого случая, погрешности их определения.
8. Сделайте выводы.

Результаты измерений и вычислений

(F_1, text{Н}) (l_1, text{см}) (F_2, text{Н}) (l_2, text{см}) (F_1/F_2) (l_2/l_1)
2,9 5 1,0 15 2,9 3,0

Погрешности прямых измерений: $$ Delta_l=2 text{мм}=0,2 text{см}, Delta_F=0,05 text{Н} $$ Найдем моменты сил и погрешности вычислений: begin{gather*} M_1=F_1cdot l_1=2,9cdot 5=14,5 (text{Н}cdot text{м})\[7pt] delta_{M1}=frac{Delta_l}{l_1}+frac{Delta_F}{F_1}=frac{0,2}{5}+frac{0,05}{2,9}approx 0,04+0,017=0,057=5,7text{%} \[7pt] Delta_{M1}=M_1cdot delta_{M1}=14,5cdot 0,057approx 0,8 (text{Н}cdot text{м})\[7pt] M_1=(14,5pm 0,8) text{Н}cdot text{м}\[7pt] \[7pt] M_2=F_2cdot l_2=1,0cdot 15=15,0 (text{Н}cdot text{м})\[7pt] delta_{M2}=frac{Delta_l}{l_2}+frac{Delta_F}{F_2}=frac{0,2}{15}+frac{0,05}{1,0}approx 0,013+0,05=0,063=6,3 text{%} \[7pt] Delta_{M2}=M_2cdot delta_{M2}=15,0cdot 0,063approx 0,9 (text{Н}cdot text{м})\[7pt] M_2=(15,0pm 0,9) text{Н}cdot text{м} end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ M_1=M_2 $$

Погрешность вычислений для (frac{F_1}{F_2}) begin{gather*} delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}=frac{0,05}{2,9}+frac{0,05}{1,0}approx 0,017+0,05=0,067=6,7text{%}\[7pt] Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}=2,9cdot 0,067approx 0,2\[7pt] frac{F_1}{F_2}=2,9pm 0,2 end{gather*}

Погрешность вычислений для (frac{l_2}{l_1}) begin{gather*} delta_{rl}=frac{Delta_l}{l_1}+frac{Delta_l}{l_2}=frac{0,2}{5}+frac{0,2}{15}approx 0,04+0,013=0,053=5,3text{%}\[7pt] Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl}=3,0cdot 0,053approx 0,2\[7pt] frac{l_2}{l_1}=3,0pm 0,2 end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ frac{F_2}{F_2}=frac{l_2}{l_1} $$

Выводы
На основании проделанной работы можно сделать следующие выводы.

Моменты сил, приложенных слева и справа от оси вращения рычага, равны $$ M_1=(14,5pm 0,8) text{Н}cdot text{м}, M_2=(15,0pm 0,9) text{Н}cdot text{м} $$ Таким образом, с учетом вычисленных погрешностей, (M_1=M_2) – правило моментов выполняется.

Отношения сил и плечей равны begin{gather*} frac{F_1}{F_2}=2,9pm 0,2, frac{l_2}{l_1}=3,0pm 0,2 end{gather*}

Таким образом, с учетом вычисленных погрешностей (frac{F_1}{F_2}=frac{l_2}{l_1}) – правило отношений выполняется.

Эксперименты подтвердили условие равновесия рычага.

Момент силы
vec{M}=left[vec{r}timesvec{F}right]
Размерность L2MT−2
Единицы измерения
СИ Н·м
СГС Дина-сантиметр
Примечания
Псевдовектор

Моме́нт си́лы (момент силы относительно точки) — векторная физическая величина, характеризующая действие силы на механический объект, которое может вызвать его вращательное движение. Определяется как векторное произведение радиус-вектора точки приложения силы {vec {r}} и вектора силы vec{F}. Моменты сил, образующиеся в разных условиях, в технике могут иметь названия: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент, скру́чивающий момент.

Момент силы обозначается символом {vec  {M}} или, реже, {displaystyle {vec {tau }}} (тау).

Единица измерения в СИ: Н⋅м. Величина момента силы зависит от выбора начала отсчёта радиус-векторов O.

Понятие момента силы используется, в основном, в области задач статики и задач, связанных с вращением деталей (рычагов и др.) в технической механике. Особенно важен случай вращения твёрдого тела вокруг фиксированной оси — тогда O выбирают на этой оси, а вместо самого момента рассматривают его проекцию на ось {displaystyle M_{parallel }}; такая проекция называется моментом силы относительно оси.

Наличие момента силы влечёт изменение момента импульса тела vec{L} относительно того же начала O со временем t: имеет место соотношение {displaystyle d{vec {L}}/dt={vec {M}}}. В статике равенство нулю суммы моментов всех приложенных к телу сил является одним из условий (наряду с равенством нулю суммы сил) реализации состояния покоя.

Определение, общие сведения[править | править код]

В физике момент силы играет роль вращающего воздействия на тело.

Видеоурок: вращающий момент

В простейшем случае, если сила vec{F} приложена к рычагу перпендикулярно ему и оси вращения, то момент силы определяется как произведение величины F на расстояние x от места приложения силы до оси вращения рычага, называемое «плечом силы»:

{displaystyle M=Fx}.

Например, сила в 3 ньютона, приложенная на расстоянии 2 м от оси, создаёт такой же момент, что и сила в 1 ньютон с плечом 6 м.

Если действуют две силы, говорят о моменте пары сил (такая формулировка восходит к трудам Архимеда). При этом равновесие достигается в ситуации {displaystyle F_{1}x_{1}=F_{2}x_{2}}.

Для случаев более сложных движений и более сложных объектов определение момента как произведения {displaystyle Fx} требует универсализации.

Момент силы иногда называют вращающим или крутящим моментом. «Вращающий» момент понимается в технике как внешнее усилие, прикладываемое к объекту, а «крутящий» — как внутреннее, возникающее в самом объекте под действием приложенных нагрузок (этим понятием оперируют в сопромате).

Момент силы относительно точки[править | править код]

Момент силы, приложенный к гаечному ключу. Направлен от зрителя

В общем случае момент силы vec{F}, приложенной к телу, определяется как векторное произведение

{displaystyle {vec {M}}=left[{vec {r}}times {vec {F}}right]},

где {vec {r}} — радиус-вектор точки приложения силы. Вектор {vec  {M}} перпендикулярен векторам {vec {r}} и vec{F}.

Начало отсчета радиус-векторов O может быть любым. Обычно O выбирают в чем-либо выделенной точке: в месте закрепления подвеса, в центре масс, на оси вращения и т.д.. Если одновременно анализируется момент импульса тела vec{L}, то начало O всегда выбирается одинаковым для vec{L} и {vec  {M}}.

Если не оговорено иное, то «момент силы» — это момент силы относительно точки (O), а не некоей оси.

В случае нескольких приложенных сосредоточенных сил их моменты векторно суммируются:

{displaystyle {vec {M}}=sum _{i}left[{vec {r}}_{i}times {vec {F}}_{i}right]},

где {displaystyle {vec {r}}_{i}} — радиус-вектор точки приложения i-й силы {displaystyle {vec {F}}_{i}}. В случае силы, распределённой с плотностью {displaystyle d{vec {F}}/dV},

{displaystyle {vec {M}}=int limits _{V}left[{vec {r}}times {frac {d{vec {F}}}{dV}}right]dV}.

Если {displaystyle d{vec {F}}/dV} (Н/м3) — обобщённая функция, которая может содержать и дельтаобразные члены, то последней формулой охватываются и две предыдущие.

Момент силы относительно оси[править | править код]

Моментом силы относительно оси называется алгебраическое значение проекции момента {vec  {M}} на ось, то есть

{displaystyle M_{parallel }={vec {M}}cdot {vec {e}}_{o}},

где {displaystyle {vec {e}}_{o}} — единичный вектор вдоль оси, а начало отсчёта O выбрано на оси. Момент силы относительно оси может быть рассчитан как

{displaystyle M_{parallel }=pm left|{vec {r}}_{perp }times {vec {F}}_{perp }right|},

где через {displaystyle {vec {r}}_{perp }} и {displaystyle {vec {F}}_{perp }} обозначены составляющие радиус-вектора и силы в плоскости, перпендикулярной оси.

В отличие от момента силы {vec  {M}}, величина момента силы относительно оси {displaystyle M_{parallel }} не претерпевает изменения при сдвиге точки O вдоль оси.

Для краткости символ параллельности и знак могут опускаться, а {displaystyle M_{parallel }} (как и {vec  {M}}) именоваться «моментом силы».

Единицы измерения[править | править код]

Момент силы имеет размерность «сила, умноженная на расстояние» и единицу измерения ньютон-метр в системе СИ. 1 Н·м — это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

Формально, размерность {vec  {M}} (Н·м) совпадает с размерностями энергии и механической работы.

Некоторые примеры[править | править код]

Формула момента рычага[править | править код]

Момент, действующий на рычаг

Момент силы, действующей на рычаг, равен

{displaystyle {vec {M}}=rFsin alpha cdot {vec {e}}_{o}}

или, если записать момент силы относительно оси,

{displaystyle M_{parallel }=rFsin alpha },

где alpha — угол между направлением силы и рычагом. Плечо силы равно {displaystyle rsin alpha }. Максимальное значение момента достигается при перпендикулярности рычага и силы, то есть при {displaystyle alpha =pi /2}. При сонаправленности vec{F} и рычага момент равен нулю.

Статическое равновесие[править | править код]

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма моментов всех сил вокруг любой точки.

Для двумерного случая с горизонтальными и вертикальными силами требование сводится к тому, чтобы нулевыми были сумма сил в двух измерениях: {displaystyle Sigma F_{horizontal}=0,,Sigma F_{vertical}=0} и момент силы в третьем измерении: {displaystyle Sigma M=0}.

Движение твёрдого тела[править | править код]

Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

{displaystyle {vec {L_{o}}}=I_{c},{vec {omega }}+[M({vec {r_{o}}}-{vec {r_{c}}}),{vec {v_{c}}}].}

Будем рассматривать вращающиеся движения в системе координат Кёнига, так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I — постоянная величина во времени, то

{displaystyle {vec {M}}=I{frac {d{vec {omega }}}{dt}}=I{vec {alpha }},}

где {displaystyle {vec {alpha }}} — угловое ускорение, измеряемое в радианах в секунду за секунду (рад/с2). Пример: вращается однородный диск.

Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

{displaystyle {vec {M_{c}}}=I_{c}{frac {d{vec {omega }}}{dt}}+[{vec {w}},I_{c}{vec {w}}].}

Связь с другими величинами[править | править код]

С моментом импульса[править | править код]

Момент силы — производная момента импульса {displaystyle {vec {L}}={vec {r}}times {vec {p}}} относительно точки O по времени:

{displaystyle {vec {M}}={frac {d{vec {L}}}{dt}}},

Аналогичную формулу можно записать для моментов относительно оси:

{displaystyle M_{parallel }={frac {dL_{parallel }}{dt}}}.

Если момент силы {vec  {M}} или {displaystyle M_{parallel }} равен нулю, момент импульса относительно соответствующей точки или оси сохраняется.

С мощностью[править | править код]

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу и развивает мощность {displaystyle {vec {F}}cdot {vec {v}}} (где vec{v} — скорость материальной точки). Так же и в случае момента силы: если он совершает действие через «угловое расстояние», развивается мощность

{displaystyle P={vec {M}}cdot {vec {omega }}}.

В системе СИ мощность P измеряется в ваттах, угловая скорость vec{omega} — в радианах в секунду.

С механической работой[править | править код]

Если под действием момента силы {vec  {M}} происходит поворот тела на угол dvarphi, то совершается механическая работа

{displaystyle dA=left|{vec {M}}right|dvarphi }.

Для поворота, скажем, рычага вокруг фиксированной оси на угол {displaystyle varphi _{2}-varphi _{1}} получим

{displaystyle A=int _{varphi _{1}}^{varphi _{2}}left|{vec {M}}right|dvarphi =left|{vec {M}}right|(varphi _{2}-varphi _{1})=left|{vec {M}}right|int _{t_{1}}^{t_{2}}omega (t)dt}.

В системе СИ работа A измеряется в джоулях, угол — в радианах.

Размерность работы (и энергии) совпадает с размерностью момента силы («ньютон-метр» и джоуль — это одни и те же единицы). Момент силы 1 Н·м, при повороте рычага или вала на 1 радиан совершает работу в 1 Дж, а при повороте на один оборот совершает механическую работу и сообщает энергию 2pi джоуля.

Измерение момента силы[править | править код]

Измерение момента силы осуществляется с помощью специальных приборов — торсиометров. Принцип их действия обычно основан на измерении угла закручивания упругого вала, передающего крутящий момент, либо на измерении деформации некоторого упругого рычага. Измерения деформации и угла закручивания производится различными датчиками деформации — тензометрическими, магнитоупругими, а также измерителями малых перемещений — оптическими, ёмкостными, индуктивными, ультразвуковыми, механическими.

Существуют специальные динамометрические ключи для измерения крутящего момента затягивания резьбовых соединений и регулируемые и нерегулируемые ограничители крутящего момента, так называемые «трещотки», применяемые в гаечных ключах, шуруповёртах, винтовых микрометрах и др.

Из истории понятия[править | править код]

Для того чтобы понять, откуда появилось понятие момента сил и как к нему пришли, стоит рассмотреть действие силы на рычаг, поворачивающийся относительно неподвижной оси. Работа, совершаемая при действии силы {vec {F}} на рычаг {vec {r}}, совершающий вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием силы конец рычага смещается на бесконечно малый отрезок dl, которому соответствует бесконечно малый угол dvarphi. Обозначим через {displaystyle d{vec {l}}} вектор, который направлен вдоль бесконечно малого отрезка dl и равен ему по модулю. Угол между векторами {vec {F}} и {displaystyle d{vec {l}}} равен beta , а угол между векторами {vec {r}} и {vec {F}} равен alpha .

Следовательно, бесконечно малая работа dA, совершаемая силой {vec {F}} на бесконечно малом участке dl, равна скалярному произведению вектора {displaystyle d{vec {l}}} и вектора силы, то есть {displaystyle dA={vec {F}}cdot d{vec {l}}}.

Теперь попытаемся выразить модуль вектора {displaystyle d{vec {l}}} через радиус-вектор {vec {r}}, а проекцию вектора силы {vec {F}} на вектор {displaystyle d{vec {l}}} — через угол alpha .

Так как для бесконечно малого перемещения рычага dl можно считать, что траектория перемещения перпендикулярна рычагу {vec {r}}, используя соотношения для прямоугольного треугольника, можно записать следующее равенство: {displaystyle dl=rmathrm {tg} ,dvarphi }, где в случае малого угла справедливо {displaystyle mathrm {tg} ,dvarphi =dvarphi } и, следовательно, {displaystyle left|d{vec {l}}right|=left|{vec {r}}right|dvarphi }.

Для проекции вектора силы {vec {F}} на вектор {displaystyle d{vec {l}}} видно, что угол {displaystyle beta ={frac {pi }{2}}-alpha }, а так как {displaystyle cos {left({frac {pi }{2}}-alpha right)}=sin alpha }, получаем, что {displaystyle left|{vec {F}}right|cos beta =left|{vec {F}}right|sin alpha }.

Теперь запишем бесконечно малую работу через новые равенства: {displaystyle dA=left|{vec {r}}right|dvarphi left|{vec {F}}right|sin alpha }, или {displaystyle dA=left|{vec {r}}right|left|{vec {F}}right|sin alpha ,dvarphi }.

Видно, что произведение {displaystyle left|{vec {r}}right|left|{vec {F}}right|sin alpha } есть не что иное, как модуль векторного произведения векторов {vec {r}} и {vec {F}}, то есть {displaystyle left|{vec {r}}times {vec {F}}right|}, которое и было принято обозначить за момент силы M, или модуль вектора момента силы {displaystyle left|{vec {M}}right|}.

Теперь полная работа записывается просто: {displaystyle A=int limits _{0}^{varphi }left|{vec {r}}times {vec {F}}right|dvarphi }, или {displaystyle A=int limits _{0}^{varphi }left|{vec {M}}right|dvarphi }.

См. также[править | править код]

  • Момент инерции
  • Момент импульса
  • Теорема Вариньона

Определение

Момент силы — это крутящий или вращательный момент, который является векторной величиной.

Чтобы определить, чему равен момент силы, нужно получить произведение вектора силы и радиус-вектора, который проводится к точке приложения силы от оси вращения. Поэтому величину можно назвать характеристикой вращательного воздействия силы на твердое тело.

Термины “крутящий” и “вращающий” моменты в данном случае не являются тождественными. Разница между ними состоит в том, что “вращающий” момент воспринимается как внешнее усилие, которое прикладывают к объекту. Термин “крутящий” же рассматривается как внутреннее усилие, которое появляется при приложении конкретных нагрузок (что делает определение схожим с используемым при изучении сопротивления материалов).

Понятие «момент силы»

Физики воспринимают этот термин в качестве так называемой “вращающей силы”. В соответствии с системой СИ, измеряется данная величина в ньютон-метрах. Иногда в литературе можно также встретить понятие “момент пары сил” (такое определение, например, появляется в исследованиях Архимеда над рычагами).

При использовании простых примеров (например, при приложении силы к рычагу в перпендикулярном отношении к нему) величина рассчитывается как произведение расстояния до оси вращения рычага и непосредственно силы, которая на него воздействует.

Пример: На рычаг оказывает воздействие силы в 3 ньютона, которую прикладывают на расстоянии 2 м от оси вращения рычага. В результате момент силы будет равнозначен силе в 1 ньютон, прикладываемой на расстоянии 6 м по отношению к рычагу.

Как определить, чему равен момент силы

Формула

Точно определить момент действия силы частицы удастся, применив следующую векторную формулу:

[vec{mathrm{M}}=vec{mathrm{r}} vec{mathrm{F}}]

В данном случае [vec{mathrm{r}}] — это радиус вектора частицы, а
[vec{mathrm{F}}] — сила, воздействующая на эту частицу.

Важно помнить, что в физике энергия воспринимается как скалярная величина. В то же время момент силы считается (псевдо)векторной величиной. Поэтому совпадение размерностей указанных величин никогда не бывает случайным. Например, момент силы в 1 Н/м, приложенный через целый оборот, при выполнении механической работы сообщает энергию в 2 Дж. В математическом отображении эта формула момента силы будет выглядеть так:

[mathbf{E}=mathbf{M} boldsymbol{theta}], где:

  • [mathbf{E}] — это энергия;
  • [mathbf{M}] — это вращающийся момент;
  • [boldsymbol{theta}] — это угол в радианах.

В современных условиях момент силы измеряется при помощи особых датчиков нагрузки, которые могут быть трех типов:

  • оптического;
  • тензометрического;
  • индуктивного.

Применение специальной техники позволяет определить величину предельно точно и избавляет ученых от необходимости производить лишние расчеты.

Нет времени решать самому?

Наши эксперты помогут!

Момент силы: формулы

Наиболее интересным в физике считается определение момента силы в поле. Для этого используется следующая формула:

[vec{M}=vec{M_{1}} vec{F}]

Где:

[vec{M_{1}}]- это момент рычага;
[vec{F}]- это величина силы, действующей на тело.

У такой формулы момента силы в физике будет один недостаток. С ее помощью не удастся определить, в каком направлении направлен момент силы. Известной станет только его величина. Если сила окажется перпендикулярной вектору, тогда момент рычага окажется равен расстоянию от центра до точки, в которой была приложена сила. В таком случае момент силы достигнет максимального значения:

[vec{T}=vec{r} quad vec{F}]

Если сила совершает какое-либо действие на определенном расстоянии, она параллельно выполняет механическую работу относительно того же объекта. В таком случае в физической практике считается, что и момент силы выполняет работу (при совершении действия через угловое расстояние).

[mathrm{P}=mathrm{M} {omega}]

Международная система измерений предлагает определять мощность в Ваттах, при этом момент силы измеряется в радианах в секунду. Для определения величину угловой скорости используется единица “радианы в секунду”).

Как определяется момент действия нескольких сил

Если на тело действуют одновременно две равные по величине и противоположно направленные силы (не лежащие на одной и той же прямой), оно находится в состоянии равновесия. Такая ситуация связана с тем, что результирующий момент данных сил по отношению к любой из осей не обладает нулевым значением. Ведь обе силы направлены в одну сторону момента и являются парой сил.

Если тело закреплено на оси, оно будет вращаться под влиянием пары сил. Когда же пара сил прилагается по отношению к свободному телу, последнее начнет крутиться вокруг той оси, которая проходит через центр тяжести.

В соответствии с правилом моментов сил в физике, момент пары сил считается одинаковым по отношению к любой оси, перпендикулярной плоскости этой пары. При этом суммарный момент пары M всегда определяется как произведение плеча пары (то есть расстояния l между силами) и одной из этих сил F. Данный расчет производится независимо от типов отрезков, на которые разделяется положение оси.

[mathrm{M}=mathrm{FL}_{1}+mathrm{FL}-2=mathrm{FL}_{1}+mathrm{L}_{2}=mathrm{FL}]

В случае, если равнодействующая момент нескольких сил равняется нулю, он будет одинаковым по отношению ко всем параллельным друг другу осям. Именно поэтому воздействие всех сил на тело можно заменить действием только одной пары сил, имеющих точно такой же момент.

Формула момента рычага

Момент
рычага

Очень
интересен особый случай, представляемый
как определение момента силы в поле:


 = МОМЕНТ_РЫЧАГА
* СИЛА

Проблема
такого представления в том, что оно не
дает направления момента силы, а только
его величину, поэтому трудно рассматривать
в.м. в 3-хмерном случае. Если сила
перпендикулярна вектору r, момент рычага
будет равен расстоянию до центра и
момент силы будет максимален


 = РАССТОЯНИЕ_ДО_ЦЕНТРА
* СИЛА

[Править]Сила под углом

Если
сила F направлена под углом θ к рычагу
r, то M = r*F*sinθ, где θ это угол между рычагом
и приложенной силой

[Править]Статическое равновесие

Для
того чтобы объект находился в равновесии,
должна равняться нулю не только сумма
всех сил, но и сумма всех моментов силы
вокруг любой точки. Для 2-хмерного случая
с горизонтальными и вертикальными
силами: сумма сил в двух измерениях
ΣH=0, ΣV=0 и момент силы в третьем измерении
ΣM=0.

[Править]Момент силы как функция от времени

Момент
силы — производная по
времени от момента
импульса,


 ,

где
L — момент импульса. Момент импульса
твердого тела может быть описан через
произведение момента
инерции и угловой
скорости.


 ,

То
есть, если I постоянная, то


 ,

где
α — угловое
ускорение,
измеряемое в радианах в секунду за
секунду.

Если сила совершает
действие на каком-либо расстоянии, то
она совершает механическую
работу.
Также если момент силы совершает действие
через угловое расстояние, он совершает
работу.


 = МОМЕНТ_СИЛЫ
* УГЛОВАЯ_СКОРОСТЬ

В
системе СИ мощность 
 измеряется
в Ваттах,
момент силы в ньютон-метрах, а УГЛОВАЯ
СКОРОСТЬ в радианах в
секунду.


 = МОМЕНТ_СИЛЫ
* УГОЛ

В
системе СИ работа 
 измеряется
в Джоулях,
момент силы в Ньютон
* метр,
а УГОЛ в радианах.

Обычно
известна угловая скорость 
 в
радианах в секунду и время действия
МОМЕНТА 
.

Тогда
совершенная МОМЕНТОМ силы РАБОТА
рассчитывается как:

 = МОМЕНТ_СИЛЫ

 * 

Если
имеется материальная точка 
,
к которой приложена сила 
,
то момент силы относительно точки 
 равен
векторному произведению радиус-вектора 
,
соединяющего точки 
 и 
,
на вектор силы 
:


.

Существует
несколько эквивалентных формулировок
первого начала термодинамики

В
любой изолированной системе запас
энергии остаётся постоянным.[2] Это
— формулировка Дж.
П. Джоуля (1842
г.).

Количество
теплоты,
полученное системой, идёт на изменение
её внутренней энергии и совершение
работы против внешних сил

Изменение
внутренней энергии системы при переходе
её из одного состояния в другое равно
сумме работы внешних сил и количества
теплоты, переданного системе, то есть,
оно зависит только от начального и
конечного состояния системы и не зависит
от способа, которым осуществляется этот
переход. Это определение особенно важно
для химической термодинамики[2] (ввиду
сложности рассматриваемых процессов).
Иными словами, внутренняя
энергия является функцией состояния.
В циклическом процессе внутренняя
энергия не изменяется.

Изменение
полной энергии системы в квазистатическом
процессе равно
количеству теплоты 
,
сообщённому системе, в сумме с изменением
энергии, связанной с количеством
вещества 
 при химическом
потенциале 
,
и работы 
[3],
совершённой над системой внешними
силами и полями,
за вычетом работы 
,
совершённой самой системой против
внешних сил


.

Для
элементарного количества теплоты 
,
элементарной работы 
 и
малого приращения 
 внутренней
энергии первый закон термодинамики
имеет вид:


.

Разделение
работы на две части, одна из которых
описывает работу, совершённую над
системой, а вторая — работу, совершённую
самой системой, подчёркивает, что эти
работы могут быть совершены силами
разной природы вследствие разных
источников сил.

Важно
заметить, что 
 и 
 являются полными
дифференциалами,
а 
 и 
 —
нет.

[править]Частные
случаи

Рассмотрим
несколько частных случаев:

  1. Если 
    ,
    то это означает, что тепло к
    системе подводится.

  2. Если 
    ,
    аналогично — тепло отводится.

  3. Если 
    ,
    то система не обменивается теплом с
    окружающей средой и называется адиабатически
    изолированной.

Обобщая:
в конечном процессе 
 элементарные
количества теплоты могут быть любого
знака. Общее количество теплоты, которое
мы назвали просто 
 —
это алгебраическая сумма количеств
теплоты, сообщаемых на всех участках
этого процесса. В ходе процесса теплота
может поступать в систему или уходить
из неё разными способами.

При
отсутствии работы над системой и потоков
энергии-вещества, когда 


,
выполнение системой работы 
 приводит
к тому, что 
,
и энергия системы 
 убывает.
Поскольку запас внутренней
энергии 
 ограничен,
то процесс, в котором система бесконечно
долгое время выполняет работу без
подвода энергии извне, невозможен, что
запрещает существование вечных двигателей
первого рода.

Первое
начало термодинамики:

  • при
    изобарном процессе

  • при
    изохорном процессе (
    )

  • при
    изотермическом процессе 

Здесь 
 — масса газа, 
 — молярная
масса газа, 
 — молярная
теплоёмкость при
постоянном объёме, 
 — давление, объём и температура газа
соответственно, причём последнее
равенство верно только для идеального
газа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Цель этой работы: с помощью экспериментальной
установки определить момент силы, которую необходимо приложить к одному из
концов рычага для того, чтобы он оставался в равновесии в горизонтальном
положении.

Для выполнения этой работы мы будем использовать оборудование
из комплекта № 6 в составе: штатив лабораторный с держателями, рычаг,
динамометр с пределом измерения пять ньютонов (5 Н), набор грузов массой по сто
граммов (100 г) каждый и линейка.

Прежде чем приступить к работе давайте с вами вспомним, что
издавна для облегчения совершения механической работы человечество использует простые
механизмы
— устройства, в которых работа совершается только за счёт
механической энергии.

Простые механизмы служат для преобразования силы. Их
применяют при совершении работы в тех случаях, когда надо действием одной силы
уравновесить другую силу. Одним из наиболее распространённых простых механизмов
является рычаг. Именно он позволяет малой силой уравновесить большую. Итак, рычагом
называется любое твёрдое тело, которое может поворачиваться относительно
неподвижной оси или опоры под действием сил. При этом следует помнить, что
результат действия силы на рычаг определяется не только её модулем, но и длиной
плеча.

Напомним, что плечом силы называется кратчайшее
расстояние от точки опоры до линии действия этой силы. Чтобы найти плечо силы,
надо из точки опоры опустить перпендикуляр на линию действия силы. Длина этого
перпендикуляра и будет плечом данной силы.

Также давайте
вспомним, что произведение модуля силы на её плечо называется моментом силы:

А единицей измерения момента силы является ньютон, умноженный
на метр:

Именно момент силы нам и предстоит найти в сегодняшней
работе.

Ну что ж, приступим к выполнению. Итак, первое, что мы с вами
сделаем, — это соберём экспериментальную установку. Для этого мы должны
закрепить в держателе штатива наш рычаг. Если равновесие нарушено, то рычаг
необходимо уравновесить с помощью уравнительных винтов, расположенных с обоих
торцов.

Далее мы с вами делаем рисунок экспериментальной установки.
Для этого мы нарисуем рычаг, не забыв указать его ось вращения. По условию
задания слева от оси вращения мы должны подвесить три груза: два — на
расстоянии 6 см и один — на расстоянии 12 см от оси вращения. Справа на
расстоянии 6 см от оси вращения рычага мы нарисуем динамометр и укажем
направление действия силы .

С рисунком
закончили, теперь запишем формулу, которой будем пользоваться при выполнении
данной работы. Как мы уже вспоминали, момент силы — это произведение
модуля силы на плечо этой силы:

Приступаем непосредственно к работе. Вначале мы с вами должны
разместить грузы слева от оси вращения рычага согласно условию задания. Итак, к
ушку первого крепления подвешиваем два груза и с помощью линейки устанавливаем
их на расстоянии 6 см от оси (не забываем придерживать рычаг рукой). Ко второму
ушку цепляем один груз и располагаем его в 12 см от оси вращения. Ушко с правой
стороны устанавливаем на расстоянии 6 см от оси и цепляем к нему
динамометр.

Теперь, с помощью динамометра, добиваемся равновесия рычага в
горизонтальном положении. Как только равновесие рычага достигнуто, снимаем
показания динамометра и разбираем установку (чтобы это всё не рухнуло на стол).

После этого записываем значение силы в бланк ответов с учётом
погрешности измерения:

Здесь же указываем плечо этой силы, данное нам по условию
задания:

Прямые измерения мы с вами завершили — осталось только
определить момент силы. Для этого подставляем значения модуля силы F и её плеча в расчётную
формулу:

Тогда в конце работы мы можем с вами записать, что момент
силы, приложенной к правому концу рычага на расстоянии 6 см от оси вращения
рычага, равен 0,24 Н ∙ м.

Добавить комментарий